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Chapter 1

Solving the inverse
three-dimensional continuous model
of electrical resistance tomography
using the method of fundamental
solutions and the Markov chain
Monte Carlo approach

T. E. Dyhoum1,2, R. G. Aykroyd2 and D. Lesnic1

1 Department of Applied Mathematics,
University of Leeds
Leeds, LS2 9JT, UK

2 Department of Statistics,
University of Leeds
Leeds, LS2 9JT, UK

Abstract. This paper discusses the three-dimensional continuous model of electrical
resistance tomography for detecting rigid inclusions embedded in a bounded background
medium. The mathematical model is governed by Laplace’s equation subject to a homo-
geneous Dirichlet boundary condition on the unknown rigid inclusion and Cauchy data on
the outer boundary. The forward solver uses the meshless method of fundamental solutions,
which is a discrete variant of the single layer potential in the direct form of the boundary
element method for harmonic functions, but with source points shifted outside the solution
domain such that singularities in the fundamental solution are avoided. The inverse solu-
tion is based on the Bayesian approach and Markov chain Monte Carlo (MCMC) estimation
technique. The MCMC is used not only for estimating the desirable model parameters,
but also for uncertainty and reliability assessment. Numerical examples are investigated to
demonstrate the effectiveness and the accuracy of the proposed approach.

1.1 Introduction

The paper extends the previous two-dimensional computations of direct and inverse problems [1]
to three dimensions. As a remarkable step towards solving the direct and the inverse complete-
electrode model of ERT in three-dimensions, we will consider first the continuous model.
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2 CHAPTER 1. MFS AND MCMC FOR 3D CONTINUOUS MODEL

Prior to this study, three-dimensional rigid inclusions have been reconstructed in [2, 6, 7] by
standard regularization schemes, where the method of fundamental solutions (MFS) was used
to produce the direct solution and a constrained optimization procedure was employed to de-
termine the boundary of a three-dimensional star-shaped rigid inclusion. In this paper, we use
the Bayesian statistical approach, instead of the gradient-based minimization of [2].

1.2 Main problems

We consider Laplace’s equation

△u = 0 in Ω, (1.1)

in various geometries Ω ⊂ R
3.

Problem 1: We consider an annular domain Ω = ΩOuter\ΩInner with a rigid inclusion

(a)

ΩInner =
{

(x, y, z) ∈ R
3| x2 + y2 + z2 < (0.5)2

}

(a sphere) (1.2)

or

(b)

ΩInner =

{

(x, y, z) ∈ R
3

∣

∣

∣

∣

∣

x2

(0.5)2
+

y2

(0.5)2
+

z2

(0.4)2
< 1

}

(an ellipsoid) (1.3)

inside the unit sphere ΩOuter =
{

(x, y, z) ∈ R
3|x2 + y2 + z2 < 1

}

. Equation (1.1) is solved
subject to the Dirichlet boundary conditions

u = f on ∂ΩOuter (1.4)

and

u = 0 on ∂ΩInner. (1.5)

On the other hand, in the inverse formulation, since the concern is not only to find the poten-
tial u but also to reconstruct the rigid inclusion ΩInner, the following Neumann current flux
measurement is required to compensate for the unknown geometry:

∂u

∂n
= g on ∂ΩOuter. (1.6)

As a result, the inverse problem of the continuous model of ERT is given by equations (1.1) and
(1.4)-(1.6). Uniqueness of this problem when f 6≡ 0 and Ω is connected is provided in [5].

Problem 2: We consider the domain Ω = ΩOuter\(ΩInner1 ∪ ΩInner1) with two disjoint rigid
inclusions, which need to be detected when the inverse problem is solved, given by

ΩInner1 =
{

(x, y, z) ∈ R
3| x2 + (y − 0.5)2 + z2 < (0.4)2

}

,

ΩInner2 =
{

(x, y, z) ∈ R
3| x2 + (y + 0.5)2 + z2 < (0.4)2

}

. (1.7)

These are located inside the unit sphere. Then, (1.1) is solved subject to (1.4), (1.6) and

u = 0 on ∂ΩInner1 ∪ ∂ΩInner2. (1.8)
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1.3 The MFS for the direct problem

1.3.1 Mathematical formulation

The MFS seeks an approximation to the solution of (1.1) in a bounded domain with a rigid
inclusion inside, as in (a) or (b), as a linear combination of fundamental solutions in the form

u(p) =

2(N−1)
∑

k=1

N
∑

l=1

ck,lG(ξ
k,l
, p), p ∈ Ω, (1.9)

where ξ
k,l

are source points located outside Ω and G is the fundamental solution of the three-

dimensional Laplace equation given by

G(ξ, p) =
1

4π|ξ − p|
. (1.10)

The expression (1.9) results from the discretisation of a single-layer boundary integral represen-
tation of the harmonic function u with sources located outside the surface ∂Ω.

The internal source points are located inside the inner domain ΩInner, and are defined, for
Problem 1(a), by

ξ
k,l

= 0.5 ηI

(

sin θ̃k cos φ̃l, sin θ̃k sin φ̃l, cos θ̃k

)

, k = 1, (N − 1), l = 1, N, (1.11)

where 0 < ηI < 1 (ηI is a contraction parameter), and, for Problem 1(b), by

ξ
k,l

= ηI

(

0.5 sin θ̃k cos φ̃l, 0.5 sin θ̃k sin φ̃l, 0.4 cos θ̃k

)

, k = 1, (N − 1), l = 1, N, (1.12)

θ̃k =
πk

N
, k = 1, (N − 1), φ̃l =

2π(l − 1)

N
, l = 1, N.

The external source points are located outside the outer domain ΩOuter, and are defined (for
both Problems 1(a) and 1(b)) by

ξ
k,l

= R
(

sin θ̃k−N+1 cos φ̃l, sin θ̃k−N+1 sin φ̃l, cos θ̃k−N+1

)

, k = N, 2(N − 1), l = 1, N,

(1.13)

where 1 < R < ∞. Similarly, the internal boundary collocation points are located on ∂ΩInner,
and are defined, for Problem 1(a), by

xi,j = 0.5 (sin θi cosφj, sin θi sinφj , cos θi) , i = 1, (M − 1), j = 1,M, (1.14)

and, for Problem 1(b), by

xi,j = (0.5 sin θi cosφj , 0.5 sin θi sinφj , 0.4 cos θi) , i = 1, (M − 1), j = 1,M, (1.15)

where

θi =
πi

M
, i = 1, (M − 1), φj =

2π(j − 1)

M
, j = 1,M.

The external boundary collocation points are located on ∂ΩOuter, and are defined (for both
Problems 1(a) and 1(b)) by

xi,j = (sin θi−M+1 cosφj , sin θi−M+1 sinφj , cos θi−M+1) , i = M, 2(M − 1), j = 1,M. (1.16)
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In order to obtain the coefficient c = (ck,l)k=1,2(N−1), l=1,N , (1.9) is substituted into the boundary

conditions (1.4) and (1.5). This results in

2(N−1)
∑

k=1

N
∑

l=1

Gi,j,k,lck,l = fi,j, i = 1, 2(M − 1), j = 1,M, (1.17)

where fi,j = f(xi,j) and Gijkl =
1

4π|ξ
k,l

−xi,j |
for i = 1, 2(M − 1), j = 1,M, k = 1, 2(N − 1) and

l = 1, N . Note that from (1.5), fi,j = 0 for i = 1, (M − 1), j = 1,M . The linear system of
algebraic equations (1.17) consists of 2(M − 1) × M equations with 2(N − 1) × N unknowns.
If M = N , we can apply the Gaussian elimination method to obtain the MFS coefficients c.
If M > N the least-squares method is used to solve the over-determined system of equations
(1.17). Once the coefficient vector c has been obtained accurately, equation (1.9) provides ex-
plicitly the solution for the potential u inside the domain Ω and, by differentiation, the current
flux ∂u/∂n on the boundary ∂Ω.
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Figure 1.1: (a, d, g) The absolute errors between the MFS and exact interior solutions uMFS(0.6, θ, φ)
and uExact(0.6, θ, φ), (b, e, h) the absolute errors between the MFS and exact outer derivative
(∂u/∂nMFS)(1, θ, φ) and (∂u/∂nExact)(1, θ, φ), and (c, f, i) the absolute errors between the MFS and
exact inner derivative (∂u/∂nMFS)(0.5, θ, φ) and (∂u/∂nExact)(0.5, θ, φ), for M = N = {8, 16, 32}, as
functions of φ/(2π) and θ/π.
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1.3.2 Numerical results

Example 1: Solve, using the MFS, the direct problem 1(a) given by (1.1), (1.4) with f = −1,
and (1.5) which has the analytical solution given by

u(x, y, z) =
1

√

x2 + y2 + z2
−

1

0.5
, (x, y, z) ∈ Ω. (1.18)

Solution: Choosing M = N = 16 results in 30× 16 = 480 boundary collocation points and 480
source points. We also take R = 5 and ηI = 0.6.

Figure 1.1 illustrates the absolute errors between the exact and the numerical MFS solutions
for various values of M = N ∈ {8, 16, 32}. From this figure, it can be seen that as M = N
increases, the accuracy of MFS solution increases.

Example 2: Consider the numerical solution of the direct problem 2 given by (1.1), (1.4),
(1.7) and (1.8) using the MFS when

f(x, y, z) = x2 + y2 − 2z2, (x, y, z) ∈ ∂ΩOuter. (1.19)

Note that in this case an analytical solution is not available. The MFS implementation requires
some changes when the two inclusions (1.7) are present but these are straight forward.

Solution: Choosing M = N = 16 results in 45 × 16 = 720 collocation points and 720 source
points. We also take R = 5 and ηI=0.6.

Figure 1.2 illustrates the rapid convergence of the MFS numerical normal derivative on the
external boundary ∂ΩOuter for various M = N = {8, 16, 32, 64}. It is also obvious that the two
peaks are caused by the existence of the two inner rigid inclusions (1.7).
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Figure 1.2: The MFS outer derivative (∂u/∂n)
MFS

Outer(1, θ, φ), as a function of φ/(2π) and θ/π, for (a)
M = N = 8, (b) M = N = 16, (c) M = N = 32, (d) M = N = 64, when R = 5 and ηI = 0.6.

1.4 The inverse solution in three dimensions

1.4.1 One rigid inclusion (inverse problems 1(a) and 1(b)

Consider a three-dimensional star-shaped object ΩInner centered at the origin in the unit sphere
ΩOuter and parametrised by

ri,j = r(θ̃i, φ̃j), i = 1, (N − 1), j = 1, N, (1.20)
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using the spherical coordinates representation

ΩInner = {r(θ, φ) (sin θ cosφ, sin θ sinφ, cos θ) | φ ∈ [0, 2π), θ ∈ (0, π)}. (1.21)

The boundary potential u is specified as in (1.4) and the current flux ∂u/∂n is obtained
numerically by solving the direct problem in order to provide the current flux data (1.6). After-
wards, the potential and current flux values are corrupted with noise as

wi,j = f(xi,j) + ηi,j, vi,j = g(xi,j) + ζi,j, i = M, 2(M − 1), j = 1,M, (1.22)

where the additive noise variables ηi,j and ζi,j follow independent Gaussian distributions with
zero means and variances σ2

w and σ2
v , respectively.

Based on (1.9), (1.20) and (1.21), the rigid-inclusion condition (1.5) is imposed as

2(N−1)
∑

k=1

N
∑

l=1

ck,lG
(

ξ
k,l
, ri,j(sin θ̃i cos φ̃j , sin θ̃i sin φ̃j , cos θ̃i)

)

= 0, i = 1, (N − 1), j = 1, N.

(1.23)

Also, (1.4) and (1.6) yield

2(N−1)
∑

k=1

N
∑

l=1

ck,lG(ξ
k,l
, xi,j) = wi,j, i = M, 2(M − 1), j = 1,M, (1.24)

2(N−1)
∑

k=1

N
∑

l=1

ck,l
∂G

∂n
(ξ

k,l
, xi,j) = vi,j, i = M, 2(M − 1), j = 1,M. (1.25)

Equations (1.23)-(1.25) create a nonlinear system of (N − 1)×N +2(M − 1)×M equations
with 3(N − 1) ×N unknowns given by the radii r = (ri,j) for i = 1, (M − 1), j = 1, N and the

MFS coefficients c = (ck,l) for k = 1, 2(M − 1), l = 1, N . Although the linearity in c is obvious
in equations (1.24) and (1.25), equation (1.23) clearly shows the nonlinearity between r and c.

The constraint 0 < rij < 1 for i = 1, (N − 1), j = 1, N is imposed to ensure that the inner
star-shaped object remains within the unit sphere during the reconstruction process.

1.4.2 Two rigid inclusions (inverse problem 2)

Now consider two three-dimensional star-shaped objects ΩInner1 and ΩInner2 centered at given
points say, (X0, Y0, Z0) and (X1, Y1, Z1) in the unit sphere ΩOuter and represented by r1 =
(r1i,j)i=1,(N−1), j=1,N and r2 = (r2i,j)i=1,(N−1), j=1,N , respectively, defined as in (1.20).

Conditions (1.8), (1.4) and (1.6) are

3(N−1)
∑

k=1

N
∑

l=1

ck,lG
(

ξ
k,l
, ri,j(sin θ̃i cos φ̃j, sin θ̃i sin φ̃j , cos θ̃i)

)

= 0, i = 1, 2(N − 1), j = 1, N.

(1.26)

3(N−1)
∑

k=1

N
∑

l=1

ck,lG(ξ
k,l
, xi,j) = wi,j, i = (2(M − 1) + 1) , 3(M − 1), j = 1,M, (1.27)
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3(N−1)
∑

k=1

N
∑

l=1

ck,l
∂G

∂n
(ξ

k,l
, xi,j) = vi,j, i = (2(M − 1) + 1) , 2(M − 1), j = 1,M. (1.28)

Equations (1.26)-(1.28) create a nonlinear system of 2(N −1)×N +2(M −1)×M equations
with 5(N − 1)×N unknowns. We also need to take into account that the distance between the
centres is greater than the sum of the diameters, namely,

S =
√

(X0 −X1)2 + (Y0 − Y1)2 + (Z0 − Z1)2 > diam(ΩInner1) + diam(ΩInner2), (1.29)

where the diameters of ΩInner1 and ΩInner2 are defined as

diam(ΩInneri) = max
x,y∈∂ΩInneri

|x− y|, i = 1, 2. (1.30)

1.4.3 Statistical approach

The solution of the inverse problem (1.23)-(1.25) or (1.26)-(1.28) is obtained using the MCMC,
as described in [1, 4]. Due to the ill-posedness and non-linearity of the ERT inverse problem,
we consider the Bayesian approach which is linked to Markov chain Monte Carlo (MCMC) algo-
rithms to work as a regularization scheme interpreted in terms of prior information. Modelling
the prior information is a very important process in order to obtain reliable conclusions about
the solution.

The main ingredients in the Bayesian statistical framework are the likelihood function and
a prior distribution which describes the model parameters before the data is considered. The
product of the likelihood function and the prior distribution, an application of Bayes theorem,
leads to the posterior distribution (the solution of the inverse problem), see [4] for more details.
In the inverse problem, the model parameters which must be estimated using the potential and
current flux data, are the MFS coefficients c and the radii r. These are high-dimensional param-
eters, for both inverse problems considered in this paper, which make the posterior distribution
complicated to solve numerically using standard methods. This is why the MCMC technique
is used in this paper to estimate the shape and the size of the inner rigid inclusions. Another
advantage of using MCMC is that it also allows deeper understanding of the posterior distribu-
tion in terms of accuracy and reliability, foe example by calculation of credible intervals of the
unknown parameters, [1, 4].

Although the MCMC offers a flexible tool to fully investigate the reliability and quantify
uncertainty of the posterior distribution, it makes intensive use of the forward solver which can
be a drawback especially when three-dimensional ERT problems are being solved. Hence, using
a meshless method, such as the MFS described in the previous subsections, is more advantageous
than using domain or boundary discretisation methods.

The type of MCMC technique which is used here is the Metropolis-Hastings algorithm where
the initial guess of the radii is selected by finding a well-fitting circle for the inner inclusion and
the initial values for the MFS coefficients are chosen to be zero. For more details of similar use
of MCMC see [1, 3, 4].

1.4.4 Numerical results and discussion

Experiment 1. Find the inverse solution of Problem 1(a) satisfying (1.1) and (1.4), with
f = −1, and (1.5) by fitting a star-shaped object model using the data (1.6) from a spherical
inclusion (a) of radius 0.5 centred at (0, 0, 0).

First of all, the current flux ∂u/∂u on the external boundary ∂ΩOuter, is calculated nu-
merically by solving the forward Dirichlet problem (1.1), (1.4) and (1.5) using the MFS with
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(N − 1)N = 35 × 36 = 1260. Then, (1.22) is considered on a set of equally-spaced collocation
points, with (M − 1)M = 13× 14 = 182, on the external fixed boundary ∂ΩOuter. We add noise
to those boundary measurements with a standard deviation σw = σv = 0.01.

We take (N − 1)N = 14 × 15 = 210 which makes the discretised problem (that defined in
(1.23)-(1.25)) under-determined, since it consists of (N−1)N+2(M−1)M = 210+2×182 = 574
equations with 3(N − 1)N = 3× 210 = 630 unknowns. We take ηI = 0.6 and R = 5.

Secondly, the hierarchical structure of the statistical model in [1] is considered. The val-
ues of the hyper-prior parameters of the internal and external MFS coefficients are fixed at
αCI

= 0.0116 and αCE
= 0.2457, respectively, as well as the hyper-prior parameter value for the

radius at αr = 0.1 (based on previous work [1, 3]).

It can be seen from Table 1.1 that as the number K of MCMC iterations increases, the
three-dimensional reconstruction for the star-shaped model (1.20) become better. This is due
to the average of corresponding estimated radii becoming closer to the true value which is 0.5
and its standard deviation (given in brackets) is much smaller.

K The estimated radius The standard deviation

5 0.4895 0.0153

10 0.4888 0.0103

20 0.4926 0.0178

40 0.4968 0.0094

Table 1.1: The average of the estimated radii with the corresponding standard deviations, for Experiment
1, for various iterations K ∈ {5, 10, 20, 40}.

Experiment 2. Find the inverse solution of Problem 1(b) by fitting a star-shaped object model
using the data from an ellipsoid inclusion of radius given by

r(θ, φ) =
√

(0.5 sin θ cosφ)2 + (0.5 sin θ sinφ)2 + (0.4 cos θ)2, θ ∈ (0, π), φ ∈ [0, 2π). (1.31)

The Dirichlet data (1.4) on ∂ΩOuter is taken as

u(x, y, z) = f(x, y, z) = ex+y, (x, y, z) ∈ ∂ΩOuter. (1.32)

Figure 1.3 shows an excellent three-dimensional reconstruction for the ellipsoid (1.31). The
MCMC algorithm converges to the exact ellipsoid within just a few iterations with a run time,
for K = 80, of about three hours.
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Figure 1.3: Star-shaped model reconstruction: The exact inner ellipsoid and the fitted ellipsoids after
K = 80 iterations.

One way to illustrate that the MCMC works well is to consider the 2-norm values of
(rMFS

i,j − rexacti,j ), i = 1, 14, j = 1, 15, as well as the maximum absolute error values for
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K ∈ {5, 10, 20, 40, 80}, see Table 1.2. The random fluctuations suggest that the MCMC al-
gorithm is in equilibrium and mixing well.

K ||rMFS
i,j − rexacti,j || max |rMFS

i,j − rexacti,j |

5 0.0068 0.0063

10 0.0053 0.0036

20 0.0066 0.0036

40 0.0086 0.0052

80 0.0084 0.0031

160 0.0102 0.0028

320 0.0168 0.0047

Table 1.2: The 2-norm of (rMFS
i,j − rexacti,j ), i = 1, 14, j = 1, 15, and the maximum absolute error, for

Experiment 2, for various K ∈ {5, 10, 20, 40, 80, 160, 320}.

A better way to illustrate the reliability of the MCMC algorithm is to plot, see Figure
1.4, the object boundary credible intervals for some cross-sections in the xy-plane of the three-
dimensional reconstruction. From this figure, it can be seen that the width of the credible
intervals is very narrow near the top and the bottom of the reconstructed ellipsoid compared to
the ones at the middle due to the data distribution.
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Figure 1.4: Credible intervals for various cross-sections (a) θ = π
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, (b) θ = 3π

14
, (c) θ = 6π

14
, (d) θ = 8π

14
,

(e) θ = 11π
14

, and (f) θ = 13π
14

and (φ)j=1,15 ∈ [0, 2π), for Experiment 2.

Experiment 3. Find the inverse solution of Problem 2 satisfying (1.1), (1.4) with f given by
(1.32) and (1.8) by fitting a star-shaped object model using the data (1.6) from two spherical
inclusions (1.7) of radii 0.4 centred at (0, 0.5, 0) and (0,−0.5, 0).

Firstly, the current flux ∂u/∂u is calculated numerically on the external boundary ∂ΩOuter

by solving the forward Dirichlet problem (1.1), (1.4), (1.7) and (1.8) using the MFS with the
same inputs as in Experiment 1. Note that in the inverse problem, by extending the number
of rigid inclusions to two leads to a greater number of equations, 2(N − 1)N + 2(M − 1)M =
2× 210 + 2× 210 = 840 equations with 5(N − 1)N = 5× 210 = 1050 unknowns.

Figure 1.5 shows the credible intervals over some selected cross-sections of the three-dimensional
reconstructions confirming the solution’s reliability.
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1.5 Conclusion

The MFS has been successfully employed in combination with the MCMC to solve the three-
dimensional inverse problem in the continuous model of ERT. The combined method has suc-
cessfully detected three-dimensional star-shaped rigid inclusions (single sphere and ellipsoid, and
two spheres). This was further justified by producing and interpreting cross-sections of credible
intervals for the inner radii. Further work will consider reconstructing rigid inclusions from
voltage measurements resulted from the three-dimensional complete-electrode model of ERT.

−1 0 1
−1

−0.5

0

0.5

1

(b)

−1 0 1
−1

−0.5

0

0.5

1

(d)

−1 0 1
−1

−0.5

0

0.5

1

(c)

−1 0 1
−1

−0.5

0

0.5

1

(a)

−1 0 1
−1

−0.5

0

0.5

1

(e)

−1 0 1
−1

−0.5

0

0.5

1

(f)

Figure 1.5: Credible intervals for various cross-sections (a) θ = π
14
, (b) θ = 3π

14
, (c) θ = 6π

14
, (d) θ = 8π

14
,

(e) θ = 11π
14

, and (f) θ = 13π
14

and (φ)j=1,15 ∈ [0, 2π), for Experiment 3.
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