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ABSTRACT 

The Theory of Critical Distances (TCD) is a design method that is widely used in situation of 

practical interest to estimate the strength of notched/cracked components subjected to either 

static, dynamic, or fatigue loading. The TCD makes use of a characteristic length to post-process 

the linear-elastic stress fields damaging the material in the vicinity of the stress concentrators 

being designed. The employed length scale parameter depends on the specific microstructural 

features of the material under investigation. By making the most of the TCD’s unique features, the 

present paper summarises an attempt of reformulating this powerful theory to make it suitable 

for assessing static and dynamic strength of notched plain concrete. The accuracy and reliability 

of the proposed reformulation of the TCD is checked against a number of experimental results 

that were generated by testing, under different displacement rates, square section beams of plain 

concrete containing notches of different sharpness. This validation exercise allowed us to 

demonstrate that the proposed reformulation of the TCD, which is based on the use of simple 

power laws, is capable of accurately assessing the static and dynamic strength of the notched un-

reinforced concrete being tested, with the estimates falling within an error interval of ±20%. The 

obtained level of accuracy is certainly satisfactory, especially owing to the fact that static and 

dynamic strength is predicted without explicitly modelling those non-linearities characterising 

the stress vs. strain dynamic behaviour of concrete. 

 

Keywords: Un-reinforced concrete, notch, static loading, dynamic loading, critical distance. 
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NOMENCLATURE 

af, bf material constants in the σf vs. ε&  relationship 

aK, bK material constants in the KId vs. ε&  relationship 

f���Z� � calibration function for σ	�Z� �. 

f�
�Z� �  calibration function for σ��Z� � 

f���Z� � calibration function for K���Z� � 

rn notch root radius 

x generic material property 

xd value of material property x under dynamic loading 

xs value of material property x under quasi-static loading 

DIF Dynamic Increase Factor 

KIc plane strain fracture toughness 

KId dynamic fracture toughness 

Kt stress concentration factor 

L critical distance 

Oxyz system of coordinates 

Z�  reference dynamic variable 

αL, βL material constants in the L vs. Z�  relationship 

α�� , β��  material constants in the σ0 vs. Z�  relationship 

ε&  strain rate 

ε��, ��, �� reference constants in Table 1 

σ0 inherent strength 

σ1 maximum principal stress 

σcs  static uniaxial compressive strength 

σeff effective stress 

σf failure stress 

σfn notch failure nominal stress referred to the net area 

σnom nominal stress 

σy normal stress parallel to axis y 

σUTS ultimate tensile strength 

θ, r polar coordinates 

∆&  displacement rate 
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1. Introduction 

In situations of practical interest (such as under either blast or impact loading), concrete 

structures have to be designed to withstand high stress/strain rates. Having recognized this as a 

complex structural engineering problem, since about the middle of the last century, the 

international scientific community has made a tremendous effort to understand and model the 

mechanical/cracking behaviour of concrete materials subjected to dynamic loading. This issue 

has been addressed extensively by tackling this problem both from an experimental and a 

theoretical angle. Following the pioneering work done by Hopkinson, Davies and Kolsky [1–3] as 

well as Mellinger and Birkimer [4] used high velocity projectiles to strike concrete cylindrical 

specimens and induce spalling failure under high strain rate conditions. Since then, a number of 

experimental investigations (see, for instance, Refs. [5, 6] and the references reported therein) 

have confirmed that, at room temperature, both the compressive and tensile strength of concrete 

tend to increase with the increase of the loading/displacement/strain rate. 

After the advent of Linear Elastic Fracture Mechanics (LEFM), a few investigations were carried 

out also to study the existing relationship between material fracture toughness and loading rate. 

In particular, much experimental evidence [7, 8] suggests that, at room temperature, concrete’s 

fracture toughness can either remain constant or increase as the Stress Intensity Factor (SIF) rate 

increases, this mainly depending on the existing interactions between crack propagation 

mechanisms and material micro/meso-structural features. 

Despite the large body of knowledge available to structural engineers designing concrete 

structures against dynamic loading, examination of the state of the art shows that a commonly 

accepted design approach has not yet been agreed by the international scientific community. 

Furthermore, the sensitivity of concrete to the presence of finite radius notches has never been 

investigated systematically in the past. Consequently, there are no specific approaches suitable 

for designing notched plain concrete against static and dynamic loading. 
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In this challenging scenario, by taking full advantage of the so-called Theory of Critical Distances, 

the present paper reports on an attempt of formulating a unifying design methodology suitable 

for performing static/dynamic assessment of notched plain concrete. 

 

2. Mechanical/Cracking behaviour of plain concrete under dynamic loading 

Concrete is a three phase material (i.e., cement paste, aggregates, and transition zone) whose 

mechanical properties vary locally. When concrete is loaded dynamically, cracks are seen to 

propagate through those material regions characterised by higher local resistance, causing 

aggregate interlocking or further micro-cracking [9–11]. On the contrary, under very low loading 

rates, the stiffness and toughness of the aggregates can lead to crack deflection, forcing the cracks 

themselves to grow along those paths requiring the least amount of energy for the propagation 

process to take place [9–12]. Furthermore, under low loading rates, large voids can arrest the 

crack growth process [13], with this resulting in an apparent increase of the material’s resistance 

to the propagation of cracks. 

Examination of the state of art shows that the effect of the loading rate on the overall 

mechanical/cracking behaviour of concrete is usually quantified in terms of Dynamic Increase 

Factor (DIF). In particular, for a given material property, the DIF is the ratio between the value 

of the specific material property being investigated under dynamic, xd, and quasi-static, xs, 

loading, respectively, i.e. [14-16]: 

 

DIF = ��
��

                   (1) 

 

The testing of un-notched un-confined concrete specimens under high loading rates is the typical 

procedure that is followed to quantify the DIF in terms of strength. The most common 

experimental methodologies involve the use of split Hopkinson pressure bars (SPHBs) and the 

combined use of SHPBs and Brazilian splitting specimens to investigate the mechanical behaviour 
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of concrete under compression and tension, respectively. It is worth observing here that, apart 

from conventional cracking, these experimental techniques are seen to activate additional 

mechanisms that affect the overall strength of concrete. In particular, much experimental 

evidence suggests that, under strain rates larger than about 200 s-1, the lateral inertia of the 

cylindrical specimens placed between the two loading bars of the SHPBs confines the material, 

with this resulting in an increase of its strength [6, 17]. In contrast, the triaxial tensile stresses that 

result from uniaxial dynamic loading waves prevent the additional strengthening mechanisms 

associated with the inertia from activating themselves, with this leading to DIF values that are 

conservative [18]. In addition, since under dynamic loading the free water in the concrete’s pores 

remains viscous, Stefan’s effect has been identified as another possible mechanism that can 

further increase the compressive and tensile strength of concrete under high loading/strain rates 

[12, 19, 20]. 

By focusing their attention on the failure stress of un-reinforced concrete subjected to tensile 

loading, Malvar and Crawford [21] have observed that the increase of the DIF (defined as the ratio 

between the tensile strength under a specific strain rate and the corresponding strength under 

quasi-static loading) with the increase of the strain rate can be subdivided into two different 

regimes. In more detail, according to Figure 1, the increment in strength is seen to be quite limited 

up to a strain rate, ε& , of 1 s-1. In this regime, final breakage is mainly governed by the same 

mechanisms as those commonly observed under quasi-static loading. As soon as the applied 

strain rate, ε& , becomes larger than about 1 s-1, the material cracking behaviour becomes more 

complex, with the associated failure mechanisms leading to a very rapid growth of the tensile DIF 

as the applied strain rate increases (Fig. 1). 

Having recognised that the employed experimental techniques can create an apparent increase in 

the tensile/compressive DIF and that various mechanisms counteracting each other may manifest 

themselves, modelling the dynamic behaviour of concrete structures is never a simple task. Table 

1 summarises the most popular approaches that, since about the middle of the last century, have 
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been devised (and somehow validated) to estimate dynamic strength of concrete [22, 23]. The 

governing equations reported in Table 1 are in the form of logarithmic polynomials that fit the 

experimental data, with strain rate ε&  being the independent variable. These different models have 

been derived based on the interpolation of datasets generated by testing materials having specific 

mechanical properties [23]. Therefore, there is little flexibility to adjust these models to make 

them suitable for modelling the mechanical/strength behaviour of concrete mixes with different 

material properties (e.g. strength). An interesting exception is represented by the CEB model [25]. 

In particular, since the calibration of this model for the estimation of the tensile strength involves 

a number of parameters that can be adjusted, its applicability is obviously wider. 

By carefully observing the different models that are summarised in Table 1, it is interesting to 

point out that, after some manipulations, all these equations, even if they are sometimes very 

complex, can all be brought back to the following simple form: 

 

�� !�" = a� ∙ ε�%
                   (2) 

 

In other words, examination of the state of the art suggests that all the models that have been 

proposed so far to link the dynamic strength, σf, of un-reinforced concrete to the rate of the 

applied strain, ε� , can be rewritten in the form of power laws, where, according to Eq. (2), af and bf 

are material constants that have to be estimated by running appropriate experiments. 

Even though much work has been done to determine the variation of the strength DIF with respect 

to the strain rate, solely a limited number of studies investigating the variation of the fracture 

toughness of un-reinforced concrete as the rate of the applied loading increases are available in 

the technical literature. Midness et al. [33] tested notched concrete beams under impact loading 

by realising a hammer from specific heights. According to the generated experimental results, 

they came to the conclusion that concrete becomes tougher and tougher as the hammer’s drop 

height increases, but no explicit relationship between loading rate and fracture toughness was 
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proposed. An attempt of modelling the fracture behaviour of plain concrete under dynamic 

loading was made instead by Reji & Shah in 1990 [7]. In more detail, they used a two-parameter 

fracture model based on the crack opening displacement and the fracture toughness to reanalyse 

their results. According to Reji & Shah’s experimental/theoretical outcomes, it is possible to 

conclude that, in the low loading rate regime, the fracture toughness of plain concrete should 

increase moderately as the loading rate itself increases. 

In 2000 Lambert & Ross [8] performed a systematic experimental investigation by using a SHPB 

to test Brazilian splitting tensile specimens containing internal notches, with this experimental 

configuration allowing them to achieve higher strain rates than those investigated by Reji & Shah 

[7]. The data being generated were then post-processed by employing a modified two parameter 

fracture model. According to this experimental/theoretical investigation, Lambert & Ross as well 

came to the conclusion that the fracture toughness of plain concrete increases as the strain rate 

increases [8]. 

If the experimental results generated by Reji and Shah [7] as well as by Lambert and Ross [8] are 

reported in a log-log diagram plotting the fracture toughness, KId, vs. the applied strain rate, ε&  

(see Figure 2), it is straightforward to observe that, similar to the σf vs ε&  behaviour shown in 

Figure 1, the dynamic fracture toughness increases as the strain rate increases according to a 

simple power law, i.e.: 

 

K�� !�" = a� ∙ ε�%&                  (3) 

 

with aK and bK being material constants to be determined experimentally. As to Figure 2, it is 

worth observing that, for the different experimental results being reported, the fracture toughness 

was defined via the effective value of the stress intensity factor, i.e. by referring the SIF value to 

the crack length at failure. 
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To conclude, it can be pointed out that Eqs (2) and (3) represent the fundamental mathematical 

tools on which the novel formalisation of the TCD proposed in the present paper will be based, 

with the formulation and validation of this new failure assessment methodology being discussed 

in Sections 4 and 6, respectively.  

 

3. Fundamentals of the Theory of Critical Distances under quasi-static loading 

The TCD postulates that notched components subjected to Mode I quasi-static loading do not fail 

as long as the following condition is assured [34, 35]: 

 

σ'�� < σ	                   (4) 

 

In inequality (4) σeff is the effective stress determined according to the TCD, whilst σ0 is the so-

called inherent material strength. If the TCD is used to perform the static assessment of brittle 

notched materials, σ0 can be taken equal to the material ultimate tensile strength, σUTS [36]. In 

contrast, as far as ductile notched materials are concerned, σ0 is seen to be larger than σUTS [37-

39], with the determination of σ0 requiring complex, time-consuming and expensive experiments 

[34, 37]. 

Critical distance L is the second material property which is needed to apply the TCD to design 

notched components in situations of practical interest. Under quasi-static loading, this length 

scale parameter can be estimated directly from the plane strain fracture toughness, KIc, and the 

inherent material strength, σ0, as follows [34]: 

 

L = *
+ ,�-

��
./

                   (5) 
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The effective stress, σeff, required to perform the static assessment according to Eq. (4) has to be 

calculated by directly post-processing the linear-elastic stress field in the vicinity of the stress 

concentrator being designed. Effective stress σeff can be determined according to the Point Method 

(PM), the Line Method (LM), and the Area Method (AM) as follows [34, 40, 41]: 

 

σ'�� = σ0 ,θ = 0, r = 4
/.  (PM)               (6) 

σ'�� = *
/4  6 σ0 θ = 0, r"/4

	 dr  (LM)               (7) 

σ'�� = 8
+49 6 6 σ* θ, r"4

	
+ /:

	 r dr dθ (AM)              (8) 

 

The adopted symbols as well as the meaning of the effective stress calculated through definitions 

(6) to (8) are explained in Figures 3a to 3d, with σy being the stress parallel to axis y and σ1 the 

maximum principal stress. 

According to Eqs (6) to (8), the determination of the effective stress is based on the use of a 

suitable critical distance, where, given the experimental value of the plane strain fracture 

toughness, L can be determined directly via Eq. (5) solely for those brittle materials for which σ0 

is invariably equal to σUTS. In contrast, when σ0 is different from σUTS (as for ductile materials), 

the required characteristic length has to be determined by post-processing the results generated 

by testing specimens containing notches of different sharpness [34, 38]. This procedure is 

schematically shown in Figure 3e. In particular, according to the PM’s modus operandi, the 

coordinates of the point at which the two linear-elastic stress-distance curves, plotted in the 

incipient failure condition, intersect each other allow L and σ0 to be estimated directly. To 

conclude, it is worth recalling here that this experimental procedure based on notches of different 

sharpness is seen to be very accurate also in estimating KIc [42]. In more detail, as soon as both L 

and σ0 determined according to the procedure schematically depicted in Figure 3e are known, the 
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plane strain fracture toughness for the specific material being investigated can directly be 

estimated through Eq. (5), with KIc being now the unknown variable in the problem. 

 

4. Extending the use of the TCD to situations involving dynamic loading 

As discussed above, examination of the state of the art suggests that the strength and fracture 

toughness of concrete subjected to dynamic loading are different from the corresponding values 

determined under quasi-static loading. If these experimental findings are reinterpreted according 

to the TCD’s modus operandi, one may argue that, since, as per Eqs (2) and (3), both the strength 

and the fracture toughness of concrete follow a power law as the rate of the applied loading 

increases, both inherent strength σ0 and length scale parameter L should vary the same way as ε&  

increases [43]. In particular, by using Z�  to denote either the loading rate, the strain rate, the 

displacement rate, or the stress intensity factor (SIF) rate, according to Eqs (2) and (3) the effect 

of the dynamic loading on both the failure stress and the fracture toughness can be expressed as 

follows [43]: 

 

σ��Z� � = f�
�Z� � = α�
 ∙ Z� ;<
                  (9) 

K���Z� � = f���Z� � = α�� ∙ Z� %&�               (10) 

 

where f�
�Z� � and f���Z� � are functions which can be either determined by running appropriate 

experiments or derived theoretically. 

Recalling that, under static loading, σ0 is seen to be equal to σUTS for brittle materials, it can be 

hypothesised that, similar to the dynamic failure stress, Eq. (9), also the inherent material 

strength varies with Z�  according to a power law, i.e.: 

 

σ	�Z� � = f���Z� � = α�� ∙ Z� ;<�                (11) 
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where, again, function f���Z� � can be either determined experimentally or derived theoretically. 

According to the hypotheses formed above, in the most general case, length scale parameter L as 

well is expected to change as dynamic variable Z�  varies, in fact [43]: 

 

L�Z� � = *
+ =�-�>� �

���>� � ?
/
=α4 ∙ Z� ;@               (12) 

 

Having defined the laws needed to describe the way both the inherent material strength and the 

critical distance value vary under dynamic loading, according to the TCD’s philosophy the 

dynamic effective stress, σ'���Z� �, can then be defined as follows (for an explanation of these 

definition the reader is referred to the static case as described in Figure 3): 

 

σ'���Z� � = σ0 ,θ = 0, r = 4�>� �
/ .   (PM)            (13) 

σ'���Z� � = *
/4�>� �  6 σ0 θ = 0, r"/4�>� �

	 dr  (LM)            (14) 

σ'���Z� � = 8
+4�>� �9 6 6 σ* θ, r"4�>� �

	
+ /:

	 r dr dθ (AM)            (15) 

 

where the stress analysis is still carried out by using a linear-elastic constitutive law. In other 

words, as postulated by the TCD [34], the hypothesis is formed that the behaviour of notched 

concrete subjected to dynamic loading can be modelled directly via σ	�Z� � and L�Z� � without taking 

into account the actual non-linear stress vs. strain dynamic response of the material being 

assessed. 

Eqs (9) to (12) make it evident that the proposed reformulation of the TCD is based on the use of 

simple power laws. The main advantage of using this type of mathematical functions is that power 

laws are not only simple to calibrate, but also straightforward to employ to estimate the strength 
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of notched plain concrete. Unfortunately, this simplicity results in the fact that the required 

constants are measured in units that are obviously unconventional. Having considered this 

important aspect very carefully, we decided to keep using power laws in any case not only because 

they have proven to be very accurate in estimating the dynamic strength of other materials [43], 

but also because the ultimate goal of the present paper is promoting a simple design method that 

is suitable for performing rapid calculations in situations of practical interest. 

Turning to the design issue, according to the assumptions briefly discussed above, notched 

concrete components experiencing in-service dynamic loading are then supposed not to fail as 

long as the following conditions is assured: 

 

σ'���Z� � < σ	�Z� �                (16) 

 

Owing to the complexity of the reasoning on which the design method being proposed is based, a 

set of suitable experimental results is obviously needed to check the validity of the formed 

hypotheses. This will be done in the next sections. 

 

5. Experimental details 

To check the accuracy of the novel reformulation of the TCD presented in the previous section, a 

series of bending tests involving un-notched and notched specimens of plain concrete were run in 

the Structural Engineering Laboratory of the University of Sheffield, UK. 

This experimental investigation involved 100 mm x 100 mm square section beams weakened by 

notches of different sharpness and loaded in four-point bending. The length of the notched 

samples was equal to 500mm and the nominal notch depth to 50mm. These beams contained U-

notches having root radius, rn, equal to 25 mm (resulting in a stress concentration factor, Kt, equal 

to 1.47), 12.5 mm (Kt=1.84), and 1.3 mm (Kt=4.99). For the sake of clarity, the geometries of the 

tested notched specimens are shown in Figure 4. The strength of the un-notched material was 
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determined instead by testing under three-point bending rectangular section specimens having 

width equal to 100mm and thickness to 50mm (i.e., having the same net cross-sectional area as 

the notched specimens). 

The concrete mix used to cast the specimens was as follows [44]: Portland cement (strength class 

equal to 30 N/mm2), natural round gravel (10 mm grading), and grade M sand. The water-to-

cement ratio was set equal to 0.45. A high workability was achieved to ensure that coarse 

aggregates were distributed as uniformly as possible around the notches. The specimens were 

removed from the moulds 24 hours after casting and subsequently cured in a moist room for 28 

days at 23°C. The notched specimens with notch root radius equal to 25 mm and 12.5 mm were 

manufactured by casting the required geometrical features into the bulk material through plastic 

inserts directly attached to the bottom of the moulds. The sharp notches instead were machined 

by using a circular saw. 

To generate the results used to check the accuracy of the TCD as reformulated in the previous 

section, the specimens were arranged in a simply supported configuration, where the upper 

supports were able to move vertically by means of a hydraulic actuator. The notched samples were 

tested under four-point bending, whereas the un-notched specimens under three-point bending. 

The actuator was load-controlled and was operated via two feed/relief valves. These valves 

controlled both the loading rate and the maximum applied load. The peak load was recorded 

during testing and a LVDT was used to monitor the vertical displacement of the supports. 

Displacement rates were quantified by directly post-processing the signals measured using the 

LVDT. In order to determine ∆&  accurately, the initial shift due to the vertical rigid motion of the 

specimens was removed from the gathered data, with this being done by directly monitoring the 

change in the slope of the recorded displacement vs. time curves. 

The un-notched and notched beams were tested by exploring displacement rates, ∆� , in the range 

3∙10-4-4.4 mm/s. The experimental results being generated are summarised in the charts of 

Figures 5a to 5c in terms of failure nominal stress referred to the net area. Further, in the same 
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diagrams the trend lines obtained by re-analysing the different data sets are also reported, with 

these trend lines being determined by using the standard least-squares method. As to the reported 

interpolation power laws, it is interesting to observe that even if they were calculated using 

continuum mechanics linear-elastic stresses in Figure 5a and nominal net stresses in Figures 5b, 

5c and 5d, the calibration constants are characterised by very consistent values in terms of 

dynamic scaling. This further confirms the validity and reliability of the experimental results that 

were generated. 

To conclude, Figure 6 shows some examples of the cracking behaviour displayed by the notched 

beams under different displacement rates. In particular, the direct inspection of the fracture 

surfaces revealed that de-bonding between aggregates and cement paste was the primary failure 

mechanisms, with this holding true independently of the applied displacement rate. 

 

6. Validation by experimental results 

To check the accuracy of the proposed reformulation of the TCD in predicting the strength of the 

notched samples we tested under both static and dynamic loading, the necessary linear-elastic 

stress fields in the vicinity of the notches being investigated were determined numerically by using 

commercial Finite Element (FE) software ANSYS®. The tested concrete was modelled as a 

homogenous and isotropic material. The FE models were meshed using bi-dimensional elements 

Plane 183, with the mesh density in the vicinity of the notch tips being increased gradually until 

convergence occurred. It is important to point out here that the dimensions of the notches in the 

solved FE models were taken equal to the corresponding average values determined by 

considering, for any notch geometry, the entire population of the specimens that were tested. 

As to the numerical modelling, it is worth observing here that, according to the hypothesis that is 

usually formed to apply the LEFM concepts to concrete [45], the intrinsic heterogeneous nature 

of the material was disregarded. Whilst this assumption may result in a certain loss of accuracy, 

it is the Authors’ opinion that this simplifying hypothesis is in any case acceptable because the 
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TCD is based on the same fundamental assumptions as those used to formalise conventional 

LEFM [34]. In this context, certainly, an interesting venue worth being explored would be 

modelling the complex micro/meso/macro-structure of plain concrete by employing specific 

length scale parameters that are directly related to the size of the dominant source of material 

heterogeneity [46]. However, since the core aim of the present work is to propose and validate a 

simple engineering approach suitable for performing rapid calculations, in line with the 

fundamental hypothesis on which LEFM is based (that applies also to un-reinforced concrete 

[45]), the required linear-elastic stress fields were determined by simply treating the tested 

concrete as an homogenous and isotropic material. 

Since the tested concrete was characterised by a mechanical behaviour that was predominantly 

brittle, the hypothesis was formed that inherent strength σ0 could be taken invariably equal to the 

un-notched material failure stress [36]. This hypothesis was assumed to hold true independently 

from the value of the displacement rate being investigated. After making this initial simplifying 

assumption, owing to the failure strength vs. displacement rate behaviour displayed by the un-

notched concrete (see Figure 5a), the σ0 vs. ∆�  relationship was expressed by adopting a simple 

power law - as per Eq. (11). In particular, by employing the standard least-squares method to re-

analyse the results plotted in Figure 5a, the following relationship was derived: 

 

σ	�∆� � = σ��∆� � = 6.71 ∙ ∆� 	.	F88 MPa              (17) 

 

The critical distance value, L, needed to calculate �GHH�∆� � according to definitions (13) to (15) was 

estimated by following the simplified procedure schematically shown in Figure 7. In particular, 

the results generated by testing both the un-notched and the sharply U-notched specimens were 

used as calibration information [34, 36, 38], L being determined by making ∆�  vary in the range of 

interest. This procedure returned a value for L that was invariably equal to 4.8 mm, i.e.: 
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I�∆� � =4.8 mm                 (18) 

 

In other words, contrary to what we have observed in notched metallic materials subjected to 

dynamic loading [43], for the specific concrete material being investigated the critical distance 

was seen not to be affected by the rate of the applied loading. However, it is the authors’ opinion 

that this is a particularly favourable result, so that, in the most general case, L is expected to vary 

as the loading rate increases (and, in particular, it is expected to increase with the increase of ∆& ). 

As to the value for L that was estimated according to the procedure discussed above, it is 

interesting to observe also that this length was seen to be very close to the average inter-aggregate 

distance that was measured to be equal to about 5 mm. This seems to further confirm that, in the 

TCD formulation, L is a length scale parameter that is closely related to the characteristics of the 

dominant source of microstructural heterogeneity [34]. 

The error diagram of Figure 8 summarises the overall accuracy that was obtained by applying the 

TCD in the form of the PM, LM, and AM, with the error being calculated using the following 

standard relationship: 

 

JKKLK = MNOO�∆� �PM��∆� �
M��∆� �  [%]               (19) 

 

According to the chart of Figure 8, the use of both the PM and AM was seen to result in estimates 

falling within an error interval of ±20%. The LM instead returned predictions that were slightly 

non-conservative, even if they still fell mainly within the target error band. 

In regard to the obtained accuracy, it is worth pointing out here that the proposed reformulation 

of the TCD was applied by hypothesising that damage always reached its maximum value on those 

planes parallel to the notch bisector. However, Figure 6 shows that, in some cases, cracks were 
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seen to initiate away from the notch tip, with the following propagation occurring along directions 

that were not parallel to the notch bisector. Clearly, this complex cracking behaviour has to be 

ascribed to the actual local morphology/inhomogeneity of the material in the critical regions of 

the specimens being tested. Further, it was observed that, due to the effect of the large thickness, 

even if some cracks initiated at the notch tip, the fact that the initiation point was away from the 

lateral surfaces resulted in a subsequent growth occurring on planes that were not perfectly 

aligned to the notch bisector. However, since this complex cracking behaviour has been observed 

also in other notched materials (such as, for instance, polymers that are classically treated as 

purely homogenous and isotropic [34]), according to the way the TCD is recommended to be 

applied in situations of practical interest [34], the generated data were post-processed by simply 

assuming that damage under both static and dynamic loading was maximised on those planes 

experiencing the maximum opening loading. 

It is possible to conclude by observing that the level of accuracy that was obtained is certainly 

satisfactory since, in the presence of stress concentration phenomena, it is not possible to 

distinguish between an error of ±20% and an error of 0% as a consequence of those problems that 

are usually encountered when performing the testing as well as the numerical analyses [34]. 

 

7. Conclusions 

In the present paper the linear-elastic TCD was reformulated to make it suitable for assessing 

static and dynamic strength of notched plain concrete. The accuracy and reliability of the 

proposed design method was then assessed against a number of experimental results generated 

by testing, under different displacement rates, plain concrete beams containing notches of 

different sharpness. The most important conclusions are summarised in what follows. 

• The proposed design methodology is suitable for designing notched plain concrete against 

static and dynamic loading by directly post-processing the linear-elastic stress fields acting 

on the material in the vicinity of the geometrical features being assessed. 
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• By adopting simple calibration power laws, the proposed reformulation of the TCD allows 

reliable static and dynamic assessment to be performed without the need to invoke 

complex non-linear constitutive laws. 

• The TCD used in the form of both the PM and AM was seen to be capable of estimates 

falling within an error interval of ±20%. 

• More work needs to be done to extend the use of this design approach based on the TCD 

to those situations involving static and dynamic multiaxial loading. 
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Tables 
 

Dynamic Increase Factor (DIF) 
Ref. 

Tension Compression 
 1.48 + 0.206 (�� ��) + 0.0221 (�� ��)� �� ≥ 10����� 

[24] 

��
�
�� 1, �� < ��� = 3 ∙ 10�!���

" �����#�.$�!%& ,  ��� < �� ≤ 30���
)� " �����#$.** , �� > 30���    

 

log )� = 7.110� − 2.33 0� = ��$2345&456 ; 78$ = 10 9:; 

���
�� 1, �� < ��� = 3 ∙ 10�!���

" �����#�.$�!%& ,  ��� < �� ≤ 30���
)� " �����# , �� > 30���    

 

log )� = 6.1560� − 2 0� = ��2=45&456  ; 78$ = 10 9:; 

[25] 

1 + 0.1948 "�� �����# + 0.03583 "�� �����#� , ��� = 25 ∙ 10�!��� 

 

[26] 

 ? 1.058 + 0.00965�� �� ≥ 1, �� ≤ 63���−0.289 + 0.785(�� ��) ≤ 2.5, �� ≥ 63���  [27] 

��
�
�� 1, �� < ��� = 10�!���

"��@���#A ,  ��� < �� ≤ 1���
)� "��@���#$.** , 1��� < �� < 160���    

 

log )� = 6B − 2   B = ��2C45&456  ; 78$ = 10 9:; 

 

[5, 21] 

?1 + 0.1425(�� �� + 5.8456) ≥ 1, �� ≤ 2.32���1 + 2.929(�� �� − 0.0635) ≤ 6, �� ≥ 2.32���  
 

[28] 

 D 1.07 + 0.0235�� ��, �� ≤ 266���−2.64 + 7.22(�� ��) − 4.4(�� ��)� ++0.882(�� ��)*, �� ≥ 266���  [29] 

 D1 + 0.03438(�� �� + 1), �� ≤ 100���+8.5303 − 7.1372(�� ��) ++1.729(�� ��)�, �� ≥ 100���  [30] 

1 + 0.1 �� �� ��� 
 

[31] 

D 1, �� < 10�E���1 + 0.26(�� �� + 4.0769), 10�E < �� ≤ 1���1 + 2(�� �� + 0.53), 1 < ��  

 

[32] 

D 1.12 + 0.0225�� ��, �� ≤ 10���1.6 + 1.235(�� ��) ++0.7325(�� ��)�, 50 ≥ �� ≥ 0.1��� D 1.12 + 0.0225�� ��, �� ≤ 10���1.2275 − 0.3563(�� ��) ++0.2713(�� ��)�, 10 ≥ �� ≥ 2.32��� [17] 

1 + 0.0653 �� ����� , ��� = 10�� ≤ �� ≤ 10����� 
 

[20] 

Table 1. Summary of suitable expressions to estimate the strength DIF of plain concrete. 
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Figures 
 
 

 
 

Figure 1. Tensile DIF vs. strain rate (after Malvar & Crawford [21]). 
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Figure 2. Dynamic fracture toughness, KId, vs. strain rate according to Reji & Shah [7] as well 
as to Lamber & Ross [8]. 
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Figure 3. Definition of the local systems of coordinates (a); effective stress, σeff, calculated 
according to the Point Method (b), Line Method (c), and Area Method (d); experimental 

determination of σ0 and L based on results generated by testing specimens containing notches of 
different sharpness (e). 
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Figure 4. Geometry of the notched specimens tested under four-point bending 

(dimensions in millimetres). 
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Figure 5. Summary of the generated experimental results. 
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rn=25 mm 
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Figure 6. Examples of the cracking behavior displayed by the tested specimens under different values 

of the displacement rate. 
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Figure 7. Procedure based on the use of the un-notched and sharply notched specimens 

followed to determine the L vs. ∆�  relationship. 

 

 

 

 
 

Figure 8. Accuracy of the TCD applied in the form of the PM, LM, and AM in estimating static 

and dynamic strength of notched concrete. 

-50

-40

-30

-20

-10

0

10

20

30

40

50

0.0001 0.001 0.01 0.1 1 10

E
r
r
o

r
 [

%
]

Displacement rate [mm/s]

Kt=4.99, PM

Kt=4.99, LM

Kt=4.99, AM

Kt=1.84, PM

Kt=1.84, LM

Kt=1.84, AM

Kt=1.47, PM

Kt=1.47, LM

Kt=1.47, AM

Error= +20%

Error= -20%

Conservative

Non-Conservative

Notch 
Tip 

σy 

σf(∆) 

r L(∆)/2 

σnom 

σnom 

Linear-elastic stress-distance curve 
in the incipient failure condition 

· 

⋅


