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Abstract 

Large, three-dimensional, porous poly(glycerol sebacate urethane) (PGSU) scaffolds were 

fabricated via a solvent-based synthesis approach followed by freeze-drying and curing. The 

scaffolds showed highly interconnected open-cell structures with porosities and pore sizes in 

the ranges of 77-88% and 55-74 �m, respectively. The mechanical properties were measured 

in dry and hydrated states during quasi-static and cyclic tensile and compression tests. 

Hydrated PGSU scaffolds featured tensile Young moduli, ultimate tensile strengths and 

elongations at break in the ranges of 29-32 kPa, 12-19 kPa and 50-57%, respectively. In vitro 

degradation tests of the PGSU scaffolds presented adjustable degradation rates and mass 

losses of 10-16% and 30-62% without and with the presence of lipase enzyme in 112 days, 

respectively. This work illustrates that the large and porous PGSU scaffolds, characterised 

with flexible and soft mechanical properties, as well as long-term stability and adjustable 

degradation kinetics, have high potential for applications in soft tissue engineering. 

Keywords: Bioelastomer, tissue scaffold, mechanical properties, soft tissue engineering. 
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1 Introduction 

The development of synthetic and biodegradable scaffolds that mimic the structures and 

mechanical properties of native tissues are crucial objectives in the approach of regenerative 

medicine-based treatments.
1,2

 In soft tissue engineering, synthetic biodegradable elastomers 

are a new emerging class of scaffold materials, capable of matching the host tissues 

structurally and mechanically.
3
 Poly(glycerol sebacate) (PGS) is a biocompatible and 

biodegradable elastomer, specifically designed for soft tissue applications.
4
 It is a covalently 

crosslinked polyester with tuneable and stretchable properties,  characterised with a three-

dimensional (3D) network which is capable of sustaining and recovering from deformations 

in mechanically dynamic environments.
4,5

 Depending on the synthesis conditions, PGS 

presented tensile Young’s moduli, strengths and strains at break in the ranges of 0.05-2.12 

MPa, 0.23-0.79 MPa and 69-448%, respectively.
4–7

 The in vivo degradation properties of 

PGS are characterised by surface erosion, relatively linear degradation kinetics and good 

retention of mechanical strength, with complete in vivo degradation within 60 days.
4,5,7

 

Despite encouraging results, processing of pristine PGS into large and 3D interconnected 

porous scaffold structures still remains challenging.
5,6

 The harsh curing conditions of PGS, 

designated by high curing temperatures of 110-165 °C and long curing times of 12-114 h in 

vacuum environment, are limiting its fabrication feasibility.
5–7

 Recently we developed large 

and highly porous PGS/poly(L-lactic acid) (PLLA) blend scaffolds for soft tissue applications 

via a freeze-drying and a subsequent curing process.
6,8

 PLLA acted in this fabrication strategy 

as a structure-supporting polymer due to its high melting point, helping maintain a porous 

scaffold structure during the harsh curing conditions of PGS.
6,8

 However, the porous 

PGS/PLLA blend scaffolds were still characterised with fast degradation kinetics, which 

could potentially be too fast to support the growth of certain target tissues or organs.
6,8

 With 

this respect, the use of PGS in a broader spectrum of soft tissue engineering applications is 
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still limited, due to its relatively narrow adjustable mechanical range and fast  

degradation rates.
9
 

Poly(glycerol sebacate urethane) (PGSU) was recently designed to overcome these 

limitations.
9
 PGSU is a biocompatible and highly tuneable elastomer, synthesised by reacting 

PGS pre-polymer with an isocyanate-based crosslinker, such as hexamethylene diisocyanate 

(HDI). It can be synthesised rapidly under mild conditions through a solvent-based or 

solvent-free method, avoiding the time-consuming and harsh curing conditions of pristine 

PGS.
9,10

 The mechanical and biodegradation properties of PGSU can be readily tailored by 

varying the synthesis method and the content of the crosslinker.
9,10

 PGSU featured broad 

mechanical properties with Young’s moduli, strengths and strains at break in the ranges of 

0.7-19.7 MPa, 1.0-12.1 MPa and 78-516%, respectively.
9,10

 The biodegradation of PGSU is 

dominated by surface erosion and presented in vivo degradation rates of over 40 weeks.
9
 

PGSU specimens presented no significant signs of inflammatory responses in vivo and the 

presence of sol content had no effect on its biocompatibility profile.
9
 Previous studies on 

PGSU and their nanocomposites were mainly focused on their chemical structures, physical 

properties and biocompatibility.
9,10

 While the fabrication of thin PGSU scaffolds by using 

water as a chemical blowing agent showed promising results,
9
 the fabrication and analysis of 

the structure and properties of large and 3D interconnected porous PGSU scaffolds were  

still lacking. 

In this study, flexible and large 3D porous PGSU scaffolds with three different low 

contents of HDI were fabricated through a freeze-drying process. For the fabrication of 

PGSU scaffolds 1,4-dioxane was used as a solvent, which is commonly used for freeze-

drying synthetic polymers.
6,8

 The morphology of the PGSU scaffolds was analysed by 

scanning electron microscopy (SEM), the hydrophilic characteristics and water absorption of 

the scaffolds were evaluated, the mechanical properties were investigated in depth in dry and 
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hydrated states during quasi-static and cyclic tensile and compression tests, along with 

rheological measurements. In vitro degradation studies up to 112 days were performed in 

enzyme-free and enzyme-containing phosphate buffer saline (PBS) solutions. The chemical 

structure and physical characteristics of PGS pre-polymer (pre-PGS) and PGSU films were 

also examined to assist our understanding of the PGSU scaffolds. 

2 Materials and Methods 

2.1 Materials 

Sebacic acid, glycerol, HDI, Tin(II) 2-ethylhexanoate (Tin(II)), ethanol, 1,4-dioxane, 

dimethylformamide (DMF), acetone, dimethyl carbonate (DMC), toluene, chloroform, PBS 

tablets (for preparing a PBS-water solution of pH 7.4) and lipase enzyme from porcine 

pancreas (54 U mg
-1

) were all of analytical grade and purchased from Sigma-Aldrich. 

2.2 Preparation of PGS Pre-Polymer, PGSU Films and Scaffolds 

PGS pre-polymer (pre-PGS) was synthesised according to previously reported methods, in 

which a molar ratio of 1:1 of sebacic acid and glycerol was reacted at 120 °C for 72 h under 

nitrogen gas and continuous stirring.
4,11

 

Table 1. Material compositions of the PGSU solutions for freeze-drying. 

Sample code 

Molar ratio of 

glycerol to HDI / 

mol:mol 

Mass ratio of  

Pre-PGS to HDI / 

g:g 

Solvent 
Solvent quantity / 

mL 

PGSU-1:0.4 1:0.4 1.42:0.33 1.4-dioxane 50 

PGSU-1:0.5 1:0.5 1.36:0.39 1.4-dioxane 50 

PGSU-1:0.6 1:0.6 1.30:0.45 1.4-dioxane 50 

 

PGSU specimens with three different molar ratios of glycerol to HDI (glycerol:HDI = 

1:0.4; 1:0.5, 1:0.6) were synthesised on the basis of a prior solvent-based method.
9
 These low 
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molar ratios of glycerol to HDI were chosen to guarantee soft and flexible properties.
9
 The 

nomenclature of the synthesised specimens is presented as PGSU-X, where “X” represents 

the molar ratio of glycerol to HDI: PGSU-1:0.4, PGSU-1:0.5 and PGSU-1:0.6. Briefly, pre-

PGS was dissolved in 1.4-dioxane under the presence of the catalyst Tin(II) (0.05% w/v) and 

heated to 55 °C under constant stirring in a sealed flask. HDI was then added drop wise to the 

solution, with nitrogen purged into the reaction flask which was sealed and held at 55 °C for 

5 h. For the preparation of PGSU films, the solution was cast onto a Teflon dish and left for 2 

days in a fume cupboard at room temperature, and then kept for 2 days in a vacuum oven at 

37 °C to evaporate any residual solvent and allow for further crosslinking.
9,10

 For the 

preparation of PGSU scaffolds, the solutions were cast into a non-sticky Teflon-coated metal 

tray (six cylindrical cavities; diameter = 60 mm; purchased from a local store) and placed in a 

freeze-dryer (FreeZone Triad Freeze Dry System, Labconco Co.) for lyophilisation. With this 

respect, the PGSU scaffolds were prepared with a fixed total material concentration, as listed 

in Table 1, and fabricated via a modified freeze-drying procedure, based on our previous 

methods.
6,8

 Briefly, the solutions were cooled to -30 °C and held for 5 h. The frozen solutions 

were heated to -5 °C (heating rate of 1 °C min
-1

) and sublimated for 24 h under vacuum. The 

temperature was raised to room temperature (cooling rate of 1 °C min
-1

) and held for 5 h, 

completing the freeze-drying procedure. The as-prepared specimens were left for 2 days in a 

fume cupboard at room temperature, and then kept for 2 days in a vacuum oven at 37 °C to 

evaporate any residual solvent and to cure the specimens further.
9,10

 All PGSU films and 

scaffolds underwent a cleaning procedure prior to tests (24 h saturation in ethanol at 21 °C; 

vacuum oven drying at 37 °C for 24 h) and were stored in a standard 50% relative humidity 

at 21 °C until further use. 
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2.3 Characterisation of PGS Pre-polymer and PGSU Films 

The number average molecular weight (���), the weight average molecular weight (���), and 

the polydispersity index (PDI) of the pre-PGS were obtained by gel permeation 

chromatography (GPC) as previously described.
8
 Attenuated Total Reflectance Fourier 

Transform Infrared Spectroscopy (FTIR) was performed on a Perkin Elmer Spectrum One 

NTS analyser and the mid-infrared region of 4000-450 cm
-1

 with a resolution of  

1 cm
-1

 recorded. 

The solubility of PGSU film specimens was evaluated by 24 h solvent saturation in 

dimethylformamide, 1.4-dioxane, acetone, dimethyl carbonate, toluene, chloroform and 

ethanol at 21 °C. The sol content of non-cleaned PGSU film specimens (n = 5) was measured 

by determining the mass difference before and after 24 h ethanol saturation at 21 °C. The 

swelling properties of the dried PGSU specimens (n = 9) were analysed in PBS solution (pH 

= 7.4, 24 h saturation at 37 °C) and ethanol (24 h saturation at 21 °C), in which the mass 

swelling ratio was determined by dividing the mass gained during the fluid saturation by the 

mass of the initial sample. 

The solid densities (��) of dry PGSU film specimens were obtained by using a helium 

pycnometer (AccuPycII 1340, Micromeritics) on pre-dried specimens. Quasi-static uniaxial 

tensile tests were performed on dry and hydrated (after 24 h saturation in the PBS solution at 

37 °C) PGSU film specimens at ambient condition (21 °C). Punched-out PGSU film 

specimens (n = 5; “dog-bone” shaped; width: 2.6 mm, gauge length: 20 mm, thickness: 0.4 ± 

0.05 mm) were tested on a Hounsfield H100KS testing machine (Tinius Olsen), using a strain 

rate of 50 mm min
-1

 and a 10 N load cell till fracture (ASTM D412). 
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2.4 Characterisation of PGSU Scaffolds 

The microstructure analysis of as-prepared and cleaned PGSU scaffolds was performed by 

SEM (Camscan S2). The SEM observations were carried out at 5 kV on cubic samples from 

the centre of the scaffold cross section, which were beforehand gold-coated for 3 min at 15 

mA by a sputter coater (Emscope SC500). The pore sizes (n = 450) of the scaffolds were 

analysed by using the image processing software ImageJ and only fully defined pores were 

used for measurements. 

The scaffold densities were measured by weighing dry cubic specimens (n = 8) with an 

analytical balance (AB204-S, Mettler Toledo), while their volumes were measured by using a 

caliper. The relative density (��) and the porosity (�	) of all scaffolds were calculated by 

Equation 1 and Equation 2 respectively, 

�� = �	 ��⁄             (1) 

�	 = �1 − ��� × 100%          (2) 

The water absorption behaviour within PGSU scaffolds (n = 9) was evaluated by 

calculating the mass difference between initial dry and soaked specimens, after 24 h 

saturation in PBS solution at 37 °C. The specimens were carefully wiped with filter paper to 

remove excess water on their surface, prior to mass measurements. 

Quasi-static and cyclic tensile and compression tests were executed on dry and hydrated 

(after 24 h saturation in PBS solution at 37 °C) PGSU scaffold specimens at ambient 

condition (21 °C), by using a Hounsfield H100KS testing machine and a 10 N load cell. 

Stripe specimens were used for quasi-static (n = 10; width: 5.14 ± 0.70 mm, gauge length: 15 

mm, thickness: 3.04 ± 0.71 mm) and cyclic (n = 3; width: 5.60 ± 0.78 mm, gauge length: 15 

mm, thickness: 3.66 ± 0.82 mm) tensile tests, which were cut-out from the centre cross 

section of the scaffolds and tested in the longitudinal direction, according to a previously 
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established method.
6,8

 Quasi-static uniaxial tensile tests were performed at a tensile strain rate 

of 50 mm min
-1

 till fracture (ASTM D412), while the cyclic tensile tests were stretched to 

20% strain during 20 cycles, at the same tensile strain rate. Cylindrical samples used for 

quasi-static (n = 10; diameter: 10 mm, thickness: 4.13 ± 0.94 mm) and cyclic (n = 3; 

diameter: 10 mm, thickness: 5.99 ± 0.35 mm) compression tests were punched-out from the 

centre cross section of the scaffolds. Quasi-static uniaxial compression tests were performed 

at a strain rate of 5 mm min
-1

 up to a strain of 75%, while cyclic compression tests were 

compressed to 50% strain during 20 cycles, at the same strain rate. 

Rheological measurements on hydrated (after 24 h saturation in PBS solution at 37 °C) 

PGSU scaffold specimens were executed on an Anton Paar Physica MCR 301 rheometer. 

Dynamic frequency sweep measurements were performed at 25 °C, over a frequency range of 

0.1 to 10 Hz under a fixed strain of 0.1% (in the linear viscoelastic region; pre-determined by 

dynamic strain sweep tests), by using a fixed gap of 1 mm between two parallel plates 

(diameter: 12 mm). Punched-out cylindrical samples (diameter: 12 mm, thickness: 1 mm) 

from the centre cross section of the scaffolds were used. 

In vitro degradation studies were performed on punched-out PGSU scaffold specimens  

(n = 3; diameter: 6 mm; thickness: 2.58 ± 0.12 mm) for up to 112 days at 37 °C, based on our 

prior work.
6,8

 Briefly, tests were conducted in a shaker incubator (Stuart SI500; 100 rpm) 

with two separate degradation media: a lipase containing PBS solution (25 mL; enzyme 

concentration: 110 U L
-1

)
12

 and a standard PBS solution (25 mL) as control. Both degradation 

media were changed every day, while the specimens were removed from the degradation 

media after specific days of incubation, washed with distilled water, dried in a vacuum oven 

at 37 °C, and weighed. SEM analysis was performed at 5 kV on gold coated PGSU scaffold 

specimens after 34 days’ in vitro degradation. 
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2.6 Statistics 

All measurements were reported as mean ± standard deviation (SD) with a confidence level 

of 95%. Differences were statistically tested against a null hypothesis of no difference 

between samples using a two sample t-test with equal variance not assumed (significance = p 

< 0.05). 

3 Results and Discussion 

3.1 Characterisation of PGS Pre-polymer and PGSU Films 

 

Figure 1. (A) FTIR spectra of pre-PGS and PGSU derivatives in the ranges of 4000- 

1000 cm
-1

, respectively. The spectra were shifted vertically for clarity.  

(B) Representative quasi-static tensile stress-strain curves of dry and hydrated PGSU films. 

The pre-PGS utilised for the solvent-based PGSU synthesis was characterised by GPC with a 

���, ��� and PDI of 1550 g mol
-1

, 10520 g mol
-1

 and 6.8, respectively. As seen in Figure 1 

(A), the FTIR spectrum of pre-PGS shows the stretching vibration of -OH at 3443 cm
-1

,  

C-H at 2926 cm
-1

 and 2854 cm
-1

, C=O and C-O at 1732 cm
-1

 and 1160 cm
-1

, 

respectively.
5,13,14

. In comparison, the PGSUs were characterised with the stretching vibration 
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of -OH and -NH at 3362 cm
-1

, C-H at 2926 cm
-1

 and 2854 cm
-1

, C=O and C-O at 1720 cm
-1

, 

the bending vibration of amide I, II and III at 1646 cm
-1

, 1532 cm
-1

 and
 
1238 cm

-1
, and 

stretching vibration of C=O and C-O at 1160 cm
-1

, respectively.
9,10

 The amide groups are 

attributed to the formation of urethane, the reaction product of HDI and hydroxyl groups.
9,10

 

The crosslinking of pre-PGS and HDI resulted in peak shifts to lower wavenumbers (e.g. 

3362 cm
-1

 and 1720 cm
-1

), also indicating the establishment of urethane linkages and an 

increase in hydrogen bonding strength.
9,10

 In addition, the PGSU elastomers with higher 

molar ratios of glycerol to HDI presented stronger amide-based absorption peaks, 

demonstrating a higher degree of urethane groups. The results confirm the successful 

formation of urethane linkages between pre-PGS and HDI to form PGSU, as previously 

reported.
9,10

 The characteristic isocyanate group band at 2270 cm
-1

 was absent in all the 

PGSUs, implying the complete reaction of the groups.
9,10

 

Table 2: Quasi-static tensile properties of dry and hydrated PGSU films (n = 5). 

 Sample code 

Young’s 

modulus, Es / 

MPa 

Ultimate tensile 

strength, σsmax / 

MPa 

Elongation 

at break, εsb / 

% 

C
le

an
ed

 /
 

 d
ry

 

PGSU-1:0.4 0.84 ± 0.03 0.93 ± 0.07 199 ± 1.0 

PGSU-1:0.5 2.11 ± 0.11 1.55 ± 0.07 125 ± 18 

PGSU-1:0.6 3.98 ± 0.62 2.24 ± 0.45 91.6 ± 3.8 

C
le

an
ed

 /
 

h
y
d

ra
te

d
*
 PGSU-1:0.4 0.84 ± 0.01 0.91 ± 0.04 186 ± 4.5 

PGSU-1:0.5 2.11 ± 0.03 1.44 ± 0.10 98.0 ± 4.1 

PGSU-1:0.6 3.51 ± 0.01 2.07 ± 0.12 90.8 ± 5.5 

*24 h saturation in PBS at 37 °C. 

All of the PGSUs were insoluble in various organic solvents (ethanol, acetone, 1.4-

dioxane, DMF, DMC, toluene, chloroform), confirming the formation of a covalently 

crosslinked network. They are, however, swellable in these solvents. For instance, PGSU-

1:0.4, PGSU-1:0.5 and PGSU-1:0.6 specimens presented relatively high mass swelling ratios 
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in ethanol (after 24 h saturation at 21 °C) of 88.2 ± 5.6%, 67.9 ± 1.3%, 55.9 ± 5.7%, while 

these specimens presented only low mass swelling ratios in aqueous PBS solution (24 h 

saturation at 37 °C) of 4.91 ± 0.93%, 3.99 ± 0.79% and 2.68 ± 0.93%, respectively. The 

PGSU elastomers with higher molar ratios of glycerol to HDI showed in general lower 

degrees of mass swelling ratios, which can be linked to a presumably higher crosslink 

density, while the overall low mass swelling ratios in PBS solution can be attributed to the 

primarily hydrophobic nature of the elastomer.
9
 In respect to the residual analysis of non-

cleaned PGSU-1:0.4, PGSU-1:0.5 and PGSU-1:0.6 specimens (after 24 h ethanol extraction), 

mass losses of 15.9 ± 2.0%, 5.4 ± 0.9% and 2.0 ± 1.0% were measured, indicating the 

existence of unreacted monomers, oligomers, and pre-polymers.
10

 The PGSU specimens had 

a similar �� of 1.164 ± 0.004 Mg m
-3

 to the value previously reported (1.15 Mg m
-3

).
10

 

As shown in Figure 1 (B), all the PGSUs were characterised with soft and highly flexible 

properties, which can be ascribed to the urethane crosslinks.
3,9,15

 The tensile Young’s 

modulus (��), the ultimate tensile strength (�����) and the strain at break (���) were obtained 

for dry and hydrated PGSUs, as listed in Table 2. The tensile testing results of the cleaned 

and dry PGSUs demonstrated significant difference in terms of ��, ����� and ���. The 

mechanical properties of the cleaned and hydrated PGSUs also presented difference among 

themselves, with only one exception (the ��� results of the hydrated PGSU-1:0.5 and PGSU-

1:0.6 specimens exhibited no statistical difference). So, in general the alteration of the HDI 

crosslinker ratio changed the mechanical characteristics of PGSU significantly. The dry and 

hydrated PGSU-1:0.4 specimens presented the softest and most flexible properties with ��, 

����� and ��� values of 0.84 MPa, 0.91-0.93 MPa and 186-199%, while the PGSU-1:0.5 and 

PGSU-1:0.6 specimens exhibited stiffer mechanical characteristics with ��, ����� and ��� 

values in the ranges of 2.11-3.98 MPa, 1.44-2.24 MPa and 98-125%, respectively. The direct 

comparison of dry and hydrated PGSU counterparts demonstrated similar results, due to their 



 

13 
 

hydrophobicity as previously stated. Still, the hydrated PGSU specimens presented the 

tendency of decreased ����� and ��� results compared to their dry equivalents. It is assumed 

that the absorbed water molecules may interfere with the hydrogen bonding of urethane N-H 

groups and urethane or ester C=O groups, which affects the mechanical performance of 

polyurethanes.
3,15,16

 

The crosslink density (�����) of dry PGSU film specimens were calculated based on the 

theory of rubber elasticity, given by Equation 3,
4
 

����� = �� 3� ⁄            (3) 

where R the universal gas constant, and T the absolute temperature during the tensile tests. 

All the PGSUs presented statistically significant difference in �����, which were calculated 

for PGSU-1:0.4, PGSU-1:0.5 and PGSU-1:0.6 as 113 ± 7 mol m
-3

, 286 ± 15 mol m
-3

 and 539
 

± 84 mol m
-3

, respectively. The ����� results correlate with the FTIR and swelling results 

discussed earlier. With this respect, previous studies demonstrated that minor differences in 

the molar ratio of HDI had substantial effects on the physicochemical properties of PGSU.
9
 

3.2 Microstructures of PGSU scaffolds 

PGSU scaffolds with three different molar ratios of HDI to glycerol and a fixed material 

concentration of 1.75 g per 50 ml were fabricated by freeze-drying. All as-prepared PGSU 

scaffolds were characterised by a white colour and dimensions of approximately 6 cm in 

diameter and over 1 cm in thickness, as demonstrated in Figure 2 (A1-3). These results 

demonstrate that the immediate freeze-drying of the PGSU pre-polymer/solvent 

polymerisation medium can lead to stable three-dimensional PGSU scaffold constructs. The 

surfaces of the PGSU samples revealed minor adhesive properties, due to the low crosslink 

density and/or the presence of unreacted oligomers or pre-polymer, indicating the necessity 

of additional cleaning procedures. As seen in Figure 2 (B1-3, C1-3), the execution of 
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cleaning procedures (24 h saturation in ethanol at 21 °C) on all the as-prepared PGSU 

scaffolds affected their physical shape and presented the tendency of specimen shrinkage, 

with the strongest effect on the PGSU-1:0.4 specimens. Thus, the scaffold microstructures of 

dry as-prepared and cleaned PGSU scaffolds were examined by SEM, analysing the impact 

of the cleaning procedure on the pore size and structure of the scaffold. 

 

Figure 2. As-prepared scaffolds of (A1) PGSU-1:0.4, (A2) PGSU-1:0.5 and (A3) PGSU-

1:0.6, directly after freeze-drying. Punched-out scaffold specimens of (B1, C1) PGSU-1:0.4, 

(B2, C2) PGSU-1:0.5 and (B3, C3) PGSU-1:0.6, before and after cleaning. 
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Figure 3. SEM micrographs of as-prepared (A1-2) PGSU-1:0.4, (B1-2) PGSU-1:0.5 and 

(C1-2) PGSU-1:0.6 scaffold microstructures, as well as cleaned (D1-2) PGSU-1:0.4, (E1-2) 

PGSU-1:0.5 and (F1-2) PGSU-1:0.6 scaffold microstructures. 

All the as-prepared PGSU scaffolds showed randomly distributed and highly 

interconnected open-pore structures, illustrating relatively good distribution of the solid 

PGSU throughout the scaffold, as presented in Figure 3 (A1-2, B1-2, C1-2). The pores of the 

scaffold were characterised with non-uniform shapes, which are commonly found in freeze-

dried PGS-based scaffolds with 1.4-dioxane as the solvent.
6,8

 The as-prepared PGSU-1:0.4, 

PGSU-1:0.5 and PGSU-1:0.6 scaffolds featured broad pore size distributions (Figure S1, 

Supplementary Content), in which the PGSU-1:0.4, PGSU-1:0.5 and PGSU-1:0.6 scaffolds 

presented similar pore sizes of 93 ± 4 µm, 102 ± 3 µm and 112 ± 4 µm, respectively. The 



 

16 
 

variation of the HDI crosslinker ratio changes the average pore size of the PGSU scaffolds (at 

a fixed material concentration of the freeze-drying solution). Higher molar ratios of the HDI 

crosslinker lead to an increase in crosslink density, which improved the structural stability of 

the scaffold, due to more stable pore struts and walls in the microstructure. 

As shown in Figure 3 (D1-2, E1-2, F1-2), all the cleaned PGSU scaffolds maintained a 

highly interconnected open-cell structure, but presented drops in pore size. The cleaned 

PGSU-1:0.4, PGSU-1:0.5 and PGSU-1:0.6 scaffolds featured a narrow pore size distribution 

and average pore sizes of 55 ± 1 µm, 74 ± 2 µm and 72 ± 4 µm, demonstrating a statistically 

significant pore size drop of 41.2%, 27.4% and 35.9%, compared to the as-prepared counter 

parts, respectively. The pore size drop resulted in more compact microstructures, in particular 

for the cleaned PGSU-1:0.4 scaffold specimens, as seen in Figure 3 (D1-2). The open-pore 

structure of the cleaned PGSU-1:0.4 scaffold specimens were characterised with less defined 

pore shapes and struts, while the cleaned PGSU-1:0.5 and PGSU-1:0.6 scaffolds featured 

larger and better preserved pore shapes. The overall drop in pore sizes can be linked to the 

cleaning procedure, owing to the self-loaded deformation of the ethanol swollen PGSU 

matrix, as well as due to the sol content removal. Thus, the self-supporting microstructures of 

the PGSU scaffolds collapsed due to the high mass swelling ratio in ethanol. The PGSU-1:0.5 

and PGSU-1:0.6 specimens featured a higher crosslink density and were less swellable, 

contributing to greater scaffold structure stability. Previous studies also showed that cleaning 

or sterilization treatments affected the physical properties of polymer scaffolds, resulting in 

changed pore sizes and scaffold dimensions.
17–19

 Nevertheless, the final pore structure (e.g. 

pore size and porosity, vide infra) of the PGSU scaffolds could be further optimised by 

altering the solution concentration and the freeze-drying parameters (e.g. the freezing 

temperature, the total freezing time, and the cooling rate),
6,8

 demonstrating a high  

fabrication flexibility.  
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3.3 Physical and mechanical properties of PGSU scaffolds 

Table 3. Densities and porosities of PGSU scaffolds (n = 8). 

Sample code 
Scaffold density, ρf / 

Mg m
-3

 

Relative density,  

ρr = ρf / ρs 

Porosity, Pf / 

% 

PGSU-1:0.4 0.265 ± 0.042 0.227 ± 0.036 77.3 ± 3.6 

PGSU-1:0.5 0.170 ± 0.014 0.147 ± 0.012 85.3 ± 1.2 

PGSU-1:0.6 0.141 ± 0.009 0.121 ± 0.007 87.9 ± 1.3 

 

The cleaned PGSU-1:0.5 and PGSU-1:0.6 scaffolds were characterised with relatively high 

porosities in the range of 85-88%, while the PGSU-1:0.4 scaffolds featured a lower porosity 

of 77%, as listed in Table 3. Overall, the porosities of the PGSU scaffolds align with the pore 

sizes discussed previously. 

Table 4. Quasi-static tensile and compression properties of dry and hydrated PGSU scaffolds (n = 10). 

   Tensile  Compression 

 

Sample code 

 Young’s 

modulus, Et / 

kPa 

Ultimate tensile 

strength, σtmax / 

kPa 

Elongation 

at σtmax, εtσmax / 

% 

 Young’s  

modulus, Ec / 

kPa 

Comp. stress 

 at εc75%, σc75% / 

kPa 

C
le

an
ed

 /
 

 d
ry

 

PGSU-1:0.4  40 ± 3 18 ± 4 49 ± 4  20 ± 7 75 ± 19 

PGSU-1:0.5  38 ± 13 16 ± 4 55 ± 3  6 ± 1 39 ± 7 

PGSU-1:0.6  30 ± 1 22 ± 1 82 ± 9  5 ± 1 32 ± 4 

C
le

an
ed

 /
 

h
y

d
ra

te
d
*
 PGSU-1:0.4  29 ± 14 16 ± 4 52 ± 5  8 ± 1 43 ± 10 

PGSU-1:0.5  32 ± 6 12 ± 3 50 ± 1  4 ± 1 29 ± 5 

PGSU-1:0.6  29 ± 3 19 ± 3 57 ± 2  3 ± 1 13 ± 1 

*24 h saturation in PBS at 37 °C. 

The water absorption abilities of the PGSU scaffolds were evaluated by immersing 

specimens for 24 h in PBS solution at 37 °C. The PGSU-1:0.5 and PGSU-1:0.6 scaffolds 

presented significant difference in the water swelling degree at equilibrium, compared to the 

PGSU-1:0.4 specimens. The PGSU-1:0.5 and PGSU-1:0.6 scaffolds obtained similar high 

water swelling ratios of 970 ± 127% and 1052 ± 72%, while the PGSU-1:0.4 specimens 

presented a lower value of 385 ± 25%. The results imply that the water absorption ability is 
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mainly dependent on the scaffold porosity or void volume.
20

 The aqueous PBS solution was 

mainly absorbed in the pores of the scaffolds, in which higher scaffold porosities resulted into 

higher water absorption capabilities, and vice versa. In contrast, the low mass swelling ratios 

of the PGSU solid materials had a minor effect on the water absorption abilities of the  

porous scaffolds. 

 

Figure 4. Representative quasi-static tensile stress-strain curves of (A1) dry and (A2) 

hydrated PGSU scaffolds. Representative quasi-static compressive stress-strain curves of 

(B1) dry and (B2) hydrated PGSU scaffolds. Compressive tests were terminated at a strain of 

75%. (C) Compressive behaviour of dry PGSU scaffolds, illustrating the shape restorability 

after released compression load. 

The mechanical properties of cleaned PGSU scaffolds were determined under dry and 

hydrated states by quasi-static and cyclic tensile and compression tests. Representative tensile 

stress-strain curves of the scaffolds are presented in Figure 4 (A1-2). The tensile Young’s 

modulus (�!), the ultimate tensile strength (�!"#$) and the elongation at ultimate tensile 
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strength (�!%"#$) were obtained, as listed in Table 4. The results showed that the PGSU 

scaffolds are highly flexible in dry and hydrated conditions; no yielding was observed in the 

testing curves before failure occurred. At cleaned and dry state, all the PGSU scaffolds 

presented similar �! and �!"#$ results in the ranges of 30-40 kPa and 16-22 kPa, respectively, 

while the PGSU-1:0.6 scaffold exhibited with significant difference a high �!%"#$ of 82% 

compared to the other two scaffolds. The physical characteristics of the PGSU-1:0.6 scaffold 

such as a large pore size and high porosity,
21

 as well as the relatively high ductility of the 

solid PGSU promoted the overall good �&%��� properties. At cleaned and hydrated state, all 

the PGSU scaffolds obtained also similar �! and �!"#$ results. The hydrated PGSU-1:0.6 

scaffold exhibited a low �! of 29 kPa and the highest �!%"#$ of 57%, representing a 

significant difference to the PGSU-1:0.5 scaffold. The comparison of the tensile properties 

between dry and hydrated counterparts demonstrated no significant difference for the PGSU-

1:0.4 and PGSU-1:0.5 scaffolds; however, the hydrated PGSU-1:0.6 scaffold exhibited 

decreased �!"#$ and �!%"#$ results of 14% and 30%, respectively, compared to its dry 

counterparts. The results indicate that the mechanical properties of the PGSU scaffolds may 

be affected under hydrated conditions, as the absorbed water molecules may influence the 

hydrogen-bonding interactions between urethane and ester linkages within the polymer 

network.
3,15,16
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Figure 5. Representative cyclic tensile tress-strain curves of (A1) dry and (A2) hydrated 

PGSU scaffolds. Representative cyclic compressive stress-strain curves of (B1) dry and (B2) 

hydrated PGSU scaffolds. 

Figure 4 (B1-2) shows representative compressive stress-strain curves of dry and hydrated 

PGSU scaffolds. For the compression tests the Young’s modulus (�') and the compressive 

stress at 75% strain (�'75%) were measured, as listed in Table 4. All the PGSU scaffolds were 

able to withstand the high compression and presented full shape recovery after the release of 

load, both in dry and hydrated state, as demonstrated in Figure 4 (C) (Figure S2, 

Supplementary Content). In addition, all the PGSU scaffolds were characterised with only a 

linear elastic and a densification regime, with no presence of a collapse plateau, indicating no 

structure collapse or fracture.
22

 At cleaned and dry state, the PGSU-1:0.6 and PGSU-1:0.5 

scaffolds showed similar �' and �'75% results in the ranges of 5-6 kPa and 32-39 kPa, while 

the PGSU-1:0.4 scaffold featured significantly higher �' and �'75% values of 20 kPa and 75 

kPa, respectively. In this respect, the relatively dense microstructure of the PGSU-1:0.4 

scaffold, characterised with small pore sizes and low porosity, resulted in stiffer scaffold 

constructs. At cleaned and hydrated state the hydrated PGSU-1:0.6 scaffold obtained the 

lowest �' and �'75% of 3 kPa and 13 kPa, respectively. The comparison of the compressive 
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properties between dry and hydrated counterparts demonstrated the tendency of an �' 

decrease under hydrated state; however, only the hydrated PGSU-1:0.4 scaffolds exhibited a 

significant decrease in �' of 40%. Also, the hydrated PGSU-1:0.4 and PGSU-1:0.6 scaffolds 

exhibited significant decreases in �'75% of 43% and 59%, respectively. The results indicate 

the tendency that the �' and �'75% values of dry and hydrated PGSU scaffolds are dependent 

on their porosities and pore sizes, and that the mechanical properties may be affected under 

hydrated conditions. 

Cyclic tensile and compressive stress-strain curves of dry and hydrated PGSU scaffolds 

presented relatively minimal hysteresis loop during loading, as seen in Figure 5 (A1-2, B1-2). 

The hysteresis (*+) was evaluated by defining a hysteresis loss ratio (ℎ�), expressed by 

Equation 4,
23

 

ℎ� =
�-.�/

�-
=

�0

�-
         (4) 

where *1 and *� are the input and retraction strain-energy densities of the loading and 

unloading curves, respectively. Under cyclic tensile testing, the dry PGSU-1:0.4, PGSU-1:0.5 

and PGSU-1:0.6 scaffolds were characterised with a ℎ� of 0.17, 0.12 and 0.07, while 

hydrated PGSU-1:0.4, PGSU-1:0.5 and PGSU-1:0.6 scaffolds were characterised with a 

negligible low ℎ� of 0.07, 0.08 and 0.04 after 20 cycles of tensile loading to 20% strain, 

respectively. With respect to cyclic compressive testing, the dry PGSU-1:0.4, PGSU-1:0.5 

and PGSU-1:0.6 scaffolds were characterised with a ℎ� of 0.29, 0.36 and 0.17, while the 

hydrated PGSU-1:0.4, PGSU-1:0.5 and PGSU-1:0.6 scaffolds were characterised with a 

decreased ℎ� of 0.20, 0.14 and 0.19 after 20 cycles of compressive loading to 50% strain, 

respectively. It is assumed that the expelling of water during the performed cyclic 

compressive tests resulted in higher ℎ� results.
24

 Nevertheless, all PGSU scaffolds were fully 

recoverable after cessation of the cyclic tensile and compression loadings under dry and 
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hydrated state. The PGSU-1:0.6 scaffold presented overall best resilience characteristics, due 

to the low ℎ� values under dry and hydrated states. The low hysteresis properties can be 

attributed to the higher crosslink density within the generally lightly crosslinked PGSU 

scaffolds, which improved the load transfer efficiency of the polymer networks under dry and 

hydrated conditions. 

 

Figure 6. Frequency sweep data for hydrated PGSU scaffolds. The storage modulus (2′) and 

loss modulus (2′′) were measured as a function of frequency under oscillatory shear at a 

strain of 0.1%, in the frequency range of 0.1-10 Hz at 25 °C. 

Rheological measurements were performed on hydrated PGSU scaffolds to assess their 

potential performance in dynamic and wet conditions similar to physiological environments. 

The storage modulus (2′) and loss modulus (2′′) as a function of the oscillatory frequency are 

shown in Figure 6. Briefly, the 2′ values of the PGSU scaffolds dominated the whole range 

of frequency and were one to two orders of magnitude higher than corresponding 2′′ values, 

suggesting that the bulk response of the hydrated PGSU scaffolds to an applied deformation 

is mainly elastic, while the 2′ and 2′′ values increased slightly with increasing frequency in 

general. The PGSU-1:0.4 scaffolds presented overall the highest 2′ and 2′′ values, due to the 
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highest scaffold density, lowest porosity and lowest water absorption ability, in comparison 

to the PGSU-1:0.5 and PGSU-1:0.6 scaffolds which presented similar results. 

 

Figure 7. Comparison of the compressive moduli of biopolymer porous scaffolds as a 

function of relative density between the values of conventional biodegradable polyesters for 

tissue engineering from the literature (Table S1, Supplementary Content) and the values of 

PGS-based biopolymers (including this work).
6,8

 

Overall, the PGSU scaffolds reported here show excellent mechanical characteristics 

under quasi-static and cyclic tensile and compressive loads with structurally stable and 

stretchable properties, suitable to engineer scaffolds for a range of soft tissues, such as human 

cardiac muscles (Young’s modulus: 10-500 kPa)
7,25

 or adipose tissue (Young’s modulus: 3-

180 kPa).
26

 As illustrated in Figure 7, at the same relative density, the PGSU scaffolds show a 

much lower compressive modulus than scaffolds from other porous scaffolds based on 

conventional synthetic polyesters, such as poly(L-lactic acid), poly(D,L-lactic acid), 

poly(lactic-co-glycolic acid) and poly(ε-caprolactone). Scaffolds based on these common 

types of synthetic polyesters are more prone to plastic deformations under external loads, 

feature stiffer bulk properties and lack of flexibility and strechability. Hence, the elastomeric 
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PGSU scaffolds mimic the bulk mechanical properties of soft tissues (e.g. adipose and 

cardiac tissues) more closely. The high flexibility and stretchability of the scaffold constructs 

indicate that the PGSUs have high potential in soft tissue engineering applications for 

dynamic environments. 

3.4 In vitro degradation 

 

Figure 8. Percentage of mass loss of PGSU scaffolds, incubated with and without the 

presence of lipase enzyme in PBS for up to 112 days in a shaker incubator at 37 °C  

and 100 rpm. 

The in vitro degradation performance of all PGSU scaffolds were analysed in enzyme-free 

and lipase enzyme-containing PBS solution for up to 112 days, as shown in Figure 8. In the 

enzyme-free PBS solution the PGSU-1:0.4, PGSU-1:0.5 and PGSU-1:0.6 scaffold specimens 

obtained degradation degrees of 16%, 12% and 10% in 112 days, while in the enzymatic PBS 

solution the PGSU specimens exhibited higher degradation degrees of 62%, 54% and 30% in 

the same time period, respectively. The PGSU scaffolds were characterised with relatively 

linear degradation kinetics and presented a gradual and visible loss in volume (Figure S3-5, 
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Supplementary Content), suggesting that the degradation mechanism is based on the surface 

erosion like PGS.
9
 The results also demonstrated that the degradation kinetics of the PGSU 

scaffolds was dependent on the urethane content in the PGSU specimens, in which slower 

degradation rates are linked to a higher urethane group number, and vice versa.
9
 The 

enzymatically tested PGSU specimens displayed quicker degradation, indicating the 

catalysed hydrolysis of the ester bonds of the PGS segments due to the lipase enzyme.
27

 SEM 

examination (after 34 days in vitro degradation) presented smooth strut surface morphologies 

for the PGSU scaffolds in enzyme-free PBS solution, while in enzyme-containing PBS 

solution the specimens showed stronger signs of surface degradation, characterised by rough 

features (Figure S6-7, Supplementary Content). The PGSU-1:0.6 scaffold specimens 

presented the slowest degradation, due to their higher degree of crosslinking and more 

urethane groups, indicating that the degradation rate of PGSU can be tuned and depend on the 

molar ratio of glycerol to HDI, which is in alignment with previous studies.
9,10

 

The in vitro degradation tests of the PGSU scaffolds illustrate high potential for designing 

tissue engineered constructs with long-term stability and tuneable degradation kinetics. 

Previous in vitro degradation studies with large and porous PGS/PLLA scaffolds, containing 

73 vol.% PGS and characterised with porosities and pore sizes in the ranges of 91-92% and 

109-141 �m, presented mass losses of 11-16% and 54-55% without and with the presence of 

lipase enzyme in 31 days, respectively.
8
 In addition, in vivo studies of channelled PGS 

scaffolds with porosities and pore sizes of ~95% and ~100 �m presented mass losses of up to 

80% during the implantation period of 35 days.
28

 In comparison, under the same in vitro 

degradation test conditions and period the PGSU scaffolds presented mass losses of 2-6% and 

5-10% in the enzyme-free and enzyme-containing PBS solution, respectively, demonstrating 

significantly reduced degradation rates due to the urethane groups in the chemical structure.
9
 

Previous in vivo studies with PGSU film specimens also demonstrated long-term shape 
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maintenance and slow degradations rates, in which sample fragmentation was first discovered 

after 280 days implantation in adult female Lewis rats.
9
 

The freeze-dried PGSU scaffolds in this work presented slow degradation kinetics, 

microstructures with high porosities and interconnected large pores, good hydrophilic 

characteristics, as well as soft and highly stretchable mechanical properties, demonstrating 

great potential for long-term soft tissue engineering applications. Compared to other 

fabrication strategies, the freeze-drying fabrication method is less complex and enables the 

production of large and porous 3D scaffold constructs with interconnected pores with 

adjustable dimensions and orientations, capable to fit specific cell types and tissue 

engineering applications.
6,8,25,29,30

 With this respect, PGSU presented in previous studies good 

in vitro cytocompatibility with human mesenchymal stem cells and similar in vivo 

inflammatory reactions compared to poly(lactic-co-glycolic acid) material, which were 

characterised by mixed lymphohistiocytic infiltrates, however, no adverse reactions or 

complications were noted during the implantation period.
9
 Due to the tunability of PGSU, 

scaffolds with a broad range of mechanical properties are producible to match those of the 

native host soft tissues. Soft tissues, e.g. fat, cardiac muscle and blood vessels, are 

physiologically exposed to large deformations, and exist in a mechanically dynamic 

environment where the loads can vary spatially and temporally.
31–33

 For instance, in the 

sitting posture, physiological loads induced peak tensile, compressive and shear strains of 

~30%, ~45% and ~40% on the anatomical site related fat tissues, as well as tensile, 

compressive and shear strains of ~75%, ~75% and 91% on the anatomical site related muscle 

tissues, respectively.
34,35

 Conventional synthetic biodegradable polyesters, such as poly(lactic 

acid), poly(glycolic acid) and their copolymers, although commonly used in tissue 

engineering, are not stretchable, are subject to plastic deformation, are prone to failure under 

cyclic deformations, and ultimately cause a mismatch in compliance.
3,25,36

 Thus, the 
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mechanical properties of engineered scaffold constructs are critical for successful surgical 

implantation.
3,32,37

 Ideal engineered soft tissue scaffold should not only be structurally stable 

to withstand in vivo mechanical stresses and deformations, but also feature certain flexibility 

and stretchability which can provide mechanical stimulation, while providing support to the 

ingrowing tissue.
3,33

 Future work should examine the in vitro and in vivo tissue growth 

behaviour of cell-seeded scaffolds, as well as analysing the cell behaviour under mechanical 

stimulation. 

4 Conclusions 

Flexible and large 3D porous PGSU scaffolds with different molar ratios of HDI were 

produced via a freeze-drying process. Results proved that the solvent-based PGSU synthesis 

with a following freeze-drying and curing process can create stable and highly interconnected 

open-pore scaffold constructs with no structure collapse. PGSU scaffolds were characterised 

with non-uniform shapes and smooth pore-wall surfaces, and featured high porosities and 

pore sizes in the ranges of 77-88% and 55-74 µm, respectively. The PGSU scaffolds 

exhibited relatively good hydrophilic characteristics, as well as high water absorption 

abilities. Hydrated PGSU scaffolds obtained a Young’s modulus, ultimate tensile strength 

and elongation at break in the ranges of 29-32 kPa, 12-19 kPa and 50-57%, respectively, and 

showed no fracture and full recoverability after 75% strain compression. In addition, hydrated 

PGSU scaffolds presented overall minor hysteresis loss ratio at high strain after cyclic tensile 

and compression tests, and rheological measurements indicated a primarily elastic bulk 

response at low strains. PGSU scaffolds were characterised with linear degradation kinetics 

and obtained in vitro degradation rates of 10-16% and 30-62% in 112 days in enzyme-free 

and enzyme-containing PBS solution, respectively. Overall, the freeze-dried PGSU scaffolds 

have high potential to be further developed for uses in soft tissue engineering. 
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