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Abstract

In this paper we present the use of deep reinforcement learn-
ing techniques in the context of playing partially observable
multi-agent 3D games. These techniques have traditionally
been applied to fully observable 2D environments, or navi-
gation tasks in 3D environments. We show the performance
of Clyde in comparison to other competitors within the con-
text of the ViZDOOM competition that saw 9 bots compete
against each other in DOOM death matches. Clyde managed
to achieve 3rd place in the ViZDOOM competition held at the
IEEE Conference on Computational Intelligence and Games
2016. Clyde performed very well considering its relative sim-
plicity and the fact that we deliberately avoided a high level
of customisation to keep the algorithm generic.

1 Introduction

Game playing in artificial intelligence (AI) has often been
used as a method for benchmarking agents (Yannakakis and
Togelius 2015; Mnih et al. 2015; Schaeffer et al. 2007;
Silver et al. 2016). In many cases games provide noise free
environments and can also encompass the whole world state
in data structures easily. Much of the early work in this
domain has focussed on digital implementations of board
games, such as backgammon (Tesauro 1995), chess (Camp-
bell, Hoane, and Hsu 2002) and more recently go (Silver
et al. 2016). These games have then been used to benchmark
many different approaches, including tree search approaches
such as Monte Carlo Tree Search (MCTS) (Browne et al.
2012) along with other approaches such as deep reinforce-
ment learning (Silver et al. 2016). They also provide a
method for allowing comparisons to human performance by
playing the agents against experts in their respective games.

More recently video games have started to be used in or-
der to benchmark these systems, such as the Arcade Learn-
ing Environment (ALE) that allows agents to train on a va-
riety of Atari 2600 games (Mnih et al. 2013). This brought
rise to a form of reinforcement learning that learns how to
play the games by using the image on the screen as the game
state. These systems have shown above human performance
in many of these games and competent play in most of the
others (Mnih et al. 2015). This is an exciting area of AI as it
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puts the player and the AI agents on the same playing field,
especially when it comes to partially observable games.

The majority of the games that have been used to test
these AI agents have been in fully observable environments,
meaning that the player has all the information needed to
determine the entire state of the game, for example know-
ing where all the pieces are on a chessboard. In contrast, this
work looks at the viability of some of these systems working
in 3D partially observable games. DOOM is a 3D First Per-
son Shooter (FPS) game from the early 1990s (Kempka et al.
2016). This game provides partial observability through the
use of the first person perspective. DOOM provides a nice
environment for this as it is not a fully 3D environment, the
game takes place in a 3D environment, however the objects
within the world are still 2D sprites, such as the enemies and
the pick-ups in the world. This gives agents the challenge of
navigating a 3D partially observable environment but makes
it easier to identify objects within the scene due to the lim-
ited number of sprites that can be used per object.

VizDOOM1 is a platform developed by the institute of
computer science at Poznan University. It provides an inter-
face for AI agents to learn from the raw visual data that is
produced by DOOM (Kempka et al. 2016). They also run a
competition that places these agents into death matches in
order to compare their performance. A death match in the
case of this competition is a time limited game mode where
each agent must accumulate the highest score possible by
killing other agents in the match. This is where our agent was
submitted in order to assess its performance against other
agents.

Our work focuses on the use of deep reinforcement learn-
ing agents in this multi-agent 3D environment. We are fo-
cussed on the performance of these neural network based
reinforcement learning systems in this domain without tai-
loring the systems to this specific problem. This distinction
is important as the main focus of our work is not to train
algorithms to perform well in a specific game but instead to
devise algorithms that are aimed at general game playing.

This paper will first ground our work by outlining related
work in the field of reinforcement learning. We will then
cover the setup of the competition as outlined by the organ-
isers. We will give a detailed description of Clyde and how

1http://vizdoom.cs.put.edu.pl/competition-cig-2016



the agent was trained, this will be followed by the results and
discussion of our agent’s performance. We will conclude by
outlining our contribution and the work we would like to
perform in the future in relation to Clyde.

2 Related Work

2.1 AI and Games

Games provide a good benchmark for AI as they require
high level reasoning and planning (Yannakakis and Togelius
2015; McCoy and Mateas 2008). This means that they have
often been used to signify advances in the state of the art
such as with Deep Blue the chess playing AI that beat Gary
Kasparov (Campbell, Hoane, and Hsu 2002) and AlphaGo
the go playing agent that beat Lee Sedol (Silver et al. 2016).
Games also provide a nice interface for agents to be able to
either look into the internal state of the games, as needed for
methods such as MCTS (Perez-Liebana et al. 2016), or can
provide visual representations of state that can be used by
agents (Bellemare et al. 2012). Games also allow agents to
process experiences much faster than would be possible in
the real world. This means data hungry methods are still able
to learn in a relatively short period of time (Karakovskiy and
Togelius 2012).

There has also been a lot of research into other areas of
game playing, such as competitions aimed at agents pass-
ing a form of Turing Test in order to rank agents based on
their ability to mimic human play (Hingston 2009). Most
of these systems have revolved around using data from hu-
man play in order to achieve this goal (Polceanu 2013;
Karpov, Schrum, and Miikkulainen 2013). There have also
been competitions organised in order to assess agents ability
to generalise across a variety of games, the General Game
Playing Competition (Genesereth, Love, and Pell 2005) fo-
cusing on playing multiple board games, and the General
Video Game Playing Competition (Perez et al. 2015) that
assess agents performance across a broad range of video
games. Other work has also started that uses modified ver-
sions of game engines in order to provide environments to
teach AI, these include Project Malmo that uses the popular
Minecraft Game in order to provide an experimentation plat-
form for AI agents (Johnson et al. 2016), and OpenArena, a
modified version of the ID Tech 3 engine used by Quake 3,
in order to train and benchmark AI at a range of tasks in-
cluding path finding in a Labyrinth and laser tag (Jaderberg
et al. 2016).

There has also been some work in using neural evolution
to evolve a network to control an agent in an FPS environ-
ment (Parker and Bryant 2012). Others have investigated the
use of hierarchical approaches in the design of AI agents for
FPS games (Van Hoorn, Togelius, and Schmidhuber 2009)
that use networks in a hierarchical fashion to deconstruct the
tasks into sub-skills.

2.2 Reinforcement Learning

Reinforcement learning is an area of machine learning that
focuses on the use of rewards in order to train agents how to
act within environments. Reinforcement learning provides
a structure where the agent is in an environment in which

it can take actions, then make observations and receive re-
wards. These rewards can then be used in order to improve
the agent’s policy for picking actions in the future, with the
aim of maximising the rewards it receives.

Temporal Difference (TD) is a technique that has had a
large impact in reinforcement learning (Kaelbling, Littman,
and Moore 1996). It gives a method for predicting future
reward through learning from experience. TD is written as

Vst = rt + γVst+1
(1)

This means that the value V of state s at time t is the
reward r you receive when leaving the state plus the fu-
ture discounted reward you could expect from the state
st+1 discounted by γ. TD learning is the basis for many
other reinforcement approaches (Watkins and Dayan 1992;
Konda and Tsitsiklis 1999), one of the earlier methods was
TD-lambda that was used to train a neural network to play
backgammon (Tesauro 1995).

Q-Learning is a reinforcement learning method that
builds on TD learning. It works by learning an action-value
function Q(s, a) that represents the expected sum of dis-
counted rewards that will be received if action a is taken
in state s, allowing for a greedy policy to be used in order
to select the action that gives the best combination of short
term and long term reward (Watkins and Dayan 1992).

Q(st, at)← Q(st, at)+α·
(

rt+1+γ·maxaQ(st+1, a)−Q(st, at)
)

(2)

where α is the learning rate at which the agent will adjust
its estimation of Q and γ is the discount factor that reduces
the future rewards of states that are further away.

Actor-Critic methods take a different approach to Q-
learning by splitting the agent into two separate entities. The
actor learns a policy which is a vector of probabilities for se-
lecting a specific action. The critic is then a more traditional
state-value function that is used to guide the learning of the
policy. The critic evaluates the TD error δ to assess whether
the action chosen performed better or worse than expected
(Konda and Tsitsiklis 1999). This delta value is calculated
as follows.

δt = rt+1 + γV (st+1)− V (st) (3)

This is then used to evaluate the action that was just
taken, if the action produced a better reward than expected
the probability of choosing that action should be increased.
However if the reward was less than expected the probability
p(st, at) of choosing action at should be reduced. The actor
could be updated with:

p(st, at)← p(st, at) + βδt (4)

where β is another scaling factor for how quickly to ad-
just the policy. This is one of the simpler forms of actor



critic methods with other approaches introducing more fac-
tors into the calculation such as the entropy of the current
policy (Williams and Peng 1991).

There are two main advantages to actor critic over value
function methods, one is that it takes minimal amount of
computation in order to select actions. There is no need to
calculate the value of Q for every action in the action space
before picking the action with the highest value. The other
advantage is that they can learn explicitly stochastic policies,
meaning it can learn the optimal probabilities for which ac-
tion to pick. One example of this is that actor critic methods
could learn the optimal policy for the game rock, paper, scis-
sors. It would learn that the optimal policy is to pick each
action one third of the time, this is the optimal if you are
not modelling the decisions of your opponent (Niklasson,
Engstrom, and Johansson 2001). Whereas a value function
method with a greedy policy would constantly pick the same
action depending on the experiences it had during training.

2.3 Deep Reinforcement Learning

There have already been a few systems that tackle the prob-
lem of learning to play games from the screen buffer only,
as will be discussed below all of these systems rely on the
use of deep neural networks in order to process the images
and learn which action produces the best possible outcome
for the agent. Deep neural networks have risen in popularity,
this is possibly due to the increase in computational power
through the use of faster central processor units (CPU) and
graphics processor units (GPU) (Coates et al. 2013). This in-
crease in computation allows the networks to be fed a larger
amount of data in shorter amounts of time making them
more viable for a whole range of tasks.

Deep Q Networks (DQN) rely on many of the advance-
ments in neural networks and Q-learning (Mnih et al. 2013).
They have been used to obtain better than human perfor-
mance in a variety of Atari games (Mnih et al. 2015). Deep
Q networks have the advantage of only relying on using im-
ages of the game being played and the reward they receive
from playing, meaning the network only has as much infor-
mation about the game as a human player. The way these
networks achieve this is by first using convolutional lay-
ers to process the input image, and then having fully con-
nected layers after these that output the Q value for each
action. The specific form of Q-Learning used is ǫ− greedy
where epsilon is an explore vs exploit parameter that dictates
when the policy is followed to exploit and when random ac-
tions are selected in order to explore the environment. Being
based on traditional Q-Learning techniques these networks
effectively treat each frame as a state and then give estimated
Q values for the states the agent would end up in if it took
a specific action. This is an improvement over older Q net-
works that would require a feedforward pass for each action
(Mnih et al. 2013). Other techniques used in these networks
are the stacking of images that are input to the network, this
allows the network to distinguish between states that may
look the same in a single frame but are different due to the
movement of objects in the environment (Mnih et al. 2013).
They also incorporate an experience replay mechanism al-

lowing the agent to take a random batch of experiences, in
the form of (state, action, reward, resulting-state, termina-
tion) from a buffer, this allows the agent to learn much faster
by learning off experiences multiple times and also helps the
network to converge by breaking up the experiences (Mnih
et al. 2013). A limitation of these networks is the fact that
they do not handle complex reward systems effectively. This
means the performance of the network is poor for games
such as Montezuma’s Revenge, where rewards are given af-
ter a long sequence of intelligent moves (Schaul et al. 2016).
On the other hand in reactionary games such as breakout the
network manages to learn high level tactics such as digging
a tunnel in order to get the ball behind the bricks (Mnih et
al. 2015).

Recurrent Neural Networks (RNN) work by having out-
puts from neurons that feed back into themselves in the next
forward pass through the network, this allows the network to
pass information between timesteps, effectively giving the
network some limited memory (Bengio, Simard, and Fras-
coni 1994). The simplest form of recurrent neural network
simply treats this as another weighted input at each timestep,
these can then be updated like traditional networks using
backpropagation through time, where the recurrent neural
network is effectively unrolled a set number of timesteps that
allows the recurrent weights to be updated. These networks
suffer from the vanishing gradient problem, this has the ef-
fect of the network not being able to remember for many
timesteps making dependencies over long distances impos-
sible to learn (Hochreiter 1998).

A more complex version of a recurrent neural network
is a LSTM (Long Short Term Memory) network, these use
cells that add a layer on top of regular RNNs. These cells
not only have recurrent links but also have gates that allow
it to decide what information to store in the cell and abilities
to forget information. This negates the vanishing gradient
problem because the network can make a decision to for-
get information and when to keep information, improving
its ability to remember over a greater number of timesteps
(Hochreiter and Schmidhuber 1997; Sutskever, Vinyals, and
Le 2014).

Asynchronous Advantage Actor-Critic (A3C) is a
method for using actor-critic reinforcement learning meth-
ods along with deep reinforcement learning. There are a few
different intricacies to A3C networks, the first is the fact
that the value and policy are calculated by two separate net-
works. Although in theory they are two different networks,
in practice it is possible for the two networks to share lower
level layers, that includes all the convolutional layers and
any LSTM layers that the model may have. As it is an actor-
critic method the policy is learnt online. Meaning the policy
is followed during training at all times and there is no need
for a explore vs exploit parameter. Instead one of the tricks
used by A3C is to add the entropy of the policy to the er-
ror rate, this tries to force the network towards low entropy
until it finds a policy that produces high rewards. A3C is
also an asynchronous method, that allows the parallelisation
of training across multiple CPUs and GPUs. This is accom-
plished by having a global network and then for each CPU



core a separate thread that has a local network. Each thread
also has an instance of the MDP that the agent can learn
from. Once a set of experiences have been acquired on a
particular thread then the gradients are calculated on the lo-
cal network in order to then update the global network. Once
the global network has been updated a new copy is taken by
the local network. This means that A3C can train entirely on
CPUs and does not require GPUs to attain acceptable train-
ing times (Mnih et al. 2016).

As stated earlier A3C maintains both a policy π(at|st; θ),
which outputs the probability at which action at should be
selected when in state st, given a certain network θ, and a
value network V (st; θv). That gives the value of state st
given a certain network θv . Though the networks θ and θv
are treated as separate networks in practise they can share
the lower layers of the network. These networks are then up-
dated every tmax number of actions or at the stage a terminal
state has been reached before tmax. The error gradients for
the network are calculated as shown below:

∇θ′ log π(at|st; θ
′)(rt − V (st; θv)) + β∇θ′H(π(st; θ

′)) (5)

where π(at|st; θ
′) is the output of the policy network, rt

represents the actual reward received by the agent, V (st; θv)
is the estimated reward from the value network, H is the
entropy and β is the strength of the entropy regularization
term. The action taken is factored by the amount of error in
the prediction of the value of the state. This has the effect of
increasing the probability of actions that it underestimates
the value of the states they produce, and reduces the proba-
bility of actions that it overestimates the value of the states.
The term H is the entropy of the current policy, this has
been shown to find better policies by increasing exploration
and preventing the system from converging on a sub optimal
policy too early (Williams and Peng 1991).

This method negates many of the tricks required by the
DQN technique that are there to improve the convergence of
those systems. The fact that the local threads take a copy of
the global network prevents the need for network freezing,
where old copies of the network are used for the error calcu-
lation. Having multiple threads all updating the global net-
work with different experiences also means there is no need
for experience replay. A3C has been shown to perform bet-
ter than DQN approaches in a variety of Atari 2600 games
(Mnih et al. 2016).

2.4 DOOM/VizDOOM

DOOM is a first person shooter game that was released in
1993. It was a game that pioneered 3D graphics and online
multiplayer. VizDOOM is a platform that wraps around the
DOOM game, giving agents access to the screen buffer and
the ability to perform actions within the game. It does this
by providing an interface to the game and allowing you to
specify certain attributes through config files. This includes
things like screen buffer resolution and the set of actions an
agent can make in the game (Kempka et al. 2016).

3 Experimental Setup

Our system was submitted to Track One of the competi-
tion held at the IEEE Conference on Computational Intel-
ligence and Games 2016. Track One means that the agent
would play on a known map with only access to the rocket
launcher weapon. The competition would be ranked based
on the number of “frags” each agent achieved. Frags are in-
cremented when an agent kills another agent and then decre-
mented when an agent commits suicide. Deaths from other
agents do not affect an agent’s frag count although it would
give competitors an advantage as their frag count would be
incremented.

Competitors were able to access the screen buffer and
through a config file specify what was contained in this im-
age, such as rendering a crosshair, specifying a resolution,
limiting the rendering of the Heads Up Display (HUD) and
other objects such as particles. This file could also be used
in order to specify what actions were available to the agent,
and what game variables were available including health and
ammunition values.

The agents would be run on PCs with access to dedi-
cated GPUs for computation, the specifics of the computers
used are Intel R© CoreTM i7-4790 CPU @ 3.60GHz and an
Nvidia R© GTX 960 4GB

The competition was run over 12 ten minute rounds, due
to the fact VizDOOM can only support 8 players per round
and there were 9 entrants to Track One, each bot would not
participate in one of first 9 rounds. For the final 3 rounds all
bots that had frags > 0 would be used.

4 Method

Figure 1: Screen buffer presented to network (in colour)

We decided to use A3C as the base for Clyde, this was
due to the fact that A3C was showing the current state of the
art performance on the ALE environment. It has also shown
good results in 3D based environments such as TORCS and
Labyrinth a 3D benchmarking environment developed by
Google DeepMind (Mnih et al. 2016). A3C also allows very
easy integration of recurrent cells such as LSTM cells. The
LSTM cells were used for a variety of reasons. It allows the
agent to remember locations of objects that have just left the



Figure 2: Clyde Architecture

screen buffer, such as when collecting a pick-up that scrolls
off the bottom of the screen before that agent walks over it.

Clyde was very closely based on the networks used for
these Atari playing A3C agents. There were however some
changes to the layers of the network in order to accommo-
date for the larger images sizes we were using within Viz-
DOOM.

The screen buffer resolution that was used was 320 by
256 pixel images. This was deemed to be the best compro-
mise between small images that could be processed quickly
that still allowed for enemies to be identified from a dis-
tance. Colour images were used in order to allow the net-
work to more accurately distinguish between items. All of
the UI was turned off in order for the agent to see as much
of the game world as possible, with only the cross-hair be-
ing turned on in order to aid with aiming as shown in Figure
1. This configuration meant the inputs to the network were
single RGB images resulting in tensors of shape 320x256x3.

The available actions that we gave to the agent were as
follows:

• Move Forward

• Shoot

• Turn 1 degree right

• Turn 1 degree left

• Turn 20 degrees right whilst moving forward

• Turn 20 degrees left whilst moving forward

VizDOOM allows us to combine actions to perform more
than one action per timestep, along with turning more than
1 degree in order to simulate mouse movement. This is how
we managed to provide actions to the network that allowed
it to turn 20 degrees in one action whilst also taking a step
forward. We wanted to keep the action space small and also
provide a method for the agent to be able to keep moving
forward whilst navigating corners, this is why the 20 degree
movements also included moving forward. Each action is
then performed at a time step and then a new frame is re-
ceived from the VizDOOM framework.

Clyde consists of an initial convolutional layer with ker-
nel sizes of 8x8 and a stride length of 4, they then output
16 channels. All of the neurons within the network use the
ReLU (Rectified Linear Unit) activation function. This first
convolutional layer is then followed by 2x2 max pooling that
halves the height and width of the resulting images. The 16
channels are then fed into another convolutional layer with
a kernel size of 4x4 with a stride of 2, this layer outputs 32
channels. Again this is followed by a 2x2 max pooling oper-
ation. The final convolutional layer has a kernel size of 3x3
and a stride of 1 which outputs 64 channels. These channels
are then flattened and fed into a fully connected layer, this
fully connected layer is then fed into a layer of 512 LSTM
cells. All of the previous layers are shared by the value and
policy network, but at this point they split into two separate
layers as shown in Figure 2. One layer for the value network
that outputs the estimated value for the state, and another
separate layer for the policy network that outputs a proba-
bility for each action. The experiences were a batch of 32
continuous frames allowing the update to the network to un-
roll 32 time steps and perform backpropagation through time
on these inputs. That allows the LSTM layers to remember
details about previous frames and use this information to as-
sess the current state the agent is in.

The error calculation for the system was again exactly
the same as previous A3C agents that were trained on Atari
games. As shown in Equation 5. In the case of Clyde β =
0.1 through preliminary experimentation this was found to
produce the best results. The value network is simply up-
dated with the least square error between the estimated value
of the state and the actual value. These experiences where
not batched during training, instead the network was updated
after every experience resulting in a batch size of 1.

The network weights are updated using Root Mean
Square Propagation (RMSProp), we use the centred version
of RMSProp that shares the moving average of element-wise
gradients g as used in the original paper introducing the A3C
algorithm (Mnih et al. 2016). The learning rate of the net-



work was set to 10−5 with it being reduced linearly to 0 over
the course of 80 million experiences. 80 million experiences
was also something that was chosen through preliminary ex-
perimentation.

The reward structure for Clyde was heavily influenced by
the amount of frags that the agent received during training.
The various rewards are shown in Table 1.

Table 1: Reward Structure
Task Reward

Kill Enemy +10
Suicide -10
Collect Health +1
Collect Armour +1
Collect Ammo +1

The rewards for killing the enemy and committing sui-
cide fit perfectly with how frags are awarded throughout the
course of a match. Small rewards were added in order to
signify to the agent that collecting items such as armour and
ammunition would be beneficial, it also has the effect of in-
centivising the agent to move around the map without the
immediate presence of an enemy.

Table 2: PC Specifications

CPU Intel R© CoreTM i7-5930 CPU @ 3.50GHz
RAM 64GB DDR4
GPU 2x Maxwell Nvidia R© Titan X 12GB Maxwell

The agent was trained on 2 minute matches against the
built-in DOOM bots, it was trained for 30 million time steps
with 12 threads. Everything was calculated on the CPU cores
apart from the gradient calculations that were performed on
the GPU. The training for this agent took around 27 hours
on a powerful desktop PC as specified in Table 2.

5 Results

Table 3: Competition Results
Place Bot Total Frags

1 F1 559
2 Arnold 413
3 CLYDE 393
4 TUHO 312
5 5Vision 142
6 ColbyMules 131
7 Abyssll 118
8 WallDestroyerXxx -130
9 Ivomi -578

As stated earlier the competition was run over 12 matches
10 minutes in length, with bots that had frags < 0 at the
end of the first 9 rounds not being in the final three rounds. In

the case of this competition it meant that bots WallDestroy-
erXxx and Ivomi would not participate in the last 3 rounds.
The results of the competition are shown in Table 3.

6 Discussion

Figure 3: Number of frags achieved during training, run on
2 minute rounds

As shown in Figure 3 the network quickly converges onto
a strategy that dramatically reduces the number of suicides,
as the frag count dramatically rises from a large negative
value. This is not necessarily a good thing as it indicates
the network is committing to a strategy very early and then
simply refining it over a long period of time. This is most
probably a problem with selection of the hyper parameters,
but due to time constraints of the competition these were
the best results obtained before the submission deadline. An-
other issue that could have contributed to this result is sparse
rewards within the domain. This could be solved by intro-
ducing extra reward shaping but would have meant incorpo-
rating domain knowledge into the training of the agent, this
is a step we wanted to avoid given that our future focus is to
increase the performance of these networks in general game
playing. We expect an increase in performance if hyper pa-
rameters can be found that prevent this early convergence on
a local optimum. There is a difference between the number
of frags achieved during training (around 3 in two minute
matches) and the results in the competition. This is most
likely due to the differences in performance of the built in
DOOM AI used to train the agent and the performance of
the bots entered into the competition.

In Figure 4, which shows a sample of values given to
states over the course of training, we can see that the value
network also quickly increases the value of states and then
they hold pretty steady throughout training. There does seem
to be some divergence in the values towards the end of train-
ing that could indicate the network beginning to differentiate
between good and bad states. However this is not necessarily
the cause as the states are sampled at random.

When observing the agent it becomes obvious that the
strategy taken by the agent is to keep shooting as often as
possible without any regard for ammunition conservation.
The learnt strategy also has no mechanism for conservation
of life apart from making sure that it navigates the map in a



Figure 4: Value assigned to states during training, states
sampled at random

manner that prevents suicides. Due to the fact that the current
hyper parameters of the network allow the convergence on a
simple strategy so early in training adding a negative reward
for shooting simply means the network learns to never fire
the weapon. This is due to the fact it doesn’t explore other
strategies enough to acquire an understanding of shooting
enemies.

Despite our agent learning a relatively simple strategy it
still performed well against more complex systems, such as
the agent Arnold who relies on two separate networks for
navigation and target acquisition, and also requires prepro-
cessing of the image to indicate when items of interest are
present on screen (Lample and Chaplot 2016). This is some-
thing we chose to avoid in order to not customise the system
to one specific game and keep the system general.

The winner of the competition F1 also uses A3C as the ar-
chitecture for the agent (Wu and Tian 2016), however more
domain specific knowledge is used in the training phase and
during running of the agent. Extra data from the game is
given to the network as input this includes the agents cur-
rent health and available ammo. The more interesting dif-
ference though comes from how the agent was trained. A
form of curriculum learning (Bengio et al. 2009) was used
where the complexity of the task was slowly ramped up dur-
ing trainings, this was done in a number of ways including
the complexity of the map, the number of enemy bots and
the strength of the enemy bots.

7 Conclusion

In this paper we have continued to use games as a benchmark
for the performance of AI as has been so successful in the
past. Utilising the frameworks and competitions developed
and run by other researches. Allowing us to compare our
agent to other AIs in a controlled competitive environment.

This work has shown the effectiveness of using A3C
within the context of complex 3D multi-agent environments,
with Clyde scoring competitively against other agents in
the VizDOOM competition. This includes avoiding meth-
ods that could have improved performance but would limit
the general game playing ability of the system.

We also believe that these systems could be applied to

commercial games in order to provide competent opponents,
without the need for hand coding behaviours.

8 Future Work

For future work we would like to begin with trying to tune
the hyper parameters in order to obtain a system that does
not commit to a strategy so early on in training. We be-
lieve that this could be achieved through a combination of
the β factor of the entropy, and tuning the convolutional lay-
ers to better distinguish between frames. We would then like
to combine this with self play in order to not overfit to the
DOOM bots allowing the agent to learn from itself and be-
come a more competent player.

Another area that we are looking to explore is the use of
image preprocessing in a manner that is game independent.
This includes running the game image through Laguerre fil-
ters (Mäkilä 1990), that can encode more data about pre-
vious states into the current images theoretically helping the
network to take previous states into consideration when eval-
uating a current state.

Since the work in this paper new enhancements to A3C
in the form of the UNsupervised REinforcment and Aux-
iliary Learning (UNREAL) agent have been made (Jader-
berg et al. 2016). This agent learns auxiliary tasks in order
to better guide the feature extraction of the lower layers of
the network. We would therefore like to see the benefit of
learning auxiliary tasks, especially combined with the use
of Laguerre filters.
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