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Abstract 
 

Nesting of patients within care providers in trials of physical and talking therapies creates an 

additional level within the design. The statistical implications of this are analogous to those 

of cluster-randomised trials, except that the clustering effect may interact with treatment and 

can be restricted to one or more of the arms. The statistical model that is recommended at the 

trial-level includes a random effect for the care provider, but allows the provider and patient 

level variances to differ across arms. Evidence suggests that, while potentially important, 

such within-trial clustering effects have rarely been taken into account in trials and do not 

appear to have been considered in meta-analyses of these trials. 

 

This paper describes summary measures and individual-patient-data (IPD) methods for meta-

analysing absolute mean differences from randomised trials with two-level nested clustering 

effects, contrasting fixed and random effects meta-analysis models. It extends methods for 

incorporating trials with unequal variances and homogeneous clustering to allow for 

between-arm and between-trial heterogeneity in ICC estimates. The work is motivated by a 

meta-analysis of trials of counselling in primary care, where the control is no counselling and 

the outcome is the Beck Depression Inventory (BDI). Assuming equal counsellor ICCs across 

trials, the recommended random-effects heteroscedastic model gave a pooled absolute mean 

difference of -2.53 (95% CI -5.33 to 0.27) using summary measures and -2.51 (95% CI -5.35 

to 0.33) with the IPD. Pooled estimates were consistently below a minimally important 

clinical difference of 4 to 5 points on the BDI.  
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1. INTRODUCTION 

Where the treatment a patient receives is delivered by a health professional, such as in talking 

or physical therapies or surgery, patient outcomes may vary systematically by care provider. 

Variation between clusters, or, in this case, care providers, leads to correlation among patient 

outcomes within clusters, thereby violating the assumption of independence on which 

standard methods of analysis are based. Such correlation arises when care providers differ in 

characteristics related to outcome, such as training, skill, experience or empathy. The usual 

situation in psychotherapy is that treatment is provided by different samples of clusters in 

each arm in what will be referred to as a nested therapist design (patients are allocated to care 

providers within treatments). As this is a special case of the more generic fully-nested design 

(where clusters formed at recruitment, treatment or outcome assessment are nested within 

treatments), the statistical implications of provider clustering in nested therapist designs are 

analogous to the implications of recruitment-related clustering in standard cluster randomised 

trials, in which clusters are randomly allocated to treatments. The latter are now widely 

recognised [1]. Ignoring provider clustering can also result in treatment estimates that are too 

precise and standard errors that are too small. There are also crossed designs in which all 

treatments are provided in each cluster so that the clusters and treatments are crossed. This 

covers a cluster randomised crossover design [2-4] in which sequences of treatments are 

randomised to clusters as well as a crossed therapist design in which patients are allocated to 

treatments within care providers (see Walwyn and Roberts [5] for further details). 

 

Cluster randomised trials often assume that the clustering effect is homogeneous across 

treatment arms, so a random intercept model is appropriate and a single intra-class correlation 

coefficient (ICC) is estimated. Care provider clustering may be treatment-specific, however, 

in that provider characteristics may differ across arms, for instance with greater skill or 

different training being required for one therapy compared to another. There may also be 

greater standardisation of one therapy, or one may be more established so that there is greater 

experience associated with it. Between-arm heterogeneity in the clustering effect, or 

treatment-related clustering, complicates matters so methods outlined for cluster randomised 

trials need to be extended for therapist designs. The statistical model that is recommended for 

nested therapist designs [6] includes a random effect for the care provider but allows the 

provider and patient level variances to differ across arms. We refer to this as a two-level 

heteroscedastic model [5]. As such, a separate ICC is estimated in each treatment arm. For 
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crossed therapist designs, the recommended model [5] is a random coefficient model, which 

includes a random intercept for the care provider but also allows the treatment effect to vary 

across care providers. In this case, between-provider variation in outcome increases precision 

of the treatment effect while between-provider variation in treatment effects decreases it. In 

the situation where clustering is absent from one arm, for example where the control is a 

waitlist or no treatment, the design is referred to as partially-nested or partially-crossed [5]. 

In this case, the between-cluster variance is constrained to zero in the no clustering arm. 

Incorporating crossed designs into meta-analyses raises different issues. These are beyond the 

scope of this paper and so will not be considered further here. 

 

Care provider variation has widespread implications for the design and analysis of trials with 

nested designs. It affects not only the precision of treatment effect estimates [5-8] but also 

their internal and external validity [5, 6, 8]. It is now accepted that it needs to be considered 

in trials of non-pharmacological treatments [9]. However, a yet unpublished systematic 

methodological review of Cochrane reviews of comparative studies involving psychotherapy 

found that, while potentially important, such within-trial variation has rarely been taken into 

account in psychotherapy trials and does not appear to have been considered in meta-analyses 

of these trials [10]. Statistical pooling or meta-analysis of summary-data across trials can be 

viewed as a two-stage process in which summary statistics are first extracted from each trial 

and then a weighted average is calculated of them [11-12]. Where outcomes are normally 

distributed, the summary statistic for the treatment effect may be an absolute or standardised 

mean difference. Our methodological review included 101 Cochrane reviews and 1816 

unique studies, 1345 of which involved psychotherapy given by care providers. Similar issues 

would apply to meta-analyses of surgical or educational interventions, physiotherapy, 

occupational therapy or speech therapy, where nested trial designs have been used. Where a 

published trial analysis has adequately allowed for the care provider, there would be no need 

to make further allowance in a summary-data meta-analysis. Problems only arise where no 

allowance has been made at the trial-level or where an inappropriate model has been used. In 

the current context it is likely that no allowance will have been made at the trial-level. As 

such, the problems outlined in this paper are expected to be quite common in practice. 

 

The past decade has seen growing interest in the specific methodological challenges faced in 

the meta-analysis of randomised trials with correlated data. Methods have been proposed for 

pooling trials with repeated-measures [13-16], for crossover trials [17-20], and for cluster-
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randomised designs [21-26]. What is common across this literature is a consideration of the 

impact of within-trial clustering when combining data from trials with complex data 

structures, particularly where this has been ignored in published trial analyses. Drawing on 

this literature, the Cochrane Handbook [27] cites methods for the meta-analysis of cluster-

randomised and crossover trials. It briefly mentions clustering in individually randomised 

trials arising from health professionals but gives no specific guidance beyond stating that the 

issues are similar to those in cluster randomised trials, citing Lee and Thompson [7]. It makes 

no mention of treatment-related clustering effects, which may arise in individually-, or indeed 

in cluster-, randomised trials where interventions are delivered by care providers. 

 

The presence of between-trial heterogeneity in ICCs for care providers raises further issues 

not previously considered in the literature. This heterogeneity might arise from disparities in 

the cluster or patient level variances across trials. Possible causes could be differences in the 

level of treatment standardisation or patient eligibility criteria between trials. One option 

would be to estimate separate ICCs in each trial for each arm. An alternative might be to 

estimate a single ICC across trials for each arm. Here, treatment-specific ICCs are pooled 

across trials. A further option would be to adopt a middle road and investigate the use of 

meta-regression models for the variance parameters. This paper considers methods for meta-

analysing absolute mean differences from individually-randomised trials with two-level 

nested designs and treatment-related clustering. Both fixed- and random-effects meta-analysis 

models are considered, along with both summary-data and individual-patient-data (IPD) 

approaches. As with any meta-analysis of absolute mean differences using a summary-data 

approach, the sample means, variances and sizes are needed in each trial arm. To implement 

the methods described here, the ICC and average cluster size are also required for each trial 

by arm. The IPD approach assumes researchers have collected cluster identifiers, linking 

clusters to participants. The feasibility of obtaining these is commented on in the discussion. 

 

We begin in section 2 by outlining the example that motivated this work. In section 3 we go 

on to review the recommended model at the trial level for fully and partially nested therapist 

designs. We then extend standard summary-data and IPD approaches to the meta-analysis of 

absolute mean differences in sections 4 and 5, respectively, outlining meta-regression models 

in section 6 and illustrating the proposed methods with our example in section 7. Section 8 

contains a discussion, including limitations. Focusing initially on absolute mean differences 

has several advantages. Firstly, their large-sample estimates are unbiased, their sampling 
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variances are independent of the population parameter, and their sampling distribution is 

normally distributed [28]. As this is not the case for standardised mean differences, this 

avoids some of the added complications encountered when pooling the latter, allowing the 

general implications to be considered first. A separate paper, drawing on earlier work [10], is 

currently in preparation focusing on problems associated with pooling standardised mean 

differences in this context. 

 

2. MOTIVATING EXAMPLE 

The main point of contact for patients presenting in primary care in the UK is their general 

practitioner (GP) and associated primary care team. One in three is estimated to be affected 

by mental health problems [29]. The case for providing psychological therapies, including 

counselling, within the NHS has been made, with a rapid rise in counselling in primary care 

seen since 1990. Half the general practices in England were estimated to have a counsellor 

attached by 2000 [30]. The background of counsellors working in this setting is variable [31]. 

Counselling is typically brief, usually involving 6 to 10 sessions, each of 50 minutes [32]. 

The counselling process is characterised by three stages, operating by means of the 

relationship between the counsellor and the patient [31]. The focus is initially on building 

trust. The counsellor encourages the patient to describe the situation that is affecting them 

and makes a systematic assessment. The emphasis then turns to creating changes which give 

the patient additional resources they can subsequently draw upon. The way this is done 

depends on the theoretical model the counsellor is applying. Finally, alternative means of 

using the resources are considered, put into action and reflected upon. It is usual for 

counsellors to apply eclectic therapeutic approaches for a wide range of social and clinical 

problems. 

 

Bower and Rowland [33] published a systematic review and meta-analysis of the clinical and 

cost-effectiveness of counselling in primary care, including eight trials. The largest meta-

analysis compared counselling plus GP care to GP care alone, using the short-term outcomes 

measuring the extent of mental health symptoms. Each trial could be viewed as having a 

partially nested therapist design, with counsellors in the intervention but not the control arm. 

There was a single counsellor per patient. This meta-analysis gave a standardised mean 

difference (SMD) of -0.24 (95% CI -0.38 to -0.10). The primary meta-analysis assumed a 

common underlying treatment effect across trials (i.e. a fixed-effects meta-analysis model) 
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while a sensitivity analysis assumed the population treatment effects were normally 

distributed (i.e. a random-effects meta-analysis model). Neither made allowance for within-

trial clustering due to counsellors or for between-arm heteroscedasticity. As four of the trials 

[34-37] reported the Beck Depression Inventory (BDI) [38], allowing a meta-analysis of the 

absolute mean differences, this subset will serve to illustrate the methods outlined below. 

 

The BDI is one of the most widely used instruments for measuring the severity of depression. 

It is a 21-item self-report questionnaire, with total scores ranging from 0 to 63. Higher scores 

indicate more severe depressive symptoms. While a minimally important clinical difference 

for the BDI in this population has not been defined, a change of 4 to 5 points, corresponding 

to 0.5 standard deviations, is generally regarded to be minimally important. Although the 

trials all had partially nested designs, Friedli et al [35] and King et al [36] used a treatment 

manual, training or monitoring to standardise the delivery of counselling. Chilvers et al [34] 

and Simpson et al [37], instead, took a pragmatic approach. Patient eligibility was restricted 

to depression, or comorbid depression and anxiety, in Chilvers et al [34], King et al [36] and 

Simpson et al [37]. Friedli et al [35], in contrast, accepted a broad set of referrals. As such, 

this subset of trials also serves to illustrate meta-regression models for the variance 

parameters. 

 

3. STATISTICAL MODELLING OF TWO-LEVEL NESTED TRIALS 

First consider a cluster-randomised trial in which J clusters are randomly allocated to one of 

two treatments, with the only source of clustering in a fully nested design being recruitment-

related. Suppose iy  is a continuous outcome for the thi patient, where Ni ,,1 ,  is the 

treatment effect, ix  and   are matrices signifying fixed patient or cluster level baseline 

covariates and their coefficients and iK  is an indicator variable for the intervention versus 

control. For simplicity of presentation let i  equal ix  where   is the constant. Using 

Goldstein’s [39] notation, between-cluster variation can be represented by a random effect 

)2(
)(iclusteru with distribution  2,0 uN  ; 

)1(
ie is  2,0 eN  , the patient level error term. A random-

intercept model for the outcome for the thi patient in the thk treatment is therefore appropriate 

given by 

 

)1()2(
)( iiclusteriii euKy      (1) 
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In this notation, the bracketed superscript refers to the level of the random effect and 

 icluster  in the subscript is the mapping of patients to clusters. Intra-cluster variability is 

measured by a single intraclass correlation coefficient   defined using a variance 

components model by  222/ euu   . 

 

Consider now any randomised trial in which care providers are allocated to patients within 

two treatments (k=0, 1) in a fully nested design. In the context of an individually randomised 

trial, Roberts and Roberts [6] suggest the following two-level heteroscedastic model 

 

  iiiiiitherapiiitherapistiii KeKeKuKuKy )1(
1

)1(
0

)2(
1)(

)2(
0)( 11     (2) 

 

Model (2) would also be appropriate for a cluster randomised trial in which care providers are 

randomly allocated to two treatments, because one source of clustering is treatment provision 

and therefore treatment-related. In this parameterisation, 
)2(

0)(itherapistu and 
)2(

1)(itherapistu  are random 

intercepts for the control and intervention arms respectively, distributed  2
0,0 uN   and 

 2
1,0 uN  , with covariance zero, as they relate to independent samples. Note there are also 

separate patient level error terms for the control and intervention arms rather than just one 

across arms, given respectively by 
)1(

0ie  and 
)1(

1ie , and distributed  2
0,0 eN   and  2

1,0 eN  , 

included to prevent bias in the estimation of 
2
0u  and 

2
1u  [6]. Separate intraclass correlation 

coefficients under a variance components model are then 0  2
0

2
0

2
0 euu    and 

 212
1

2
11 euu   . 

 

Where an individually-randomised trial has a partially-nested design, the random intercept for 

the control arm is constrained to equal zero so  iitherapist Ku 1)2(
0)(  is dropped from the model 

giving  

  iiiiiitherapistiii KeKeKuKy )1(
1

)1(
0

)2(
1)( 1    (3) 

 

Each patient in the treatment arm without clustering is assumed to be a cluster of size one.  
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4. SUMMARY-DATA META-ANALYSIS METHODS 

4.1 Fixed- and Random-Effects Meta-Analysis Models without Clustering 

In the simplest meta-analysis model, an underlying treatment effect   common to all H trials 

is assumed, such that H  1 . The fixed-effects model [40] implies  

 

Hhehh ,,1,ˆ      (4) 
 

where h̂  is the treatment effect observed in trial h ,   is the population value, and he  are the 

sampling errors, with  2
ˆ,0~
h

Neh  . Heterogeneity in the treatment effects across trials is 

ascribed to sampling error. The arguably more realistic random-effects model permits the 

population treatment effects to vary across trials, with hh    and  2,~
h

Nh  , where 

2

h
  is the between-trial variance and   is now the mean of the population treatment effects. 

Thus [40]  

Hhehhh ,,1,ˆ           (5) 
 

and  22
ˆ,~ˆ

hh
Nh    . The total variance of h̂  is therefore 

22
ˆ

2
ˆ hhh

T    , the sum of the 

within and between trial variances. The random-effects model reduces to a fixed-effects 

meta-analysis model when 
2

h
 , the between trial variance, is zero.  

 

The uniformly minimum-variance unbiased estimate of a pooled treatment effect   is given 

by [41-42] 







 H

h
h

H

h
hh

w

w

w

1

1

ˆ
ˆ


       (6) 

 

where 2
ˆ

1

h
T

wh



 is the weight assigned to trial h  under a random-effects meta-analysis model. 

Its standard error is given by 




 H

h
hw

w

1

ˆ
1

       (7) 
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so an approximate two-sided  1100 %  confidence interval for w̂  is given by 

 

w
zw   ˆ2/1

ˆ
         (8) 

 

It is usual for
2

ĥ
  and 

2

h
  to simply be replaced by their respective estimators

2
ˆˆ
h

  and 
2ˆ
h

 , 

although Sidik and Jonkman [43] suggest an alternative approach that is robust to sampling 

errors in the estimated weights.  

  

A commonly used estimator of 
2

h
  is DerSimonian-Laird’s (D-L) [44] methods of moments 

estimator 

 






 

  1
,0maxˆ2 HQ

h       (9) 

 

The Q-statistic is estimated by  


 
H

h
hh

h
1

22
ˆ

ˆˆ  , where h  is the mean of h̂ . Variation in the 

precision of the trial estimates between trials is indexed by 

 















 
H

h
H

h

H

h

h

h

h
1

1

2
ˆ

1

22
ˆ

2
ˆ

ˆ

ˆ
ˆˆ









 . 

 

In order to obtain the standard error of the absolute mean difference from each trial, 
2
ˆˆ
h

 , 

(used in calculating trial weights and the standard error of the pooled treatment effect), one 

needs to first derive the sampling distribution of the absolute mean difference. Where 

outcomes are statistically independent within and across arms, suppose h1  and h0  are the 

true mean outcomes in the intervention and control arm of trial h  respectively. The 

population mean difference is then 

 

hhhMD 01,    (10) 
 

The outcome of patient i  in the k th arm of the h th study is denoted by ikhy . Assuming the 

population variances are homogeneous (
22

0
2
1 hhh   ) and the sample means ( hy1  and 
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hy0 ), variances (
2
1hs  and 

2
0hs ) and sizes ( hn1  and hn0 ) available, the trial estimate and its 

sampling distribution are given by [45] 

 

Hh
nn

Nyy
hh

hhhhhhMD ,,1,
11

,~ˆ
01

2
0101, 















        (11) 

 

where 









hh
h nn
s

hMD
01

22
ˆ

11ˆ
,

    and    
2

)1()1(

01

2
00

2
112





hh

hhhh
h nn

snsn
s  

 

If the outcome variances are heterogeneous across arms (i.e.
2
0

2
1 hh   ) with unknown ratio, 

the trial estimate hMD,̂  is unaffected but its variance becomes 

 

h

h

h

h

nnhMD
0

2
0

1

2
12

ˆ
,

      (12) 

 

The variances are replaced by 
2
1hs  and 

2
0hs  to give the estimator 

2
ˆ

,
ˆ

hMD
 , a scenario that is 

classically referred to as the Behrens-Fisher problem [46]. 

 

4.2 Sampling Distribution of the Summary Statistic for Two-Level Nested Designs 

Suppose now that the outcome of patient i  is nested within the j th cluster of arm k  and is 

denoted by ijkhy . For the sake of generality, assume that model (2) applies. Then assume, for 

each of h  trials, that a sample of khJ  clusters of size khm  is assigned to each arm under a 

fully nested design. The trial estimate hhhMD yy 01,
ˆ   remains an unbiased estimator of 

hMD,  but the sample means are now given by 

 

kh

J

j

m

i
ijkh

J

j
kh

J

j

m

i
ijkh

kh n

y

m

y

y

kh kh

kh

kh kh






 



   1 1

1

1 1
, with sample variances 

kh

khkh
y n

deff
kh

2
2       (13) 

 

where the design effect   khkhkh mdeff 11  , in the clustered arms when the cluster sizes 

are equal within each arm of each trial. 
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For this scenario, Kwong and Higgins [unpublished] gave the sampling distribution of hMD,̂  
as 

Hh
n

deff

n

deff
Nyy

h

hh

h

hh
hhhhhMD ,,1,,~ˆ

0

0
2
0

1

1
2
1

0101, 








     (14) 

 

where 
h

hh

h

hh

n

deffs

n

deffs
hMD

0

0
2
0

1

1
2
12

ˆ
,

ˆ  . The sampling variance simplifies to 

 

h

h

h

hh

h

n

i
hi

h

J

j

m

i
hij

nn

deff

n

y

n

y

Var

hh h

hMD
0

2
0

1

1
2
1

0

1
0

1

11
1

2
ˆ

01 1

,

 























     (15) 

 

in the case of partial nesting and to 









hh
hh nn

deff
01

2 11  for cluster randomised trials where 

the only source of clustering is recruitment-related. 

 

5. INDIVIDUAL-PATIENT-DATA META-ANALYSIS METHODS 

Going back to Goldstein’s [39] notation, where iy  denotes a continuous outcome for the thi  

patient, a standard fixed-effects meta-analysis model [40, 47] is 

 

)1(
iihi eKy      (16) 

 

where h represents the mean outcome in the control arm of trial h  and  the fixed treatment 

effect. It is commonly assumed that patient residuals 
)1(

ie are iid  2,0 eN  , although relaxing 

this has been discussed [40, 47]. It is also possible to let the patient variance vary across 

arms, in which case the model becomes 

 
  iiiiihi KeKeKy )1(

1
)1(
01   (17) 

 

with the 
)1(

ike  iid  2,0 ekN  . This model can be extended to give the fixed-effects meta-

analysis corresponding to a two-level heteroscedastic model by combining model (16) with 

that given by equation (2), 

 

  iiiiiitherapisiitherapistihi KeKeKuKuKy )1(
1

)1(
0

)2(
1)(

)2(
0)( 11      (18) 
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with the random effects iid  2,0 ukN  . If all the trials are partially nested, 
)2(

0)(itherapistu , can be 

omitted from the model, corresponding to equation (3). 

 

A standard random-effects meta-analysis is one in which the trial effects are fixed but the 

treatment effect is permitted to vary randomly across trials [40, 47]. That is, the term 

iitrial K)3(
)(  is added to model (16), where the

)3(
)(itrial  are iid  2,0 N  and the random effects are 

mutually independent. The random-effects meta-analysis corresponding to a two-level 

heteroscedastic model for the trials is given by 

 
 iiiiiitherapiiitherapistiitrialihi KeKeKuKuKKy )1(

1
)1(
0

)2(
1)(

)2(
0)(

)3(
)( 11     (19) 

 

As before, 
)2(

0)(itherapistu is constrained to zero, and the term omitted from the model, if all trials 

are partially nested. 

 

Models (18) and (19) constrain the therapist variance to be equal across trials for each 

treatment. An alternative would be a saturated model in which all trials are allowed to have 

their own therapist variance. Suppose )(, itrialhH  is an indicator variable equal to 1 when 

hitrial )(  and 0 otherwise, the saturated model can be defined as follows: 

 

  





H

h
itriahihiihiihitherapistihitherapist

iitrialihi

HKeKeKuKu

KKy

1
)(,

)1(
1

)1(
0

)2(
1)(

)2(
0)(

)3(
)(

11


   (20) 

 

With H4 variance parameters in a meta-analysis of fully-nested trials and H3 variance 

parameters in a meta-analysis of partially-nested trials, Model (20) is likely to be difficult to 

fit. It was not possible in our motivating example. One option is to add constraints to the 

saturated model that can be motivated by the characteristics of the trials, a possibility we now 

consider. 
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6. META-REGRESSION MODELS USING INDIVIDUAL-PATIENT-DATA 

Meta-regression models have been described that allow the pooled treatment effect to vary 

according to trial characteristics [47-49], such as whether the trial intervention was 

manualised or the trial quality. These models explore explanations for between-trial variation 

and require large numbers of trials. Incorporation of a categorical trial-level covariate into 

model (19) gives 

 

 iiiiiitherapisiitherapistiitrialihihi KeKeKuKuKKxKy )1(
1

)1(
0

)2(
1)(

)2(
0)(

)3(
)( 11    (21) 

 

where   is a fixed treatment-by-covariate interaction effect and hx  is an indicator variable 

for the fixed trial-level covariate. 

 

Further covariates could be added. Where data are available on therapist-level characteristics 

such as training or experience, one might be interested in exploring whether the treatment 

effect varies according to these. Here, the covariate varies within trials, but is the same for 

every patient seen by a therapist. As the number of therapists per trial is usually small, it may 

only begin to be feasible to address such questions in a meta-regression. As with other IPD 

meta-regressions, patient-level covariates, such as severity, can also be investigated [47]. In 

this case, the covariate varies between patients within therapists and trials. 

 

Up to this point, the meta-regressions considered are of fixed effects, and in particular of the 

treatment effect. Meta-regressions of random parameters may also be of interest. A complex 

random structure may be realistic if the trial designs vary. Under these circumstances, there is 

reason to expect between-trial variation in therapist or patient level random effects even if 

there is insufficient statistical power available to detect it. It is realistic to suppose that patient 

and therapist level variances are affected by standardising patient or therapist characteristics 

and behaviour via the use of selection criteria and therapist training, certification, monitoring 

and supervision. If the trial designs are comparable in all other respects, a categorical trial-

level covariate can be incorporated for the therapist random intercept in model (19). iT  is an 

indicator variable that is equal to 1 if therapist characteristics or behaviour are standardised 

and 0 otherwise, for example, as follows, 
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
  iiiiiiitherapistiiitherapist

iiitherapiiitherapistiitrialihi

KeKeTKuTKu

TKuTKuKKy
)1(
1

)1(
0

)2(
10)(

)2(
00)(

)2(
11)(

)2(
01)(

)3(
)(

1111

1

 


       (22) 

 

where the four 
)2(

)( ktitherapistu  are random intercepts for the control and intervention arms (k=0,1) 

in the unstandardised and standardised trials (t=0,1) respectively, distributed  2,0 uktN  , with 

covariance zero, as they relate to independent samples. 

 

This might be considered if some of the trials used treatment manuals, while others did not, 

or if therapists were selected for their expertise, given training, accreditation, monitoring or 

supervision in some trials but not others. It is assumed that these design features do not have 

a simultaneous effect at the patient level in Model (22), as this leads to the saturated model 

(20) in our motivating example. One could instead incorporate a categorical trial-level 

covariate for the patient-level residual error. For example, iP  is 1 for trials where patient 

characteristics are standardised and 0 otherwise, 

 


  iiiiiiiiiiii

iitherapiitherapistiitrialihi

PKePKePKePKe

KuKuKKy



 

1111

1
)1(
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)1(
00

)1(
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)1(
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)2(
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)2(
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)3(
)(

      (23) 

 

where the four 
)1(

ikpe  are patient residuals for the control and intervention arms (k=0,1) in the 

unstandardised and standardised trials (p=0,1) respectively, distributed  2,0 ekpN  , with 

covariance zero, as they again relate to independent samples. This might be considered if 

trials adopt a mix of explanatory and pragmatic approaches to patient eligibility. Models (22) 

and (23) may be considered parsimonious or constrained versions of the saturated model (20). 

The potential complexity increases with the variability in the trial designs. If the number of 

trials is small, as we have seen, there may be a trade-off between a realistic model for the 

random effects and computational feasibility. In theory, these models could be extended to 

include therapist- and patient-level predictors of the random effects. 

 

As an aside, Model (20) can also be simplified to allow inclusion of fully and partially nested 

trials and inclusion of trials with and without clustering effects. In the case of a mixture of 

fully and partially nested designs, where iX  is an indicator variable equal to 1 when the trial 

has a fully nested design and 0 if it is partially nested, 
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
 iiiiiiii

iitheraiiitherapistiitrialihi

KeXKeXKe

KuXKuKKy
)1(
11

)1(
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)1(
00

)2(
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111

1



 
      (24) 

 

Here, the residual error in the control arm is allowed to differ across trial designs, ensuring 

the therapist ICC in the control arm is based on the subset of trials with fully nested designs. 

As before, it is assumed that the therapist ICC in the control arm is homogeneous for all fully 

nested trials. If the independence assumption is reasonable in some of the trials, Model (24) 

can be extended, with iC  an indicator variable equal to 1 if a trial has any clustering effects 

and 0 otherwise, to give 
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
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



 
        (25) 

 

Each random intercept applies only to the clustered arms. The residual error again varies by 

trial design. For non-clustered trials, it is   iii CKe  11)1(
00 in the control arm and 

 iii CKe  1)1(
01  in the intervention arm. The latter term can be omitted if the patient-level 

variance is assumed to be homogeneous across arms. 

 

An, albeit rather contrived, example in which fully-, partially-nested and non-clustered trials 

might be pooled is a comparison between counselling and cognitive-behavioural therapy 

where both have web-based and face-to-face versions. Some trials might compare web-based 

versions, thereby incorporating no therapist involvement, and so be non-clustered. Others 

might compare face-to-face versions to web-based versions and be partially- nested. Others 

might compare the face-to-face versions and be fully-nested. Another situation in which one 

might be justified in considering Model (25) is when the number of therapists cannot be 

identified in one or more of the trials. In this case they may be included as non-clustered.  

 

7. APPLICATION TO THE MOTIVATING EXAMPLE 

Short-term outcomes relating to the Beck Depression Inventory (BDI) were available for 460 

patients from four [34-37] of the counselling in primary care trials. Of these, 224 (49%) were 

allocated counselling with one of 39 counsellors. Overall, the cluster sizes ranged from 1 to 
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33, with a median of 3 and an IQR of 1 to 8. Data were available for 5 or more patients for 18 

of the counsellors. Table 1 gives descriptive statistics for the four included trials. It can be 

seen that the trials with the largest treatment effects also had the smallest counsellor ICCs. 

The ANOVA estimates of the counsellor ICC are negative for two of the four trials. This is 

possible because ANOVA estimation is consistent with a common correlation model rather 

than a variance components model [50]. By definition, the lower bound on the ICC is zero for 

a variance components model since a between-cluster variance cannot be negative. It is the 

design effect rather than the ICC that cannot be negative in ANOVA estimation. If clusters 

are of size two, the range of the ICC is 1 , but as the cluster size increases the minimum 

approaches zero. One ICC across trials was initially assumed for the counselling arm. 

 

[Insert Table 1 about here] 

 

7.1 Summary-Data versus Individual-Patient-Data Meta-Analyses 
To reflect a common lack of knowledge about the cluster size distribution, equal cluster sizes 

within trials were assumed for all summary-data meta-analyses. A pooled ICC of 0.033 was 

used, based on a weighted average of the trial-specific ICCs [10], regardless of the model. 

IPD models were implemented in MLwiN using RIGLS, due to its flexibility in modelling 

random effects. RIGLS is comparable to REML [39] implemented in mixed in Stata Version 

13. The preceding command xtmixed was updated in Version 11 to permit inclusion of one 

covariate for the patient level error. The mixed command uses the same syntax but seems to be 

faster, with a more stable algorithm. Details of the programming for both packages are given 

as supporting web materials. 

 

Tables 2 and 3 summarise, respectively, the summary-data and IPD estimates and standard 

errors for the fixed- and random-effects meta-analyses, progressively relaxing independence 

and common variance assumptions within the trials. As all of the trials have partially nested 

designs, the Level 2 variance, where it applies, is heterogeneous in all analyses. The common 

variance assumptions therefore relate only to the Level 1 variance. As can be seen, the pooled 

mean difference and its standard error for a usual summary-data fixed-effects analysis are -

2.43 and 0.89 (95% CI -4.17 to -0.69), indicating that counselling reduces short term 

symptoms of depression by an average of 2.4 points and that this reduction is statistically 

significant at the 5% level. A mean difference of 2.5 points corresponds to a standardised 

effect size of about 0.25. According to Cohen [51] this represents a small effect. Based on 
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results with similar effects, the authors of the Cochrane review concluded that “counselling is 

associated with modest improvement in short-term outcome” and that it “may be a useful 

addition to mental health services in primary care” [52]. The equivalent IPD estimate and its 

standard error are -2.47 and 0.90 with the two-sided 95% CI -4.23 to -0.71. The similarity of 

these results implies that bias and sampling error in the summary-data within-trial variance 

estimates is not important here. The pooled mean difference and its standard error in the 

analogous summary-data random-effects analysis are -2.50 and 1.40 (95% CI -5.24 to 0.24). 

The increase in standard error arises from between-trial heterogeneity in the mean 

differences. The reduction in BDI is no longer statistically significant. If an IPD approach had 

been used, the estimate and its standard error would be -2.47 and 1.42 (95% CI -5.25 to 0.31). 

The slight disparity in standard errors is explained by that of the between-trial variance 

estimates, which is in turn due to bias arising from sampling error or heterogeneity in the 

within-trial variances. Even so, the evidence in favour of counselling in primary care is less 

clear if between-trial heterogeneity is taken into consideration. 

 

[Insert Tables 2 and 3 about here] 

 

The impact of between-arm heteroscedasticity and within-trial clustering is minimal if pooled 

treatment effects and their standard errors are compared across random-effects summary-data 

or IPD models (see Figure 1 below). The effect is a little more pronounced for both 

summary-data and IPD fixed-effects models, however. The disparity between the summary-

data and IPD results enlarges as the model becomes more realistic. It is of note that the 

DerSimonian-Laird (D-L) and IPD between-trial variance estimates differ (see Table 3), with 

both estimates being larger, assuming independence, where patient-level variances are 

allowed to differ between arms. The IPD estimate, in contrast to the D-L estimate, is not only 

smaller for both clustered models but also smaller for the clustered model where patient-level 

variances are allowed to differ between arms. IPD estimates of the counsellor ICC are larger 

than the summary-data estimate of 0.033, varying from model to model. These differences 

arise, in part, because the variances are estimated simultaneously in an IPD model, making 

appropriate allowance for all other effects in the model. In this example, the results continue 

to be dominated by between-trial heterogeneity in the treatment effects. The most realistic 

IPD pooled mean difference and standard error are -2.51 and 1.45 (95% CI -5.35 to 0.33). 

The summary-data equivalent is -2.53 and 1.43 (95% CI -5.33 to 0.27). Both are very similar. 
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In the IPD case, the confidence interval is marginally wider than the standard random effects 

one. The conclusion remains unchanged.  

 

[Insert Figure 1 about here] 

 

7.2 Sensitivity of the Summary-Data Approach to the Choice of Population ICC 
The sensitivity of the mean difference and its standard error to the choice of population ICC 

was explored for ICCs between zero and one. The trial estimates are unaffected as the ICC 

increases but the pooled estimates become slightly more extreme. This is because King et al 

[36] has more weight as the ICC increases, in part due to its mean cluster size. This effect is 

slightly more pronounced for the fixed-effects estimate. The slope of the pooled standard 

error, when plotted against the population ICC, is not steep, indicating the results are not 

sensitive to the ICC in the anticipated range (i.e. for ICCs between zero and 0.20). The D-L 

estimate of
2

h
 decreases as the ICC increases, implying heterogeneity in mean differences 

across trials contributes to, rather than simply explaining, heterogeneity between counsellors. 

 

7.3 Meta-Regression of the Random Effects 
Table 4 gives results of two meta-regression models, one for the therapist random effect 

(Model 22) and the other for the patient residual (Model 23). Both explore trial-level sources 

of heterogeneity in the counsellor ICC, the first treatment standardisation (yes, no) and the 

second patient eligibility (mixed diagnosis, depression). There were insufficient trials 

available to fit random-effects meta-regression models in this instance so the results are 

compared to model (18). As all the trials have partially nested designs, the random intercept 

for the control arm, 
)2(

0)(itherapistu , is omitted from all models. 

 

[Insert Table 4 about here] 

 

A reduction of 8.7 was seen in the log likelihood by including separate residual terms for 

trials with mixed and depression patient referrals. The pooled treatment effect reduced very 

slightly, as did its standard error. The counsellor ICC was higher when patients were more 

homogeneous as the patient residual was smaller relative to the counsellor variance. If 

distinct therapist-level terms were included for trials standardising counselling and those that 

did not, the log likelihood reduced by 12.6. The pooled treatment effect increased 
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appreciably, reflecting an association between the trial estimate and counsellor ICC. That is, 

the trials with the largest estimates (i.e. Friedli [35] and King [36]) also had the smallest 

counsellor ICCs, so carried more weight in the meta-regression analysis. The standard error 

was similar to that for Model (18). Since the pooled counsellor ICC is negative for trials 

standardising counselling, a different parameterisation of the model was used, including a 

covariance term rather than an explicitly negative estimate, to allow the model to converge. A 

covariance, in contrast to a variance, can be negative. Including the covariance between the 

therapist level random effects in place of the negative variance therefore indirectly enabled a 

negative variance to be estimated within a variance components model. The counsellor ICC 

was lower when counselling was standardised as the counsellor variance was smaller relative 

to the patient residual. This corresponds to the ANOVA estimates of the ICC in Table 1. The 

standard errors for the variance estimates are large due to the number of trials and 

counsellors. It was not computationally possible to simultaneously allow for heterogeneity 

from both sources (i.e. Models 22 and 23 combined) or to fit the model of choice (i.e. a 

random-effects meta-regression). The potential to do so when the number of trials available is 

larger is clear however. The facility to disentangle the predictors of the components of an 

ICC is also attractive as the predictors may differ between the components. 

 

8. DISCUSSION 

While potentially important, treatment-related clustering effects in individually-randomised 

psychotherapy trials have rarely been taken into account in trial reports and do not appear to 

have been considered in meta-analyses [10]. Fitting fixed- and random-effects meta-analysis 

models to trials of counselling in primary care, adopting summary-data and IPD approaches 

and allowing for these effects, had minimal impact on the pooled estimate and its standard 

error. This is not surprising for two reasons. Firstly, the cluster sizes were small in the 

example so the design effect was also. Secondly, assuming a common ICC across trials in the 

counselling arm meant that the contribution of each trial to the pooled treatment estimate 

remained essentially the same, despite some variability in the mean cluster size. Although 

hardly noticeable in the example, the impact was instead on the precision of the pooled 

treatment effect. Nevertheless, as we have seen in Tables 2 and 3, failure to take account of 

therapist variation will give an overly precise pooled estimate in a fixed effects meta-analysis 

because the effect of failing to include a therapist random effect in the analysis of a single 

trial generally results in the variance of the treatment effect being underestimated. The picture 
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is more complex for a random-effects meta-analysis. If the variance of single trials is 

underestimated, the between trial variance may be overestimated, as was seen in Tables 2 and 

3. The combined effect of a reduction in the variance between trials and an increased variance 

of each trial can result in either a reduction or an increase in the standard error of the random-

effects pooled estimate. Whilst in our example this estimate had a marginally larger variance 

when therapist clustering had been taken in to account, a different set of cluster sizes or trial 

variances could have led to a reduction. 

 

By contrast, an appreciable impact of treatment-related clustering was observed on the pooled 

treatment effect in the meta-regression models. Here, between-trial heterogeneity in the 

counsellor ICC had a greater impact on the weight given to particular trials and in so doing 

affected the pooled estimate and its standard error. Collection of the IPD is made attractive by 

the potential of meta-regression analyses for exploring trial-, therapist- and patient-level 

predictors of the treatment effect and of the random effects. Increased sample sizes open up 

opportunities not usually present at a trial-level but computational problems may still arise 

largely due to the presence of negative estimates. Allowing the ICCs to vary by trial as well 

as by treatment arm is particularly likely to lead to problems, as many of the trial-level ICC 

estimates involve very small numbers of clusters. The middle road suggested here is one way 

of circumventing these problems while maintaining a more realistic model. 

 

An advantage of the proposed methods is their generality. A two-level heteroscedastic model 

relaxes common variance and independence assumptions, being appropriate for all fully 

nested designs. It simplifies to the models recommended for unequal patient-level variances 

across arms and for partially-nested, cluster-randomised and non-clustered designs. In each of 

these special cases, additional assumptions may be made so constraints can be added to the 

model at the trial level. It is possible to envisage scenarios where one might want to allow the 

ICC to vary by treatment arm in a cluster randomised trial. Here, the source of clustering is 

traditionally conceptualised as recruitment-related. For example, if at baseline GP practices, 

rather than patients, are randomised to treatments, patients within a GP practice are likely to 

be more similar to one another than to other patients in the trial. As a consequence, clustering 

arises from use of a two-stage or clustered sample in a cluster-randomised trial but not in an 

individually-randomised trial. Such clustering is expected to be maintained at follow-up.  
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The unit of randomisation may not be the only source of clustering in a cluster randomised 

trial however, particularly where the intervention is directed at the cluster (e.g. GP practice) 

rather than at the patient-level. If there is also treatment-related clustering then, as long as the 

unit of randomisation and the clusters relating to treatment are the same (e.g. GPs are the unit 

of randomisation and the care providers), a two-level heteroscedastic model, outlined here for 

a fully-nested therapist design, may be appropriate in a cluster-randomised trial even if the 

treatment-related clustering is restricted to one or more arms in the trial. Consider a trial in 

which groups of patients are cluster-randomised to intervention or control, where the 

intervention is some kind of group therapy and the control is no therapy as an example. 

Clustering related to recruitment would still apply in the control arm, where in an 

individually-randomised trial it may be constrained to zero, but you might not expect the 

clustering effect to be equal in both arms as you might in a traditional cluster-randomised 

trial. Where there is interest in comparing group therapy to no therapy, one might want to 

consider pooling trials using an individually- and a cluster-randomised design with meta-

regression models similar in principle to those described here. The general principle we have 

adopted is that the cluster and patient-level components of an ICC should be allowed to differ 

by trial design, at a minimum.  

 

In the motivating example there was also the potential for clustering by the GP. GP care was 

generally a co-intervention delivered by the same sample of GPs. As such, GPs were crossed 

with treatment arms. As they were not blinded to whether patients were allocated counselling 

or no counselling, an interaction between GPs and treatment arm is plausible. Information on 

GP involvement in the motivating example was very limited however. GP identifiers were 

not recorded for the majority of the trials so it was not straightforward to include GPs in IPD 

analyses nor was it often possible for researchers to report the level of between-GP variability 

in the treatment effect. The number of GPs treating trial patients was also often unavailable 

so there was very limited information on cluster size distributions. As such, while a literature 

is starting to develop on the statistical implications of multiple therapist-per-patient designs 

[53], it is likely to be generally the case that details of multiple therapists treating particular 

participants are unavailable in this setting. This is likely to be true of multiple therapists of 

the same type (e.g. if more than one counsellor had treated patients) or of different types (e.g. 

in the case of a counsellor and a GP, as was the case here), even though both multiple 

therapist-per-patient trial designs are common in psychotherapy [10]. That is, trials in which 

the relationship between therapists and patients can be described as “multiple-membership” 
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or “cross-classified” [5]. Extensions are needed to the methods proposed here for these more 

complex data structures, as well as for crossed designs and trials with further levels (e.g. 

centres) or repeated measurements over time.  

 

An important consideration when implementing the summary data methods proposed here is 

the feasibility of obtaining, by trial arm, the ICC and average cluster size when researchers 

have made no allowance for clustering by care providers. To our knowledge, ICC estimates 

are currently only very rarely reported in the principal reports of psychotherapy trials [e.g. 

56]. Subsequent papers may be published focusing on therapist effects, such as a series of 

papers relating to the NIMH Treatment for Depression Collaborative Research Program trial 

[55-58], or for the purpose of generating a database of therapist effects [59-60]. The number 

of therapists involved in a psychotherapy trial is commonly reported though and tends to be 

no greater than ten per arm. It is therefore likely to be possible to calculate average cluster 

sizes. The distribution of the cluster sizes may however be skewed and highly variable, with 

only a few therapists treating the majority of participants, as was the case in Chilvers et al 

[34] and King et al [36]. As this is not likely to be clear from the principal paper, no 

allowance was made for it in the methods described here. More generally, variability in 

cluster sizes within trials is likely to be common, and while it is difficult to make appropriate 

allowance for this if the cluster size distribution is unknown, the assumption of equal cluster 

sizes is a limitation of our methods. For these reasons, the IPD approach is preferred, but this 

assumes researchers are able to link clusters to participants. 

 

From experience of collecting the therapist data for this meta-analysis, it is likely that cluster 

identifiers are collected in the paper records of psychotherapy trials and it is common for 

them to be somewhere in the electronic dataset. Although time consuming, it was possible to 

get hold of IPD for all the trials of counselling in primary care. Contact started with the lead 

author of the Cochrane review and progressed to the lead author (and statistician where 

appropriate) for each trial. In two of seven trials, data was re-entered from the paper case 

report forms. This was the entire dataset for one but for the other it was just the counsellor 

identifiers. Every trial recorded the counsellor who provided treatment. The age of the trial is 

likely to be a factor in how accessible data is more generally. Establishing a collaborative 

group and making use of personal contacts both helped to facilitate permissions to use data. 

In other meta-analyses, it is possible that only the summary-data will be available in one or 

more eligible trials. Where this is the case, assumptions could be made about the size of the 
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clustering effect and sensitivity analyses carried out using a summary data approach. Further 

work is needed to extend formal methods for pooling a mixture of IPD and summary-data in 

this context [61-62]. As psychotherapy researchers have been interested in therapist effects 

for a number of decades, the availability of ICCs, cluster sizes and cluster identifiers is likely 

to be greater in this context than in nested trials of  occupational therapy, surgery or 

physiotherapy for example. Where this data is unavailable, as may often be the case in some 

areas, assumptions could be made and sensitivity analyses carried out. 

 

The focus of this paper has been on meta-analyses of absolute mean differences in the context 

of a three-level model (patients are nested within clusters, nested within trials) appropriate for 

trials with nested designs. In the situation where a normally-distributed outcome is measured 

with different questionnaires or scales across trials, say depression on the BDI, HADS-D and 

PHQ-9, a standardised mean difference would be the appropriate measure of treatment effect. 

The methods described in this paper do extend but there are a number of added complications 

that must be taken into account relating to small-sample bias in the treatment effect estimate, 

estimates having a non-central t-distribution and dependence of the sampling variance on the 

population parameter. A separate paper is in preparation focusing on the specific issues with 

pooling standardised mean differences in this context. It is important that specific issues 

arising in the context of standardised mean differences, odds ratios, relative risks, and hazard 

ratios are fully considered, since allowing for treatment-related clustering is more complex 

for these summary statistics. (It would be easier for estimates of risk difference as one would 

simply multiply the standard error by a design effect term here). One of these specific issues 

is that population-averaged or marginal estimates will be required if a summary-data 

approach is adopted, rather than cluster-specific or conditional ones [63]. The 95% CIs 

presented here all used the z-statistic from equation (8). Where small samples of trials or 

therapists are pooled, it will be more appropriate to use a t-statistic [43, 64]. The degrees of 

freedom relating to this statistic for a random-effects meta-analysis are based on the number 

of trials. In the case of a fixed-effects meta-analysis, they are more complex, being based on a 

Satterthwaite approximation [65] required for meta-analysing standardised mean differences 

[10].  

 

In conclusion, specific guidance is needed in the Cochrane Handbook [27] on methods for 

handling treatment-related clustering associated with care providers in either individually- or 

cluster-randomised trials. We have shown that while the issues may have similarities to those 
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for standard cluster-randomised trials, the methods themselves need to be more general. 

While we have focused on implications for precision, this guidance should consider the 

implications for internal and external validity of pooled treatment effect estimates [10], as 

well as those for precision, as these affect interpretation and the validity issues are just as 

important.  
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Table 1 Descriptive Statistics for the Short-Term Beck Depression Inventory for Counselling vs. Control 
 
Trial 

Counselling No Counselling  
Mean Cluster Size in 

Counselling Arm  

 
Counsellor ICC 

(ANOVA Estimate) 
N Mean (SD) N Mean (SD) 

Chilvers 2001 39 15.2  (11.6) 44 14.8  (10.1)          2.79 0.290 
Friedli 1997 59 11.7  (7.7) 51 15.6  (10.5)        14.75 -0.023 
King 2000 62 11.5  (7.7) 62  17.2  (11.9)          4.23 -0.140 
Simpson 2000 82 16.0  (9.3) 79  16.0  (8.1)          8.88 0.045 

Note: SD = standard deviation; CI = confidence interval; ICC = intraclass correlation coefficient; A weighted average of the four ICCs gave a  
pooled ICC of 0.033 (see [10])    
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Table 2 Fixed- and Random-Effects Summary-Data Meta-Analyses of the Absolute Mean Difference in BDI between Counselling 
and Control where All Trials have Partially Nested Designs  

 

Fixed-Effects 
Meta-Analysis Assuming Independence Allowing for Within-Trial Clustering 

Level 1 Variance Equal Unequal Equal Unequal 
 

 

(Model 4 with Variance 11) (Model 4 with Variance 12) (Model 4) 

 

(Model 4 with Variance 15) 

Trial % 
Weights 

Mean Difference 
(Standard Error) 

% 
Weights 

Mean Difference 
(Standard Error) 

% 
Weights 

Mean Difference 
(Standard Error) 

% 
Weights 

Mean Difference 
(Standard Error) 

Chilvers 2001 13.9 0.4 (2.38) 13.7 0.4 (2.40) 15.1 0.4 (2.41) 14.6 0.4 (2.44) 

Friedli 1997 25.7 -3.9 (1.75) 24.8 -3.9 (1.79) 23.8 -3.9 (1.92) 23.9 -3.9 (1.91) 

King 2000 22.9 -5.8 (1.85) 24.3 -5.8 (1.80) 24.2 -5.8 (1.90) 26.0 -5.8 (1.83) 

Simpson 2000 37.6 -0.5 (1.45) 37.2 -0.5 (1.46) 37.0 -0.5 (1.54) 35.5 -0.5 (1.57) 
Pooled  
Treatment Effect 

-2.43 (0.89) -2.48 (0.89) -2.42 (0.94) -2.53 (0.93) 

D-L 
2ˆ
h

  - - - - 

Counsellor ICC - - 0.033 0.033 
Random-Effects 
Meta-Analysis Assuming Independence Allowing for Within-Trial Clustering 

Level 1 Variance Equal Unequal Equal Unequal 

 (Model 5 with Variance 11) (Model 5 with Variance 12) (Model 4) 

 

(Model 5 with Variance 15) 

Trial % 
Weights 

Mean Difference 
(Standard Error) 

% 
Weights 

Mean Difference 
(Standard Error) 

% 
Weights 

Mean Difference 
(Standard Error) 

 

% 
Weights 

Mean Difference 
(Standard Error) 

Chilvers 2001 19.4 0.4 (2.38) 19.3 0.4 (2.40) 19.8 0.4 (2.41) 19.5 0.4 (2.44) 

Friedli 1997 26.0 -3.9 (1.75) 25.6 -3.9 (1.79) 25.0 -3.9 (1.92) 25.1 -3.9 (1.91) 

King 2000 24.8 -5.8 (1.85) 25.4 -5.8 (1.80) 25.2 -5.8 (1.90) 26.0 -5.8 (1.83) 

Simpson 2000 29.8 -0.5 (1.45) 29.7 -0.5 (1.46) 29.9 -0.5 (1.54) 29.4 -0.5 (1.57) 
Pooled  
Treatment Effect 

-2.50 (1.40) -2.52 (1.42) -2.48 (1.42) -2.53 (1.43) 

D-L 
2ˆ
h

  4.50 4.63 4.34 4.48 

Counsellor ICC - - 0.033 0.033 
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Table 3 Fixed- and Random-Effects Individual-Patient-Data Meta-Analyses of the Absolute Mean Difference in BDI between 
Counselling and Control where All Trials have Partially Nested Designs  

 

Fixed-Effects 
Meta-Analysis Assuming Independence Allowing for Within-Trial Clustering 

Level 1 Variance Equal Unequal Equal Unequal 

Model (Model 16) (Model 17)  (Model 18)* 
Intercept 16.2 (1.14) 16.3 (1.15) 15.7 (1.19) 15.8 (1.25) 

Friedli 1997 -1.3 (1.40) -1.5 (1.39) -0.5 (1.58) -0.5 (1.66) 

King 2000 -0.6 (1.38) -1.0 (1.38) 0.3 (1.49) 0.1 (1.54) 

Simpson 2000 0.8 (1.32) 0.7 (1.31) 0.9 (1.42) 0.9 (1.48) 
Pooled  
Treatment Effect -2.47 (0.90) -2.47 (0.90) -2.43 (1.08) -2.46 (1.12) 

2
1ˆu    9.66 (6.04) 12.53 (6.41) 

2
0ˆ e  92.77 (6.12) 102.91 (9.47) 89.10 (6.07) 102.20 (9.41) 

2
1ˆ e   82.11 (7.76)  73.20 (7.45) 

Counsellor ICC - - 0.098 0.146 

-2 Log Likelihood 3384 3381 3382 3377 

 

Random-Effects 
Meta-Analysis Assuming Independence Allowing for Within-Trial Clustering 

Level 1 Variance Equal Unequal Equal Unequal 

Model    (Model 19)* 
Intercept 

 

15.5 (1.31) 
 

15.5 (1.37) 
 

15.4 (1.29) 
 

15.4 (1.36) 
Friedli 1997 

 

-0.2 (1.74) 
 

-0.3 (1.80) 
 

0.0 (1.73) 
 

-0.1 (1.82) 
King 2000 

 

1.0 (1.68) 
 

0.9 (1.74) 
 

1.1 (1.66) 
 

1.0 (1.74) 
Simpson 2000 

 

0.8 (1.61) 
 

0.8 (1.68) 
 

0.9 (1.59) 
 

0.9 (1.67) 
Pooled  
Treatment Effect -2.47 (1.42) 

 
-2.47 (1.42) 

 
-2.49 (1.45) 

 
-2.51 (1.45) 

2̂   
 

4.80 (4.58) 
 

4.83 (4.46) 
 

3.85 (4.89) 
 

3.56 (4.76) 
2
1ˆu  

 

  
 

8.06 (6.09) 
 

11.20 (6.54) 
2
0ˆ e  

 

91.88 (6.09) 
 

101.88 (9.38) 
 

88.98 (6.06) 
 

101.87 (9.38) 
2
1ˆ e   

 

81.33 (7.75)  
 

73.24 (7.46) 

Counsellor ICC 
 

- 
 

- 
 

0.083 
 

0.133 

-2 Log Likelihood 
 

3385 
 

3383 
 

3383 
 

3378 
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Table 4 Meta-Regression Analyses of the Mean Difference in BDI 

 Source of Heterogeneity in ICCs 
 
Model 

Treatment 
Standardisation 

(Model 22) 

Patient 
Eligibility 
(Model 23)  

Intercept 15.8 (1.27) 15.7 (1.16) 
Friedli 1997 -0.6 (1.38) -0.6 (1.54) 
King 2000 -0.2 (1.45) -0.5 (1.51) 
Simpson 2000 0.9 (1.59) 0.9 (1.39) 
 
Counselling -3.58 (0.91) -2.37 (1.05) 

2
1ˆu   8.62 (5.22) 

2
1ˆ e (Mixed)  80.71 (9.31) 

2
1ˆ e (Depression)  53.32 (10.92) 

2
0ˆ e (Mixed)  86.91 (9.32) 

2
0ˆ e (Depression)  142.06 (25.52) 

2ˆ v (Not Standardised) 28.19 (14.07)  

2ˆ v (Covariance) -15.14 (7.03)  

2
1ˆ e    71.71 (7.12)  

2
0ˆ e    102.13 (9.40)  

Counsellor ICC (Mixed)  0.097 
Counsellor ICC (Depression)  0.139 
Counsellor ICC (Not Standardised) 0.282  
Counsellor ICC (Standardised) -0.030  
-2 Log Likelihood 3364 3368 
Note: Model 22 has been re-parameterised to allow for a negative counsellor ICC for the standardised  
treatment trials. Model 23 has been adapted to allow for different ICCs for trials with mixed and depression 
patient eligibility where all trials have partially nested designs.   


