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When a star passes within the tidal radius of a supermassive black hole, it will be torn apart1.

For a star with the mass of the Sun (M⊙) and a non-spinning black hole with a mass < 108M⊙,

the tidal radius lies outside the black hole event horizon2 and the disruption results in a lu-

minous flare3, 4, 5, 6. Here we report observations over a period of 10 months of a transient,

hitherto interpreted7 as a superluminous supernova8. Our data show that the transient re-

brightened substantially in the ultraviolet and that the spectrum went through three different

spectroscopic phases without ever becoming nebular. Our observations are more consistent

with a tidal disruption event than a superluminous supernova because of the temperature

evolution6, the presence of highly ionised CNO gas in the line of sight9 and our improved

localisation of the transient in the nucleus of a passive galaxy, where the presence of massive

stars is highly unlikely10, 11. While the supermassive black hole has a mass > 108M⊙
12, 13, a

star with the same mass as the Sun could be disrupted outside the event horizon if the black

hole were spinning rapidly14. The rapid spin and high black hole mass can explain the high

luminosity of this event.

ASASSN-15lh was discovered by the All-Sky Automated Survey for SuperNovae (ASAS-

SN) on 14 June 2015 at a redshift of z = 0.2326. Its light curve peaked at V ∼ 17 mag implying

an absolute magnitude of M = −23.5 mag, more than twice as luminous as any known supernova

(SN)7. Our long-term spectroscopic follow-up reveals that ASASSN-15lh went through three dif-

ferent spectroscopic phases (Figure 1). During the first phase7, the spectra were dominated by two

broad absorption features. While these features appear similar to those observed in superluminous

supernovae (SLSNe; Supplementary Figure 1), their physical origin is different. The features in
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SLSNe are due to O II8, 15, but this would produce an additional strong feature at ∼4,400 Å (Sup-

plementary Figure 2) . The feature at ∼4,100 Å cannot be easily identified in the tidal disruption

event (TDE) framework either. Two possibilities are that it could be due to absorption of Mg II

or high-velocity He II16. After the initial broad absorption features disappeared, the spectra of

ASASSN-15lh were dominated by two emission features. A possible identification for these fea-

tures is He II λλ3, 202 and 4, 686 Å, which are both consistently blueshifted by ∼15,000 km s−1

(Supplementary Figure 3). He II emission is commonly seen in optically discovered TDEs4, 5 at

different blueshifts, albeit typically at lower velocities, but it has not been seen in H-poor SLSNe.

These features disappeared after day +75 (measured in rest frame from peak) and the later spectra

were mostly featureless, with the exception of two emission features at ∼4,000 and 5,200 Å. The

spectra remained much bluer than those of SLSNe17 for many months after the peak and never

revealed nebular features, even up to day +256.

A UV spectrum obtained with the HST on day +168 does not show any broad features18.

At the redshift of the host, we identified weak Ly-α absorption and disproportionally strong high-

ionisation lines (N V, O VI, C IV). Combined with the weakness (or absence) of common19 low-

ionisation absorption lines (Fe II, Si II, Mg II), this aspect seems to be similar to the spectrum

of ASASN-14li, the only available UV spectrum of a TDE9 (see Methods and Supplementary

Figure 4). The highly-ionised gas appears at slightly different velocities, suggesting that it could

be due to material in the vicinity of the TDE and ionised by its radiation. In contrast to the case of

ASASSN-14li9, we do not observe any broad features in the UV range, but the optical spectrum is

also mostly featureless at these phases.
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In addition, we detect the presence of hydrogen in ASASSN-15lh. A weak Hα emission line

is unambiguously detected in our highest signal-to-noise spectra (Figure 1) and in more spectra at

lower significance (Supplementary Figure 3). Its presence cannot be excluded in any spectrum and

its strength (equivalent width ∼4–8 Å) is invariable, within the present errors. The velocity of the

Hα line (full-width at half-maximum (FWHM) ∼ 2, 500 km s−1) is different than those of other

features, implying that it is formed in a different emitting region.

The light curve evolution of ASASSN-15lh is shown in Figure 2. After the initial peak

and decline, around 10 September (day +60), the UV started rebrightening, an effect that was

more prominent in the far-UV bands20, 21, 18. The dense photometric follow-up with the Swift

Gamma-Ray Burst Mission (Swift) and the Las Cumbres Observatory Global Telescope Network

(LCOGT) revealed that ASASSN-15lh reached a secondary UV maximum at around +110 days,

followed by another decline. Interestingly, after day +100, the colours of ASASSN-15lh remained

almost constant for over 120 rest-frame days (Supplementary Figure 5). By fitting a black body

to the multi-wavelength photometry of ASASSN-15lh, we are able to estimate the temperature

evolution, black-body radius and bolometric luminosity (Figure 3). While the UV rebrightens

and the spectrum changes, the blackbody radius decreases and the temperature increases again,

stabilising at ∼ 16, 000 K. This is neither expected from a SN photosphere, nor observed for

SLSNe22, 23, 24. However, the TDE candidate ASASSN-14ae6 showed a very similar temperature

evolution to ASASSN-15lh. Even if this happened at shorter timescales, the qualitative similarity

between the evolution of the two events suggests that they might be due to the same mechanism.

On the other hand, the radius of ASASSN-15lh is larger by a factor of about seven, and ASASSN-
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14ae has a much stronger Hα line (Supplementary Figure 1).

By integrating the bolometric luminosity, we estimate that ASASSN-15lh had radiated a to-

tal of 1.88 ± 0.19 × 1052 erg (depending on the assumed bolometric correction) up to 25 May

2016 (day +288). Including kinetic energy, which can reach an additional 1052 erg for SLSNe15, 25,

the total energy budget approaches the theoretical limit of that which SN explosions models can

accommodate26, 27. It is possible that UV rebrightening could occur in a SLSN, due to either strong

circumstellar interaction or the ionization breakout powered by a central magnetar. However, the

observed Hα line is much weaker than those in SLSNe that have shown signs of late interaction28

(Supplementary Figure 1), and there are no features indicative of interaction in the UV spectrum.

In addition, predictions for ionisation breakout suggest that the spectrum should turn nebular26,

although this might apply better to an X-ray rather than a UV breakout. Nevertheless, no detailed

model has yet been calculated that can naturally explain the entire spectroscopic and photometric

properties observed, either in the SN or in the TDE scenario. A single epoch of imaging po-

larimetry with HST shows low levels of polarisation18, similar to that obtained for a SLSN29, and

suggesting an only mildly asymmetric geometry (in projection). Polarisation measurements and

predictions for optical TDEs are still lacking.

Strong evidence for ASASSN-15lh being a TDE comes from its environment. H-poor SLSNe

are found in blue, metal-poor dwarf galaxies with average masses of log10 M⋆ = 8.24 ± 0.58

M⊙, and none have yet been found to exceed 9.60 at z < 1 10, 11. These galaxies typically have

strong emission lines, pointing to active ongoing star formation and young progenitor ages that
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do not exceed a few Myr11. In contrast, the host of ASASSN-15lh is a massive and passive red

galaxy. By fitting the available photometry (see Methods), we estimate that the mass of the host

is log10 M⋆ = 10.95+0.15
−0.11 M⊙, with a dominant stellar population of age 3.9+3.2

−1.3 Gyr. The spectral

energy distribution (SED) fit provides a star formation rate (SFR) of 0.05+0.15
−0.05 M⊙ yr−1, consistent

with the improved limit on SFR of < 0.02 M⊙ yr−1 that we obtained from our highest signal-to-

noise spectrum. The derived specific star formation rate of log sSFR < −12.5 yr−1 is thus three

orders of magnitude lower than in any H-poor SLSN host (Supplementary Figure 7). Furthermore,

the transient is positionally coincident with the nucleus of its host. By aligning postdiscovery

HST Advanced Camera for Surveys (ACS) images with a prediscovery image taken with the Cerro

Tololo Inter-American Observatory 4 m Dark Energy Camera (Supplementary Figure 8), we were

able to improve the positional accuracy7 of ASASSN-15lh by a factor of about four, corresponding

to a projected nuclear offset of 131± 192 pc.

It has been argued that the large host galaxy mass may imply the presence of a supermassive

black hole (SMBH) that is too large to disrupt stars outside its event horizon7. Since the tidal

radius scales as Rt ∝ M
1/3
• while the gravitational radius scales as Rg ∝ M•, stars can only be

disrupted outside the horizon of a SMBH if the black hole is below a certain size, the Hills mass2

MH. Larger SMBHs swallow stars whole. For a non-spinning Schwarzschild SMBH, the Hills

mass is MH ≈ 9 × 107M⊙r
3/2
⋆ m

−1/2
⋆ , where m⋆ ≡ M⋆/M⊙ and r⋆ ≡ R⋆/R⊙ (see Methods).

Using an empirical relationship between SMBH mass and total stellar mass for elliptical and spi-

ral/lenticular galaxies with classical bulges12, we find log10 M• = 8.88 ± 0.60 M⊙, far above the

Schwarzschild Hills mass for solar-mass stars. Using an M• −L relation for early-type galaxies13,
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we obtain log10 M• = 8.50 ± 0.52 M⊙. However, MH increases by almost an order of magnitude

for rapidly spinning Kerr SMBHs and favorable orbital orientations14. For an optimal (prograde

equatorial) orbit and our range of SMBH mass estimates, we find that a solar-mass star can be

disrupted by a SMBH with dimensionless spin parameter a• = 0.68 if log10 M• = 8.28 M⊙, and

by a SMBH with dimensionless spin parameter a• = 1 if log10 M• = 8.86 M⊙. We show the

exact relativistic MH(a•) in Figure 4. For stars less massive than the Sun, the spin is constrained

to even higher values. ASASSN-15lh could be compatible with a TDE by a Schwarzschild SMBH

provided M⋆ & 3M⊙. However, the typical tidally-disrupted star comes from the lower end of

the stellar mass function, and this hypothesis is further challenged by the old age of the galaxy’s

stellar population30, 31. Observations of active galactic nuclei suggest that rapid SMBH spins are

common32. We demonstrated here that TDEs present a method to probe the SMBH spins of qui-

escent galaxies. Given the inferred rapid spin of the SMBH, the fact that we did not detect a jet at

radio wavelengths implies that black hole spin alone is not sufficient to launch powerful jets (see

Methods).

The luminosity and energetics of ASASSN-15lh are also explained by a particularly massive

SMBH. The expected radiative efficiency of accretion increases from η ≈ 0.05 (for a Schwarzschild

SMBH) to η ≈ 0.42 for a rapidly spinning SMBH disrupting stars on prograde, near-equatorial

orbits. A particularly massive SMBH is further biased towards disrupting the most massive stars

near the main sequence turn-off mass, increasing accretion rates and total energy release. Finally,

it is known that most TDEs only release a small fraction of ηM⋆c
2 in accretion power (the so-

called “missing energy problem” 30, 33). One compelling explanation for this is that circularization
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of debris and formation of the accretion disk is mediated by relativistic apsidal precession, and

that the majority of TDEs circularize inefficiently due to weak apsidal precession34. For a particu-

larly massive fast-spinning SMBH, efficient circularization is favoured because Rt ∼ Rg, ensuring

large per-orbit precession. The peculiar light curve may also be a natural consequence of tidal

disruption by extremely massive black holes. In Methods we combine two competing models

(the “circularization”33 and the “accretion/reprocessing” 35 paradigms) for the optical emission in

TDEs and show that the most massive SMBHs produce an unusual hierarchy of tidal disruption

timescales. Since the viscous time in the accretion disk is much longer than the debris fallback

time when M• is greater than a few times 107M⊙, TDEs around the most massive SMBHs can

display an early peak in the light curve from circularization luminosity, and a second peak from

reprocessed accretion luminosity.
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Figure 1 | Spectral sequence of ASASSN-15lh showing three spectroscopic phases.

a, The main spectral features during the different phases are highlighted with different

colours. The two most recent spectra appear redder due to the increased host contami-

nation. Rest-frame phases are indicated, the spectra have been offset for clarity and the

Earth symbol marks the strongest telluric features. b, Detection of Hα (FWHM ∼ 2, 500 km
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s−1) in a telluric-free region of our best spectra. The magenta line is a telluric spectrum.
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Figure 2 | The light curve evolution of ASASSN-15lh in the rest frame. The data

are from LCOGT (gri) and Swift (other filters), supplemented by the ASASSN V -band

data7. We have adopted a peak time at 5 June 2015 (MJD 57178.5)7. The light curves

are shifted for clarity as indicated in the legend. Error bars represent 1σ uncertainties.

The optical bands show a monotonic decline, but the UV bands show a rebrightening

after 60 rest-frame days. A significant secondary dip is also observed in the bluest bands

19



around day +120. The photometry has been corrected for foreground extinction and the

host contribution has been removed (see Methods).
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Figure 3 | The evolution of the temperature, radius and luminosity of ASASSN-

15lh, compared with TDEs6 and SLSNe17, 22, 23, 24. The coloured areas correspond to

the different spectroscopic phases in Figure 1. For ASASSN-15lh (data in black), open

symbols show fits based on fewer than five filters. In particular, open hexagon symbols

show early data, based only on the V band and derived with a temperature prior7. Error
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bars represent 1σ uncertainties. The curves are shown with respect to peak time and

some comparison objects have been scaled as indicated in the legend. a,b, The evolution

of the temperature (a) and radius (b) of ASASSN-15lh are qualitatively similar to those of

the TDE ASASSN-14ae, although this is happening in longer timescales and larger radii.

All types of SLSNe cool down with time. c, The bolometric luminosity of ASASSN-15lh

shows an extended plateau between 70 and 160 days.
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Figure 4 | The Hills mass MH as a function of SMBH spin a• for main sequence

stars of different masses. The SMBH mass estimate12 for the host of ASASSN-15lh

and the corresponding 1σ uncertainty region are shown as dashed lines and grey shading.

The plot shows that a star of mass 0.1M⊙ cannot be disrupted by the SMBH, as the Hills

mass is always below the mass of the SMBH. Stars of mass 0.3M⊙ and 1M⊙ can be

disrupted by rotating Kerr black holes of different spins. Only stars of mass 3M⊙ lie in

the allowed region for TDEs from a non-rotating Schwarzschild black hole, but TDEs from

such stars are unlikely30, 31.
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Methods

We describe here the data, methods and theoretical calculations used. We provide details on the

localization of ASASSN-15lh and on the host galaxy properties. We present the different data used,

and describe the reductions and comment on the implications. Finally, we demonstrate that a TDE

can easily accommodate the luminosity and energetics of ASASSN-15lh, we show that combining

two luminosity mechanisms for TDEs can result in light curves with two different timescales and

we present our derivation of the relativistic Hills mass as a function of the SMBH spin. We assume

a Planck cosmology36.

Astrometric localisation of ASASSN-15lh HST observations of ASASSN-15lh were obtained

under programme 14348 (PI: Yang) with ACS and a broad-band polarimetry filter (POL0V) and

the F606W filter. All analyses were performed on the reduced drizzled image obtained from the

MAST archive. The image was taken on 2015 August 3, and the total exposure time for this

frame was 366 s. The DECam image was a 90 s image taken on 2014 October 22 using an r-band

filter. The DECam data were reduced using the DES Data Management Pipeline and are available

online37. The measured FWHM was 0.8′′.

Eight sources common to both the DECam and ACS images were used to derive a geomet-

ric transformation (allowing for rotation, translation and a single scaling factor) between the two

frames. Of these sources, five were unresolved in the ACS image and the remaining three had a

FWHM of less than about twice that of the point sources. The root mean square error error in the

transformation was 0.19 DECam pixels, or 52 mas. To measure the position of the host galaxy in
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the DECam frame, we fitted a model galaxy profile using the GALFIT code; uncertainties in the

galaxy centroid were estimated to be only a few ×0.01 pixels from Monte Carlo tests. The posi-

tion of ASASSN-15lh on the ACS image yields an accuracy of 0.05 pixels (or 3 mas) using three

different centering algorithms within the IRAF PHOT package.

The host galaxy To derive the physical properties of the host galaxy of ASASSN-15lh through

modeling of its spectral energy distribution (SED), we used grizY 37, J and Ks
38, as well as

3.4µm and 4.6µm WISE photometry. We also performed aperture photometry on GALEX images

yielding no significant detections.

We fitted the Galactic extinction-corrected39 photometry of the host with stellar population

synthesis models40 using the code Le Phare41, 42. Our galaxy templates were based on a Chabrier

initial mass function43, and spanned different stellar metallicities, e-folding timescales τ (0.1 to 30

Gyr), stellar population ages (0.01 to 10 Gyr) and dust attenuations44. The galaxy stellar mass and

SFR are log10 M⋆ = 10.95+0.15
−0.11 M⊙ and 0.05+0.15

−0.05 M⊙ yr−1, respectively. Physical parameters are

given as the median of the probability distribution of all templates, with error-bars containing the

1σ probability interval. The best fit model is shown in Supplementary Figure 6 and it has a low

E(B − V )host = 0.02 mag. Throughout the paper, we assume that the extinction at the host is

negligible.

We also constrain the recent star formation in the host by placing limits on the flux of [O II]

and (narrow) Hα. Using the FORS2 spectra (signal-to-noise ratio > 200) we obtain flux limits of

< 1.8× 10−16 erg s−1 cm−2 for [O II] and < 2.9× 10−17 erg s−1 cm−2 for Hα (2σ). These limits
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constrain the SFR to < 0.25 and < 0.02 M⊙ yr−1 respectively45, 43, an improvement by a factor of

ten over previous estimates7.

HST UV spectroscopy A UV spectrum of ASASSN-15lh was obtained on day +168 with HST

under program 14450 (PI: Brown). We downloaded the reduced COS and STIS spectra from

the MAST archive. The spectrum does not display any broad emission or absorption features

(at similar phases the optical spectrum is also mostly featureless; Figure 1). We identified both

geocoronal and absorption lines at z = 0 and a number of narrow (FWHM ∼ 200 − 400 km

s−1) absorption features at the redshift of ASASSN-15lh. Supplementary Figure 4 shows the COS

spectrum (the STIS spectrum is more noisy and less interesting). Supplementary Table 1 contains

the EWs and kinematical offsets (measured relative to Ly-α) for lines that were detected, as well

as selected limits.

Low-ionisation features, such as Fe II and Si II, which are common in the star-forming sight-

lines of SLSNe46 or GRBs47, 19 are weak or absent in ASASSN-15lh. In contrast, absorption from

high ionisation lines from N V and O VI is remarkably strong, especially relatively to the (weak)

Ly-α. In particular, the ratio of N V to Ly-α is ∼4, while it is >1,000 lower in GRBs. The

same is true for column densities: by Voigt profile modelling, we derived N(H I) = 14.73± 0.12,

N(O VI) = 15.58± 0.03, N(N V) = 15.42± 0.06 and N(C IV) = 14.60± 0.27, resulting in ratios

that are highly unusual for GRB or Quasar DLAs48, 49, even if those values are lower limits due to

saturation. The ratio of N V to Ly-α was also observed to be of the order of unity in the spectrum of

ASASSN-14li, the only UV spectrum of a TDE9. By complementing our measurements with those

from optical spectra7, we found that the Mg II absorption is weak, below the value for GRBs47, 19
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and SLSNe46.

Therefore we suggest that the absorbing gas can be separated into two components: (1) a

tenuous mildly-ionised medium (Ly-α, Mg II, Si III at velocities from 0 to +44 km s−1), which is

very unusual given the lack of Fe II and Si II, and (2) a highly-ionised medium (N V, O VI and

C IV) at negative velocity offsets −80 to −120 km s−1. We suggest that the latter is consistent

with material from a disrupted low-mass star50, 9 and that it is ionised by the TDE. Despite the

absence of broad features, the phenomenological similarity with the UV spectrum of ASASSN-

14li strongly favours a TDE origin for ASASSN-15lh. A highly-ionised outflow was also detected

for ASASSN-14li in X-rays51.

Optical spectroscopy Spectra were obtained with the instruments and set-ups listed in Supple-

mentary Table 2. The FLOYDS, WiFeS and EFOSC2 data were reduced using dedicated instru-

ment pipelines 52, 53, 54. The VLT+FORS2 and Magellan+IMACS spectra were reduced in the

standard fashion using IRAF. The FORS2 spectra were obtained in spectropolarimetric mode, but

the ordinary and extraordinary rays were combined to produce an intensity spectrum.

Imaging and removal of the host contribution The LCOGT gri images were pre-processed

using the Observatory Reduction and Acquisition Control Data Reduction pipeline55. To remove

the host contribution, we performed image subtraction using the pre-discovery DECam gri images

as templates. The Swift UVOT observations were reduced following the standard procedures and

software (UVOTSOURCE). To extract the photometry, we used a 4′′ aperture and a curve of growth

aperture correction. For the Swift filters we did not have pre-discovery observations, and hence
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used the model galaxy spectrum from the SED fit (Supplementary Figure 6) to generate synthetic

magnitudes at these wavelengths. For the B and V filters, where host contamination is a concern,

we estimated the host uncertainty to be < 0.05 mag, increasing to 0.1 mag for the U band. The host

uncertainties in the UV filters are more significant, but at these wavelengths the host is many orders

of magnitude below the transient luminosity. In the AB system we obtained host magnitudes of

V = 18.98, B = 20.43, U = 21.95, UV W1 = 23.21, UVM2 = 23.65 and UVW2 = 23.62 mag,

which we subtracted from the Swift measurements to obtain the transient photometry. Two UVOT

filters suffer from a red leak but this does not affect blue sources as ASASSN-15lh to the same

degree as e.g. SNe Ia56. Based on synthetic photometry of black-body spectra, we estimated that

the photometry is affected by < 2% for a black body with T = 15, 000 K. As this precision is

significantly lower than our photometric accuracy, we did not attempt to correct for this effect.

Another study18 has found higher values – but still low – for this maximum contamination.

Radio and X-ray observations We observed ASASSN-15lh from 05:00 to 14:00 UT on 9 Decem-

ber 2015, using the Australia Telescope Compact Array in 750C configuration, under project code

CX340. We observed in two frequency bands of width 2.048 GHz, centered at 5.5 and 9.0 GHz.

We used B1934-638 as both our flux and bandpass calibrator, and B2205-636 as our phase calibra-

tor. We reduced the data following standard procedures in Miriad57, and carried out the imaging

and self-calibration using the Common Astronomy Software Application58.

The field was dominated by PKS J2203-6130, a 9-mJy source (prior to primary beam correc-

tion) located 15 arcmin away from the target. We performed self-calibration, initially in phase only

(down to a timescale of 2 min), and eventually in amplitude and phase, on a timescale of 10 min.
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Given the non-uniform uv-coverage, we tested a variety of image weighting schemes, and found

the optimum to be a Briggs robust weighting of 0.5. ASASSN-15lh was not detected down to 3σ

upper limits of 25 and 23µJy beam−1 at 5.5 and 9.0 GHz, respectively, consistent with a reported

upper limit from three weeks earlier59. Stacking our two frequency bands gave us a slightly deeper

3σ radio upper limit of 17µJy beam−1.

The XMM–Newton satellite observed ASASSN–15lh as part of a Directors Discretionary

Time proposal on 18 November 2015. The on–source time is 11.9 ks, and after filtering epochs of

high background, 9 ks of MOS2, and 4 ks of PN data can be used. Given the lower background and

the longer net exposure, we used the MOS2 detector for estimating the upper limit on the source

flux. In an aperture of radius 32” centred on ASASSN-15lh we derived a 95% confidence upper

limit60, 61 of 11 source counts in the 0.15–1 keV band. To convert this to a limit on the flux, we use

a temperature of 70 eV found for ASASSN–14li as input, which taking into account that the M• in

ASASSN–15lh is close to 8×108 M⊙, and that of ASASSN–14li is closer to 2×106 M⊙, implies

a blackbody temperature of 18 eV (as T ∝ M−0.25). With this and NH=3×20 cm−2 W3PIMMS

provides a 95% upper limit to the 0.3–1 keV X–ray flux of 2×10−16 erg cm−2 s−1, yielding an

upper limit to the source luminosity of 3×1040 erg s−1. This limit depends strongly on the chosen

energy band. The 0.3–1 keV band was chosen to allow comparison with ASASSN-14li62.

If TDEs do in fact all produce radio jets, as suggested by the recent detection of ASASSN-

14li62, then applying the same model with appropriate scalings would predict a radio flux of 10µJy

at the time of the observations. The fact that we did not detect a radio jet therefore remains

consistent with a TDE origin for ASASSN-15lh, and implies that the jet power of ASASSN-15lh
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is νLν . 1038 erg s−1, which is at least 2-3 orders of magnitude lower than that of the relativistic

TDE Swift J1644+5763. This difference was probably caused by a combination of misalignment

of the jet axis and the line of sight (consistent with our non-detection of X-ray) and differences

in accretion flow geometry, interstellar medium density or magnetic field strength64. If black hole

spin were the dominant factor in setting jet power, we would have expected ASASSN-15lh to host

a jet at least comparable in strength to ASASSN-14li (as we have inferred a high black hole spin

for ASASSN-15lh). Given that our upper limit is close to the ASASSN-14li model prediction, this

jet should have been detectable unless the spin of ASASSN-15lh is significantly less than we have

inferred, the ISM density is extremely low, or the SMBH in ASASSN-14li is also rapidly spinning.

Tidal Disruption Luminosities and Energetics In Newtonian theory, a star with mass M⋆ ≡

m⋆M⊙ and radius R⋆ ≡ r⋆R⊙ will be tidally disrupted when it approaches an SMBH of mass

M• ≡ M810
8M⊙ within a distance:

Rt = R⋆

(

M•

M⋆

)1/3

(1)

Stars passing within this tidal radius can create a luminous electromagnetic flare provided Rt &

RIBCO, the location of the innermost bound circular orbit (IBCO) for the SMBH. This occurs for

SMBHs smaller than the Hills mass2,

MH ≡ 9× 107M⊙r
3/2
⋆ m−1/2

⋆ (2)

Once the star has been disrupted, half of its gas is unbound from the SMBH; the other half remains

bound with a characteristic spread in specific orbital energy 65, 66

∆ǫ =
GM•R⋆

R2
t

(3)
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If we assume a top-hat distribution of debris energy, then the fallback time (in units of seconds) for

the most tightly bound debris is

tf = 3.5× 107 M
1/2
8 m−1

⋆ r3/2⋆ (4)

which gives a peak fallback rate

Ṁp

ṀEdd

= 0.13η−1M
−3/2
8 m2

⋆r
−3/2
⋆ (5)

where η = 0.1η−1 is the radiative efficiency of accretion used to calculate the Eddington-limited

mass inflow rate ṀEdd. The peak bolometric luminosity is

Lp = 1.9× 1045η−1M
−1/2
8 m2

⋆r
−3/2
⋆ erg s−1 (6)

which is easily compatible with our observations for m⋆ = 1 and η = 0.42, appropriate for Kerr

black holes. The radiated bolometric energy is

Erad = 8.9× 1052 η−1m⋆ erg (7)

ASASSN-15lh, although extreme as a SN 26, 27, 67, 68, 69, does not strain the theoretical luminosity

or energy budgets of TDEs.

Tidal Disruption Flare Timescales Existing observations do not yet distinguish between two

competing theories for producing TDE optical emission. In the accretion/reprocessing paradigm,

the bolometric luminosity of a compact (∼ 10Rg), efficiently circularized accretion disk is inter-

cepted by an optically thick screen of gas at larger scales (∼ 103Rg). This reprocessing layer

may be a slow outflow from the disk 70, or a more hydrostatic configuration 71, 35, 72. However,
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in both cases it absorbs and re-emits a large fraction of the disk bolometric luminosity at longer

wavelengths. Both cases predict a larger reprocessing layer for larger SMBHs: outflow velocities

vw ∼
√

GM•/Rt ∝ M
1/3
• , or, if we assume that a hydrostatic reprocessing layer exists at scales

comparable to the semimajor axis of the most tightly bound material, its size is proportional to

M
2/3
• . Alternatively, in the circularization paradigm, observed optical emission arises from shocks

between debris streams33, which thermalize and radiate stream kinetic energy at the (generally

large) stream self-intersection radius.

The efficiency of circularization (and therefore Ṁp) depends sensitively on the dimensionless

orbital pericenter Rp/Rg: small decreases in Rp quickly move the self-intersection point inward,

increasing circularization efficiency 73, 74. The low luminosities seen in many optically-selected

TDEs may reflect that most TDEs have sub-relativistic pericenters and circularize inefficiently, so

that their peak luminosity is ≪ ηṀpc
2 34.

For an extremely massive SMBH with M• ≈ MH, all TDE pericenters are highly relativistic

and circularization is maximally efficient (except possibly if the SMBH spin is rapid and strongly

misaligned75, 76). Stream self-intersection points will be ∼ Rp, near the IBCO 34, so the circular-

ization and accretion power will be comparable. It is therefore natural to expect that TDEs from

the most massive SMBHs will be brighter and able to attain their theoretical peak luminosity, while

smaller SMBHs will often produce TDEs that (due to inefficient circularization) have luminosities

well below the peak theoretical luminosity.

We propose that the two peaks in the ASASSN-15lh light curve correspond to two different
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energy sources: the circularization luminosity, and the accretion luminosity. The former evolves

on the fallback timescale tf while the latter evolves on a viscous timescale,

tv =

√

8R3
p

GM•

α−1

[

H(2Rp)

2Rp

]−2

(8)

where we have assumed that the disk outer edge is 2Rp, α < 1 is the usual Shakura-Sunyaev

viscosity parameter, and H/R is the disk aspect ratio. For standard TDEs, these two sources of

luminosity are difficult to disentangle, because tv ≪ tf
77, 78: as soon as matter circularizes into a

disk, it drains rapidly into the SMBH, and the two sources of luminosity rise and fall together.

However, for very massive SMBHs, Ṁp < ṀEdd and the accretion disk will be geometri-

cally thin, dramatically increasing tv and producing an inverted timescale hierarchy: tv & tf . The

circularization luminosity can be released promptly, but accretion luminosity will be bottlenecked

by the long tv. The range of inferred SMBH masses for ASASSN-15lh yield Ṁp . ṀEdd (un-

like for most other TDE hosts), so it is natural to expect two power sources - circularization and

accretion - to have two different peaks.

The characteristic decay time of the first peak will be ∼ tf , while that of the second will be

tv, which is a sensitive function of α and H/R. Plausible parameter choices (e.g. M• = 108M⊙,

α = 0.1, H/R = 0.03) give tv ∼ 6 months, in agreement with the observed second component

of the light curve. However, the first component of the light curve decays on a timescale of ∼ 1−

2 month, unlike the Newtonian estimate of equation 4: tf ≈ 1 yr. In the following subsection, we

argue that general relativity effects can increase ∆ǫ in TDEs with extremely relativistic pericenters,

substantially reducing tf for this subset of TDEs.
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Relativistic Alterations to the Fallback Time Highly relativistic tidal disruption will alter the

Newtonian ∆ǫ. The frozen-in energy spread ∆ǫ can increase by a factor up to
√
2 (ref. 79), de-

creasing tf and increasing Ṁp modestly. However, ∆ǫ may increase further by modest spin-orbit

misalignments in a TDE for sufficiently relativistic pericenters 66. Here, we argue that this effect

can strongly reduce the fallback time from the Newtonian estimate of equation 4.

The extremity of a TDE is quantified not just by B ≡ Rp/Rg, but also by the penetration

factor β ≡ Rt/Rp. TDEs with a large β will strongly compress the star orthogonal to the orbital

plane, causing a vertical collapse with velocity vz ≈ β
√

GM⋆/R⋆. The collapse is reversed near

pericenter, once internal pressure in the disrupted star builds up to the point where it “bounces”

along this vertical axis80, receiving an almost impulsive hydrodynamic kick ≈ vz along the di-

rection of collapse. The bounce typically has little effect on the energy spread of the debris65, 73,

despite the fact that Vpvz & ∆ǫ for large β or small B (here Vp is the orbital velocity at pericenter).

One could define a hydrodynamic component of the energy spread, ∆ǫh ≡ ~Vp · ~vz = Vpvz cos θ,

but in standard TDEs the misalignment angle θ = π/2.

However, for very low B, modest spin-orbit misalignment will precess the orbital plane as

the star passes through the tidal sphere, partially aligning the axis of vertical collapse with the

orbital velocity vector. The per-orbit precession in the line of ascending nodes for a parabolic orbit

is81:

δΩ =
√
2πa•

(

Rg

Rp

)3/2

(9)

at leading post-Newtonian order. Since most of this shift occurs near pericenter, we approximate

the rotation in the line of ascending nodes between Rt and the bounce (near Rp) as δΩ/2. The

34



misalignment angle is θ (cos θ ≈ δΩ
2
sin I), where I is the misalignment between spin and orbital

angular momentum. Defining a total energy spread ∆ǫtot ≡ ∆ǫ+∆ǫh, we find (Stone, Kennon, &

Metzger, manuscript in preparation):

∆ǫtot = ∆ǫ(1 + a•β
3/2B−3/2 sin I) (10)

The above arguments are approximate, as the post-Newtonian approximation begins to break

down for Rp ∼ Rg, and we have treated the bounce hydrodynamics impulsively. A detailed

examination of this spin-orbit coupling is beyond the scope of this paper, but order unity increases

in ∆ǫ and decreases in tf ∝ ∆ǫ3/2 are expected for TDEs around SMBHs with a• ≈ 1 and B ∼ 1.

Relativistic Calculation of the Hills Mass Some of the previous Newtonian estimates break down

when the star’s orbital pericenter Rp ∼ Rg. In this regime, general relativistic effects are crucial for

proper modelling of the Hills mass82, 14. The increased MH arises from two different effects: first,

a large a• will lower the IBCO radius significantly, and second, the Kerr tidal field is somewhat

stronger than the Schwarzschild equivalent.

To calculate MH(a•), we employ Fermi normal coordinates to write a local, fully general

relativistic tidal tensor83. We then employ the accepted formalism14 to estimate relativistic Hills

masses. The results are shown for equatorial orbits (that maximize MH) in Figure 4, where we see

that the relativistic Kerr MH can be almost an order of magnitude greater than the Newtonian (or

Schwarzschild) equivalent.
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Data Availability Statement The photometry and spectra of ASASSN-15lh supporting the find-

ings of this study are available from WISeREP84 (http : //wiserep.weizmann.ac.il/)
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Supplementary Figure 1 | Spectroscopic comparison of ASASSN-15lh with SLSNe and

TDEs. The left panels compare spectra of ASASSN-15lh at different phases with those of SLSNe17, 85, 28.

The right panels compare the same spectra with TDEs5, 6, 86. At early times (a), ASASSN-15lh

looks indeed similar to SLSNe7 but lacks a strong O II feature. The later spectra (b,c) are very dif-

ferent from those of SLSNe and even at +257 days ASASSN-15lh is purely continuum-dominated
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without any nebular features or signs of strong circumstellar interaction, such as in PTF13ehe28.

Despite the differences with TDE spectra (d,e,f) there are also similarities, especially with TDEs

showing blueshifted He II (e), or even with the early spectrum of ASASSN-14ae (d). ASASSN-15lh

has H (Figure 1), but it is weaker than in ASASSN-14ae.
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Supplementary Figure 2 | The early phases of ASASSN-15lh. (a) Modelling the spectra

with SYNOW87 and O II as in SLSNe8, 15 is not possible as a strong feature at ∼4400 Å is in-

evitable. A tentative identification of the strongest feature at ∼4100 Å is Mg II, which however

produces additional strong features in the UV. Such features (transient in nature) have been ob-

served in a TDE candidate88 and cannot be ruled out for the early phases of ASASSN-15lh, based

on the available spectra. The use of SYNOW in this case is purely illustrative, as this code has

not been made to model TDEs. (b) Velocity evolution of the absorption at ∼4100 Å assuming it

is Mg II. Another possibility for this feature is that it might be due to high-velocity He II16. In this

case, the velocities are larger by ∼12,000 km s−1.
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Supplementary Figure 3 | Detection of H and possible detection of transient He in the

spectra of ASASSN-15lh. (a) Hα at representative epochs. The line is weak and the detection

significance varies with signal-to-noise (see also Figure 1). However, there is no measurable
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evolution in its strength (EW ∼ 4− 8 Å), and its presence cannot be excluded in any spectrum. (b)

The profiles of the lines identified as blueshifted He II at +57 and +75 days.
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Supplementary Figure 4 | An ultraviolet spectrum of ASASSN-15lh obtained with HST +COS

at 168 rest-frame days past maximum. We identify both local geocoronal lines (marked with

green) and narrow absorption features associated with ASASSN-15lh at z = 0.2326 (red). Detec-

tions (marked with red solid lines), include Ly-α, Ly-β, Si III, C IV, and, notably, N V and O VI. The

most prominent lines that are not detected are marked with a red dashed line.
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Supplementary Figure 5 | The colour evolution of ASASSN-15lh. We show optical colours

with respect to g in panel (a), different UV and UV−optical colours with respect to U in panel (b),

and UV colours with respect to UVW2 in panel (c). Errorbars represent 1σ uncertainties. Most
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colours show a significant evolution to the red, peaking at 60 days past-maximum and correspond-

ing to the UV minimum in Figure 2. Subsequently, the UV colours get bluer again. All colours

remain fairly constant after day +100 and for a period of over 120 days.
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Supplementary Figure 6 | SED fit for the host galaxy of ASASSN-15lh. To perform the

fit we are using the code Le Phare and photometric data all the way from the far-UV (GALEX)

to the mid-IR (WISE). Shown is the best-fitting template (reduced χ2 = 0.998). The GALEX non-

detections are shown here with the nominal SExtractor photometry errors.
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Supplementary Figure 7 | The properties of the host galaxy of ASASSN-15lh compared

to those of SLSNe10, 11 and TDEs5, 6, 89, 86. For comparison, we show the general galaxy popu-

lation at z < 0.4 from UltraVISTA and we have drawn lines of equal specific SFR. The location of

ASASSN-15lh clearly stands out from those of SLSNe that are found in dwarf star-forming galax-

ies on or above the main sequence of star formation. The separation of ASASSN-15lh is 3 orders

of magnitude in terms of specific SFR. At the same time, the host is significantly more massive

from those of most optical TDEs, suggesting a large SMBH mass.
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Supplementary Figure 8 | The localisation of ASASSN-15lh in the nucleus of its host

galaxy. On the left is an HST image of ASASSN-15lh obtained at day +47. On the right is a

DECam image from October 2014, several months before the transient appeared. The sources

used to derive the geometric transformation between the frames are marked with blue squares.

The inset shows a zoom in to the host together with a GALFIT model and the residual from the

model fit. ASASSN-15lh has an offset of 36 ± 53 mas from the nucleus and it is thus consistent

with the location of the central SMBH.
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Line λobs (Å) offset (km/s) a EW (Å) EWGRB
b (Å) EWSLSN (Å)

O VI 1031 1271.57 −80 ± 12 1.97 ± 0.26 – –

O VI 1037 1278.55 −80 ± 12 1.57 ± 0.24 – –

S III 1206 1487.26 +44 ± 22 0.79 ± 0.26 – –

Ly-α 1498.26 0± 12 1.15 ± 0.32 73.0 –

N V 1238 1526.50 −117 ± 12 1.97 ± 0.41 0.14 –

N V 1242 1531.26 −117 ± 12 2.07 ± 0.43 0.07 –

Si II 1259 – – < 1.73 1.26 –

Si II 1304 – – < 2.21 2.29 –

C II 1334 – – < 2.56 1.73 –

Si IV 1393 – – < 2.75 0.95 –

Si II 1527 – – < 6.7 0.93 –

C IV/C IV 1548 – −204 ± 92 3.08 ± 2.35 2.18 –

Fe II 1608 – – < 24.0 0.85 –

Fe II 2382 – – < 1.31 1.65 0.35 ±0.03 c

Fe II 2600 – – < 3.65 1.85 0.29 ±0.03 c

Mg II 2796 3445.67 +8 ± 8 0.50 ± 0.05 1.71 2.6± 1.2 d

Mg II 2803 3454.46 +14 ±10 0.38 ± 0.05 1.47 – d

Supplementary Table 1 | Absorption lines in the spectrum of ASASSN-15lh. Upper limits

are 3σ. EWs are in rest-frame. Notes: a The reference velocity was set to Ly-alpha (z = 0.23253).

b Based on a high S/N composite GRB afterglow spectrum47. Typical error for weak lines is 0.02 Å.

c Based only on PTF13ajg46. d Total value for the doublet, based on a sample of 13 events46.
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Date (UT) Phase Telescope+Instrument Grism Range (nm)

2015-06-22.7 +14.0 FTS+FLOYDS 325 - 930

2015-06-24.7 +15.6 ANU 2.3m+WiFeS B3000+R3000 350 - 956

2015-07-01.6 +21.2 ANU 2.3m+WiFeS B3000+R3000 350 - 956

2015-07-08.7 +26.9 ANU 2.3m+WiFeS B3000+R3000 350 - 956

2015-07-21.3 +37.1 VLT+FORS2 300V 445 - 865

2015-07-31.5 +45.4 ANU 2.3m+WiFeS B3000+R3000 350 - 956

2015-08-14.3 +56.6 NTT+EFOSC2 GR#11+16 334 - 999

2015-09-06.0 +75.0 NTT+EFOSC2 GR#11+16 334 - 999

2015-09-16.1 +83.2 NTT+EFOSC2 a GR#11+16 334 - 999

2015-09-23.2 +89.0 NTT+EFOSC2 GR#11+16 334 - 999

2015-09-25.1 +90.6 VLT+FORS2 300V 445 - 865

2015-10-11.1 +103.6 NTT+EFOSC2 b GR#11 334 - 745

2015-10-13.2 +105.2 NTT+EFOSC2 b GR#16 599 - 999

2015-11-08.0 +126.2 Magellan+IMACS Gri-300-17.5 400-999

2015-11-18.1 +134.3 NTT+EFOSC2 GR#13 365 - 924

2015-12-16.0 +157.0 NTT+EFOSC2 GR#11+16 334 - 999

2016-04-06.3 +248.1 NTT+EFOSC2 GR#11+16 334 - 999

2016-04-15.3 +256.2 NTT+EFOSC2 GR#11+16 334 - 999

Supplementary Table 2 | Log of spectra. Notes: a Low S/N; not used. b Combined to a

single spectrum.
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