
THE POSSIBLE DETECTION OF A BINARY COMPANION TO A TYPE IBN SUPERNOVA PROGENITOR

J. R. Maund
1,7
, A. Pastorello

2
, S. Mattila

3,4
, K. Itagaki

5
, and T. Boles

6

1 Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, UK
2 INAF—Osservatorio Astronomico di Padova. Vicolo Osservatorio 5, I-35122, Padova, Italy

3 Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Väisäläntie 20, FI-21500 Piikkiö, Finland
4 Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, FI-21500 Piikkiö, Finland

5 Itagaki Astronomical Observatory, Teppo-cho, 990-2492 Yamagata, Japan
6 Coddenham Astronomical Observatory, Suffolk IP6 9QY, UK

Received 2016 April 28; revised 2016 August 23; accepted 2016 September 20; published 2016 December 13

ABSTRACT

We present late-time observations of the site of the Type Ibn supernova (SN) 2006jc, acquired with the Hubble
Space Telescope Advanced Camera for Surveys. A faint blue source is recovered at the SN position, with
brightness = m 26.76 0.20F W435 , = m 26.60 0.23F W555 and = m 26.32 0.19F W625 mag, although there is
no detection in a contemporaneous narrow-band aH image. The spectral energy distribution of the late-time source
is well-fit by a stellar-like spectrum ( >Tlog 3.7eff and >L Llog 4), subject to only a small degree of reddening
—consistent with that estimated for SN2006jc itself at early-times. The lack of further outbursts after the
explosion of SN2006jc suggests that the precursor outburst originated from the progenitor. The possibility of the
source being a compact host cluster is ruled out on the basis of the source’s faintness; however, the possibility that
the late-time source may be an unresolved light echo originating in a shell or sphere of pre-SN dust (within a radius
1 pc) is also discussed. Irrespective of the nature of the late-time source, these observations rule out a luminous
blue variable as a companion to the progenitor of SN2006jc.
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1. INTRODUCTION

Supernova (SN) 2006jc is the prototype of the class of
hydrogen-deficient SNe that exhibit prominent narrow lines of
He I in their spectra, the so-called “Type Ibn” SNe (Pastorello
et al. 2008, 2016). SN2006jc also has the distinction of being
the first SN for which a pre-explosion outburst was detected; in
the case of SN2006jc, an outburst was previously identified at
the SN position in 2004—two years prior to the SN itself
(Nakano et al. 2006; Foley et al. 2007; Pastorello et al. 2007).
Outbursts of this sort are usually associated with Luminous
Blue Variables (LBVs), for which eruptions are considered a
natural part of their evolution—albeit, the exact physics
responsible for them is poorly known (Smith 2014). Gal-
Yam & Leonard (2009) first confirmed the presence of a bright,
massive (~ M60 ) LBV-like progenitor in pre-explosion
observations of the Type IIn SN 2005gl. LBVs provide a
natural connection between pre-explosion outbursts and the
creation of dense H-rich circum-stellar envelopes with which
subsequent SNe interact yielding SNe IIn. In contrast, SNe Ibn
require the presence of an He-rich and, generally, H-poor
circumstellar medium (CSM) arising from a Wolf–Rayet (WR)
progenitor undergoing an LBV-like eruption, although this
interpretation has been somewhat questioned with the dis-
covery of a SN Ibn in the outskirts of an elliptical galaxy (and
hence, in a likely old stellar population environment; Sanders
et al. 2013).

So far, about two dozen SNe Ibn have been discovered (see,
e.g., the samples of Pastorello et al. 2008, 2016; Hosseinzadeh
et al. 2016), and no other example has shown an LBV-like
outburst similar to that observed before the explosion of
SN2006jc. In addition, no progenitor of a SN Ibn has ever
been seen in quiescence (Smith 2014) to unequivocally prove

the WR nature of their progenitors. For all these reasons, the
stellar configuration that produced the sequence of events
observed at the location of SN2006jc is still debated.
The most common interpretation for SN2006jc and its

precursor outburst, is that the progenitor was a WR star with
residual LBV-like instability (e.g., Foley et al. 2007; Pastorello
et al. 2007; Tominaga et al. 2008). An alternative scenario,
however, was proposed by Pastorello et al. (2007) for
SN2006jc, invoking a massive binary system to explain the
chain of events that occurred in 2004–2006; an LBV
companion erupted in 2004, whereas it was a WR star that
exploded in 2006 as a normal stripped-envelope SN. None-
theless, this scenario did not comfortably explain the narrow
He I emission features observed in the spectrum of SN2006jc.
Furthermore, if SN2006jc occurred in a massive star forming
region, there was the possibility that the precursor outburst may
have arisen from an LBV-like star in close proximity to the
progenitor, but otherwise unrelated to the explosion.
Here, we present late-time observations of the site of

SN2006jc, to explore the nature of the progenitor systems
responsible for SNe Ibn. SN2006jc occurred in UGC 49048,
for which the corrected recessional velocity is

 -2029 19 km s 1. Assuming = - -H 73 km s Mpc0
1 1, we

adopt a distance of 27.8 1.9 Mpc. SN 2006jc was discovered
by K. Itagaki (Nakano et al. 2006) on 2006 October 9, and
analysis by Pastorello et al. (2007) suggested it was discovered
only a few days after maximum. More recently, an earlier
observation of UGC4904 acquired by K. Itagaki on 2006
October 3 was found, in which SN 2006jc was detected at

= m 13.44 0.27 magR . Comparisons of the lightcurve of
SN2006jc with other SNe with similar decline rates suggests
that SN 2006jc may have exploded on the order of ∼8 days
before maximum (Foley et al. 2007; Pastorello et al. 2007). We
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assume a metallicity for the site of SN2006jc of half-solar, or
Large Magellanic Cloud, abundances following the measure-
ment of Taddia et al. (2015).

2. OBSERVATIONS

The site of SN2006jc was observed at two separate epochs
using the Hubble Space Telescope (HST) with the Wide Field
Planetary Camera 2 (WFPC2) and the Advanced Camera for
Surveys (ACS), and a log of these observations is presented in
Table 1.

The WFPC2 observations from 2008 (or 776 days post-
maximum) were retrieved from the Space Telescope Science
Institute HST archive9, having been processed through the On-
the-fly-recalibration pipeline. Photometry of the WFPC2
observations was conducted using the DOLPHOT package10

(Dolphin 2000), with the WFPC2 specific module. The position
of SN2006jc fell on the Planetary Camera chip, which has a
pixel scale of 0.05 arcsec.

The 2010 observations (1303 days post-maximum) were
acquired using the ´1k 1k subarray of the ACS Wide Field
Channel (WFC) 1. The observations, in each filter, were
composed of four separate dithered exposures to aid in
improving the sampling of the point-spread function (PSF).
The individual exposures were subject to “bias striping noise,”
leading to obvious horizontal stripes across each image (Grogin
et al. 2010). The horizontal noise features were almost
completely removed using the ACS_DESTRIPE_PLUS pack-
age11, running in the PyRAF environment.12 However, at low
levels, some evidence of these stripes is just perceivable in the
corrected images. The observations were then processed and
combined using the ASTRODRIZZLE package13, which also
corrects for the geometric distortion of the ACS WFC cameras.
We found that attempts to decrease the output pixel size to
0.03 arcsec resulted in obvious aliasing patterns in the final
combined images for each filter; therefore, we only drizzled the
observations to a final pixel size of 0.05 arcsec, matching the
original ACS WFC pixel scale. Photometry of the ACS

observations was conducted using DOLPHOT with the ACS
specific module.
For both the WFPC2 and ACS observations, photometric

limits were determined using artificial star tests in which fake
stars were inserted into the images and recovery was attempted
using the same algorithm used for detecting and conducting
photometry on real sources. An artificial star was deemed to
have been successfully detected if it was recovered within
1 pixel of the location at which it was inserted and its measured
brightness was within s1 of the input brightness. The detection
probability, as a function of magnitude, was parameterized as a
cumulative normal distribution.
In order to determine the position of SN2006jc on the HST

observations, we followed the procedure of Mattila et al.
(2008). We measured the position of SN2006jc in a deep 2008
Gemini Near Infrared Imager (NIRI) K-band image (with a
precision of 0.75 pixels). The Gemini NIRI image was aligned
with the 2010 ACS WFC F W555 observation, using N=20
stars, on which we were able to determine the SN location with
a precision of 0.7 pixels or 0.035 arcsec. The position was
further mapped (using N= 17 stars) to the 2008 WFPC2
F W555 observation, with a final uncertainty of 0.8 pixels
(or 0.04 arcsec).

3. RESULTS AND ANALYSIS

The site of SN2006jc in the late-time HST ACS observa-
tions is shown in Figure 1. Although there is a large
concentration of bright sources to the southeast of SN2006jc,
the SN position itself is remarkably isolated. A source is
recovered close to the transformed SN position (with an
offset D =r 0.025 arcsec or 0.5 pixels) in the 2010 ACS
observations with = m 26.76 0.20F W435 ( =S N 5.3),

= m 26.60 0.23F W555 (4.7) and = m 26.32 0.19F W625
(5.8)mag. The values for sharpness and c2 for the PSF-fitting
photometry conducted by DOLPHOT suggested, for each of

Table 1
HST Observations of the Site of SN2006jc

Date Instrument Filter Exposure Program
(UT) Time (s)

2008 Nov 19.9 WFPC PC2 F W555 460 10877a

2008 Nov 19.9 WFPC PC2 F W814 700 10877
2008 Nov 22.0 WFPC PC2 F W450 800 10877
2008 Nov 22.0 WFPC PC2 F W675 360 10877
2010 Apr 30.5 ACS WFC1 F N658 1380 11675b

2010 Apr 30.6 ACS WFC1 F W625 897 11675
2010 Apr 30.6 ACS WFC1 F W555 868 11675
2010 Apr 30.6 ACS WFC1 F W435 868 11675

Notes.
a PI: W. Li.
b PI: J. Maund.

Figure 1. HST ACS WFC observations of the site SN2006jc acquired in 2010.
The three-color image is a composed of the F W435 , F W555 , and F W625
observations and the position of SN2006jc is indicated by the crosshairs. The
image is oriented with north up and east to the left.

9 https://archive.stsci.edu/hst/
10 http://americano.dolphinsim.com/dolphot/
11 http://www.stsci.edu/hst/acs/software/destripe/
12 PyRAF is a product of the Space Telescope Science Institute, which is
operated by AURA for NASA.
13 http://drizzlepac.stsci.edu/
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the three filters, that the late-time source was point-like and not
extended. The source is, however, not significantly detected
( S N 3) in the F N658 observation, which would include
aH emission at the redshift of the host galaxy, to a limit of

= m 24.25 0.05F N658 mag. No source is recovered at the SN
position in the 2008 WFPC2 observations, to limits of

= m 24.88 0.31F W450 , = m 24.40 0.58F W555 , =mF W675
24.00 0.56 and = m 24.00 0.87F W814 mag. A comparison

of the photometry of the late-time source with the color–color
sequence for supergiants, derived using ATLAS9 synthetic
spectra (Castelli & Kurucz 2004, with the parameters for
supergiants suggested by Schmidt-Kaler 1982), and for stellar
clusters using STARBURST99 (Leitherer et al. 1999) is shown
on Figure 2.

Determining the exact nature of the late-time source at the
position of SN2006jc is complicated by the source’s detection
at only one epoch, and at very faint levels. There are a number
of possible scenarios for the origin of this flux, if it is actually
associated with SN 2006jc: brightness arising from the SN
itself at late-times; a light echo; a host cluster; an associated
star; or a spatially coincident, but unassociated star.

Pastorello et al. (2007, 2008), Foley et al. (2007), Immler
et al. (2008), Anupama et al. (2009), and Bianco et al. (2014)
presented optical lightcurves of SN2006jc covering up to
180 day after maximum light, showing the SN 2006jc exhibited
a precipitous decline in brightness (~ -2 mag 100 day 1 in the V-
band). If the light curve decay suddenly flattened at this time,
for SN 2006jc to reach the brightness of the source observed in
2010 would require the decline rate to drop dramatically to

-0.2 mag 100 day 1 (or even lower if the flattening of the

lightcurve occurred later). The lack of a detection of SN2006jc
in the 2008 WFPC2 observations suggests that the rate of
decline observed at 180 days continued at much later epochs.
The last reported three-color photometry of SN2006jc in 2007,
reported by Pastorello et al. (2008), in comparable bands to the
2010 observations, also shows that SN 2006jc becoming redder
in the V−R color, compared to the source recovered in 2010
(see Figure 2). Some caution, however, is required due to the
large uncertainties associated with the later photometry of SN
2006jc and the photometry of the 2010 source. Based on the
red late-time color of SN2006jc, and the severe implications
for a very sudden flattening of the light curve after ~180 day,
we consider it unlikely that the source recovered in the 2010
observations is SN 2006jc.
The point-like nature of the late-time source (FWHM

=2.3 pixel, corresponding to 15.5 pc at the distance of UGC
4904) is evidence against its origin in a light echo arising in an
interstellar dust sheet, because it would require a very specific
configuration of a sheet of scattering dust located immediately
behind SN2006jc. Observations by Smith et al. (2008), Mattila
et al. (2008), and Di Carlo et al. (2008) indicated the presence
of significant dust formation after~70 days, with Mattila et al.
measuring =A 2.8V mag, arising from dust within 1000 au of
the point of the explosion, 230 days post-explosion. Based on
observations at mid-infrared wavelengths, Mattila et al. also
reported the presence of a pre-existing shell of dust extending
to ~1 pc around the progenitor of SN2006jc in which a light
echo might arise and which, at its maximum extent, would
remain unresolved in these late-time observations. At the time
of these observations, however, the light echo would arise
behind SN2006jc, requiring scattering through angles > 90
which is inefficient (Draine 2003).
In addition, the contribution of an optical light echo is

expected to produce a SED that is very close to that of the
SN at early epochs. To assess the likely color of a light
echo, we considered the color of SN 2006jc integrated over the
entire light curve reported by Pastorello et al. (2007) and
Pastorello et al. (2008). We conservatively assume that the
brightness from the time of explosion to the first photometric
measurements, which were only acquired after maximum, is
constant. We find the total integrated color, under these
conditions, to be ~ -B V 0.22– and - ~V I 0.21, which is
consistent with the earliest observed colors of = -B V 0.15–
and =V R 0.1– mag (see, e.g., Pastorello et al. 2007) and
bluer than the photometry of the 2010 source (see Figure 2).
The evolution of the observed color of SN2006jc and other
SNe Ibn (e.g., SN 2010al; Pastorello et al. 2015) suggest,
however, that the SN may have been even bluer prior to the
first photometric measurements, implying that our integrated
color is, in fact, a red limit for the color of a possible light echo.
As evident in Figure 1, SN2006jc occurred in a relatively

sparse area of UGC 4904. In an area within 1 arcsec of the
position of SN2006jc, we find 10 sources recovered with

S N 5, including the source at the SN position. Given the
density of sources within the 1 arcsec area, we estimate the
probability of finding one bright source inside the s1 error
radius on the position of SN2006jc to be 0.01, implying that it
is unlikely to find (by chance) an unrelated source to be
spatially coincident with the SN position.
Overall, given the brightness, colors, and spatial extent of the

late-time source derived from the 2010 ACS observations, the
simplest explanation is that this source is a star and likely to be

Figure 2. A color–color diagram showing the photometry of the late-time
source at the position of SN2006jc (indicated by ★), with respect to the two-
color sequences ( =E B V 0( – ) ) for supergiants (solid grey) in the temperature
range  T3500 50,000 K and STARBURST99 cluster models (dotted dark
grey line) for the age range  t1 300 Myr . Points along the supergiant two-
color sequence delineate 1000 K intervals (as labeled). Also shown, as the
arrow, is the reddening vector corresponding to =A 1V mag. The light gray
point shows the last complete BVR photometric measurement made by
Pastorello et al. (2008) at 109.7 days post-maximum. The dark triangle ()
indicates the color predicted for a light echo, derived from integrated color of
the observed light curve of SN2006jc.
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associated with SN2006jc. Future observations with HST will
be required to confirm the continued presence of this source, if
it is indeed a star. On the color–color plane (see Figure 2), the
position of the late-time source is coincident with the
supergiant two-color sequence for limited reddening. Assuming
a Galactic =R 3.1V Cardelli et al. (1989) reddening, law and
the total extinction—measured toward SN 2006jc at early times
by Pastorello et al. (2007)—of =A 0.15V mag, the corresp-
onding probability density function for the position of the
source on the Hertzsprung–Russell (HR) diagram, in conjunc-
tion with Cambridge STARS models (Eldridge & Tout 2004),
is shown on Figure 3. If no prior is assumed for the reddening,
the colors of the late-time source, assuming a stellar origin,
limit the total reddening to <E B V 0.6( – ) mag. Although the
filter combination used for the 2010 ACS WFC observations
can be used to place a constraint on the degree of reddening
(and, therefore, extinction), it is not a sensitive diagnostic of
stellar temperature at high temperatures. The range of
temperatures and luminosities that can be accommodated by
the observed photometry primarily reflects the large range in
possible bolometric corrections, rather than being due to
uncertainties in reddening. Despite the extent of possible
locations for this source on the HR diagram, we note that this
star is outside the regions associated with S Doradus variables
in either quiescence or outburst (Smith et al. 2004; Vink 2012).

If the late-time source is an unresolved cluster, which might
have hosted the progenitor of SN2006jc, we note that absolute
magnitude of the source, excluding considerations of extinc-
tion, is ~ -M 5.6V , is 3 mag fainter than the suggested
brightness at which unresolved clusters may be confused for

individual stars (Bastian et al. 2005). In comparison with
STARBURST99 models (Leitherer et al. 1999), the colors of
the late-time source are consistent with an unresolved cluster
for ~E B V 0( – ) mag. If SN2006jc occurred in a host cluster,
any extinction that the cluster was subject to would also have
affected the SN at early times—which was not observed. In
addition, there is insufficient time for any dust formed in SN
2006jc to be distributed on spatial scales similar to the typical
sizes of clusters (1 pc Scheepmaker et al. 2007) to extinguish
a host cluster by the time of the 2010 observations.

4. DISCUSSION AND CONCLUSIONS

Based on the properties of the late-time source, we
cautiously conclude that the most likely explanation is that it
is a star and the companion to the progenitor that exploded as
SN2006jc. The exact nature of the star is difficult to constrain,
given the available late-time HST photometry. The fact that the
locus of the star does not correspond exactly with the two
locations in which S Doradus variables are found on the HR
diagram would argue against this star being an LBV, rather
than a normal supergiant. This conclusion is further supported
by the absence of strong aH emission at late-times, as might be
expected of classical LBVs; however, we note that UGC2773-
2009OT and LMC R71 also do not show strong aH at late-
times after outbursts, and the limited depth of the late-time
F N658 observation might not probe weak aH if it were
present.
An important question raised by the possible binary nature of

the progenitor system of SN2006jc—which component was
responsible for the 2004 precursor outburst? The late-time HST
photometry, at the lowest luminosity limit, is consistent with a
~ M10 A-F supergiant (see Figure 3), which would make it
comparable to properties of the progenitors identified for faint
outburst events such as SN 2008S and NGC 300-OT (Prieto
et al. 2008; Berger et al. 2009; Bond et al. 2009; Botticella
et al. 2009; Thompson et al. 2009; Szczygiełet al. 2012), but
still fainter and less massive than the A-to-F-type hypergiant
progenitors of more classical SN impostors (e.g., Smith et al.
2010; Kankare et al. 2015; Tartaglia et al. 2016). In direct
contrast to the former two events, however, there is no evidence
that the late-time source at the position of SN2006jc is
enshrouded in significant quantities of dust. Furthermore, apart
from the precursor and SN 2006jc, at the SN position, there is
no evidence for any significant outburst events after the
explosion of the SN. Long-term monitoring of the site of
SN2006jc, before and after the 2004 outburst and 2006 SN
explosion, is shown in Figure 4. The limited history of
outbursts at the location of SN2006jc would suggest, there-
fore, that any significant variability ended with the SN.
It is interesting to note that the location of SN2006jc is

offset (by ~2 arcsec or a projected distance of ~270 pc) from
the nearest obvious sites containing young massive stars (see
Figure 1). Similar conditions have been observed for the
hydrogen-rich interacting SNe IIn and some LBVs (Smith &
Tombleson 2015); although Humphreys et al. (2016) note that
classical LBVs are found in close proximity to late-type O
stars, whereas non-classical LBVs are found in relative
isolation (this matter was further debated in the exchange
between Smith 2016 and Davidson et al. 2016). The absence of
significant aH emission in the environment of SN2006jc is
also consistent with the observations of Anderson & James
(2008) for the positions of interacting SNe with respect to H II

Figure 3. Hertzsprung–Russell Diagram, showing the position of the late-time
source as derived from photometry of the 2010 ACS WFC observations, under
the assumption that it is a stellar source. The two contours presented contain
68% and 95% of the probability, whereas the red point indicates the most likely
solution. Overlaid are half-solar metallicity Cambridge STARS stellar
evolution tracks. The dark shaded region indicates the locus of binary
companions, at the time of the death of the primary, produced by BPASS
binary stellar evolution models. The light shaded regions are the approximate
locations for S Dor variables (at visual minimum and maximum) derived from
Vink (2012).
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regions. This could support the interpretation of the properties
of the late-time source as a lower-mass star (~ M10 ) that is not
associated with recent massive star formation. The companion
would then have to have been sufficiently close to the
progenitor to interact with it to induce the outburst; however,
the absence of strong H features from the subsequent SN
spectra would require the companion to be sufficiently distant
at the time of explosion (e.g., ~ M0.01 of H in SNe IIb. We
note, however, that Foley et al. 2007; Pastorello et al. 2007 and
Smith et al. 2008 report the emergence of weak aH emission at
∼51 days which could be related to the putative compa-
nion star).

We compared the position of the late-time source on the
HR diagram with the locus of binary companions, at the time
of the explosion of the primary, predicted by Binary Population
and Spectral Synthesis (BPASS14) models (Eldridge &
Stanway 2009), as shown on Figure 3 (see also Eldridge &
Maund 2016). The locus for the companions, generally
following the main sequence and its turn-off, intersects with
the contours for the late-time source at higher masses
( M20 ). If the companion was indeed massive, this would
favor a high-mass WR progenitor. We caution, however, that
this family of models do not predict the progenitor and binary
companion for SN1993J, given the observed constraints on the
binary progenitor system determined by Maund et al. (2004).

Mcley & Soker (2014) present a model whereby an outburst
can be triggered by the interaction of a main sequence
companion star with the extended envelope of an evolved
primary, with eccentric orbits making the outbursts more
extreme. Smith (2011) proposes a similar model; however, it
requires a collision between the two stars to produce an
outburst, which cannot be the case for SN2006jc due to the
persistence of the source at the SN position after the explosion.

An interesting consequence of repeated periastron passages,
noted by Smith (2011), is the removal of H envelope of the
primary and the increasing eccentricity of the orbit, with Smith
specifically noting the case of WR 140. The dependence of the
mass-loss history of the primary on the orbital properties of the
binary system might also explain the evidence for episodic
mass loss in the form of shells of material discernible in early-
time spectra of SN 2006jc (Pastorello et al. 2007). Given the
importance of binary interactions in the evolution of massive
stars (Sana et al. 2012), previous encounters with the
companion may also have responsible for the H-poor nature
of the progenitor, and not just the single observed pre-
explosion outburst.
An additional possible progenitor scenario for SN 2006jc is

suggested by the successful identification (Cao et al. 2013) and
confirmation, through disappearance, of the low-mass progeni-
tor of the Type Ib SN iPTF 13bvn (Eldridge & Maund 2016;
Folatelli et al. 2016). In this scenario, the progenitor of
SN2006jc need not have been a massive star capable of
evolving into a WR star or an LBV, but was rather a lower-
mass star ( ~ M M8ZAMS ) that was stripped of its H envelope
and then evolved as a helium giant. The luminosities of such
stars would be insufficient to drive strong winds, comparable to
higher-mass WR stars, but would instead have extended He-
rich envelopes (McClelland & Eldridge 2016). Due to the
structural differences between helium giants and massive WR
stars, the interaction between a low-mass helium giant and a
binary companion could be different to that expected for a
binary system containing a WR star, and might be more
amenable to the production of pre-explosion outbursts and the
laying down of a dense CSM. Detailed calculations of such a
binary configuration are, however, beyond the scope of this
paper. As noted above, however, the predicted locus for the
low mass binary companion to the progenitor of iPTF 13bvn
presented by Eldridge & Maund (2016) lies at higher
temperatures than we have derived for the source recovered
in the 2010 observations.
Ultimately, confirmation with future HST observations of the

SN location to required to test whether the source is still present
or if it has disappeared, and to identify which of the above
scenarios is responsible for the late-time brightness of
SN2006jc.
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Figure 4. Long-term monitoring of the position of SN2006jc in UGC 4904.
Dates are given with respect to the explosion date of the SN. Black arrows
indicate upper limits on the brightness at the SN position derived from regular
monitoring by amateur astronomers and from PTF images (second data release
Law et al. 2009) obtained through the Infrared Processing and Analysis Center
interface (http://www.ipac.caltech.edu/); red and blue points correspond to
the light curves of SN 2006jc and the 2004 optical transient precursor,
respectively (Pastorello et al. 2007); and green stars indicate limits and
detections derived from late-time HST observations, as presented here. The
light curve of SN2006jc plotted here is from data published by Pastorello et al.
(2007), Foley et al. (2007), Pastorello et al. (2008), Anupama et al. (2009), and
Bianco et al. (2014).
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