

This is a repository copy of Note to Editor: Microalgae cultivation for wastewater treatment and biofuel production: a bibliographic overview of past and current trends.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/118729/

Version: Accepted Version

Article:

Unc, A, Monfet, E, Potter, A et al. (2 more authors) (2017) Note to Editor: Microalgae cultivation for wastewater treatment and biofuel production: a bibliographic overview of past and current trends. Algal Research, 24 (Part B). A2-A7. ISSN 2211-9264

https://doi.org/10.1016/j.algal.2017.05.005

© 2017 Elsevier B.V. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Note to the Editor: Microalgae cultivation for wastewater treatment and biofuel production: a

bibliographic overview of past and current trends

A. Unc¹, E. Monfet¹, A. Potter², M. A. Camargo-Valero^{3,5}, S. R. Smith⁴

- ¹ School of Science and the Environment, Memorial University of Newfoundland, Corner Brook NL, A2H 5G4, Canada
- ² Plant and Environmental Sciences, New Mexico State University, Las Cruces NM, 88003, USA
- ³ Institute for Public Health and Environmental Engineering, School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK
- ⁴ Department of Civil and Environmental Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, UK
- ⁵ Departamento de Ingeniería Química, Universidad Nacional de Colombia, Campus La Nubia, Manizales, Colombia

Abstract

Utilization of microalgae for bioremediation of wastewaters with the concomitant production of bio-products is a recurrent subject found with increasing presence in the current scientific literature. Much of the investigative focus and research approach reported so far, give credit to the wastewater engineering roots of this research topic. Nevertheless, given the more recent increased intensity in microalgae investigations, that research is rapidly expanding to integrate wastewater engineering with multiple disciplines including cell biology and phycology research protocols among others. We present herein a keyword based analysis of trends and directions as gleaned from the body of scientific publications at the intersection of wastewater treatment and algal cultivation with a focus on the identification of past and current trends, possibly indicative of future directions.

Introduction

Research interest in the quality of receiving surface waters and in the related field of treatment of municipal and industrial wastewaters becomes discernable in the scientific literature in the late 1960's [1, 2]. These efforts coincide with the creation by US EPA of the Clean Water Act of 1972, which was designed to regulate the restoration and to uphold the quality of the water sources in the United States. Related regulations on water discharge, stimulated investigations on effective means of nutrient removal, primarily N and P, including the option of microalgae. Removal of excess Nitrogen (N) and Phosphorus (P) from discharged wastewaters mitigates eutrophication of surface waters [1]. The use of algae to treat wastewaters with the goal to minimize nutrient and BOD of treated effluents have been long considered for environmental quality reasons [1, 3]. Employing algae for treatment of wastewater with simultaneous production of biomass and biofuels is considered to be an emerging trend over the course of the past decade. Yet more significant peer

reviewed literature targeting the use of [micro]algae as an option for wastewater treatment can be traced to about 1977, with a first clear statement on the value of wastewater for algal production published in 1979 [4]. Subsequently US national programs aimed at the development of algal based biofuels also integrated wastewater research elements, especially after 1980 [5, 6]. The high nutrient requirement estimates for large-scale algae biomass production, has led researchers to suggest the coupling of high nutrient wastewater treatment and algae growth [4, 5]. An added benefit of wastewater treatment by algae is the fixation of CO_2 [7-10]. Biological nutrient removal by algae in wastewater has been shown to be effective in a variety of systems including traditional ponds, high rate algal ponds and bioreactors and can be carried out by many different algal species. Combining wastewater treatment and algae biofuel production facilities, the two processes can be turned from energy sinks into a positive energy source [11]; the energy savings are directly related to the energy required for the treatment of municipal wastewater and the energy required to supply the nitrogen and phosphorus sources for algae growth. Nevertheless, any extensive literature focused on the same process but with a new application of [bio]fuel production is a rather recent phenomenon [12] that can be more obviously identified for only about 10 years, with a significant increase after 2010 [6].

Therefore, research and funding in recent years has been invested in discovering the process and benefits of creating biofuels from wastewater derived algal biomass. We used a literature survey of methodology to reveal to the apparent trends in the related research and the extent to which certain research aspects advanced.

Methodology

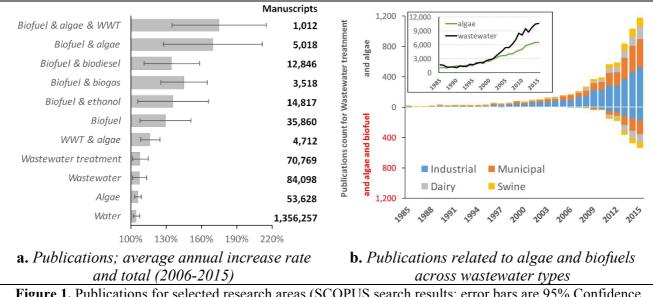
We reviewed publication trends as a means to understand research trends in algal biofuel production employing wastewater as growth substrates. More general, but related, areas of research such as "water" and "algae" were also investigated to offer a contextual comparison between more established fields of research and the emerging field of algae for biofuel production. Keyword queries were carried out nested, starting with an initial wide scope query followed by sub-queries, to produce wide and narrow scope datasets. For example, the results of an initial query for "wastewater" were then queried for "treatment", with the resulting subset queried for "algae", and eventually this subset queried for "biofuel/fuel" (Table 1).

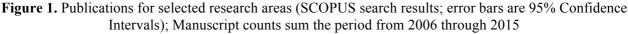
Figure 1a	Figure 1b
"Water"	"Algae"
"Algae"	"Wastewater"
"Wastewater" and "Treatment"	"Wastewater" and "Treatment"
"Wastewater" and "Treatment" and "Algae"	"Wastewater" and "Treatment" and "Industrial" and "Algae"
"Biofuel"	"Wastewater" and "Treatment" and "Municipal" and "Algae"
"Biofuel" and "Ethanol"	"Wastewater" and "Treatment" and "Dairy" and "Algae"
"Biofuel" and "Biogas"	"Wastewater" and "Treatment" and "Swine" and "Algae"
"Biofuel" and "Biodiesel"	"Wastewater" and "Treatment" and "Industrial" and "Algae" and
"Biofuel" and "Algae"	"(Bio)fuel"
"Wastewater" and "Treatment" and "Algae" and	"Wastewater" and "Treatment" and "Municipal" and "Algae" and
"Biofuel"	"(Bio)fuel"
	"Wastewater" and "Treatment" and "Dairy" and "Algae" and "(Bio)fuel"
	"Wastewater" and "Treatment" and "Swine" and "Algae" and "(Bio)fuel"
Figures 2 and 4	Figure 3
"Wastewater" and "Treatment"	"Wastewater" and "Treatment"
"Wastewater" and "Treatment" and "Algae"	
"Wastewater" and "Treatment" and "Algae" and	
"(Bio)fuel"	

Table 1. SCOPUS keyword queries (queries carried out for the entire period covered by SCOPUS; data
extracted separately for each year)

A comparison of WOS (webofscience.com) and SCOPUS (scopus.com) searches indicated similar trends. SCOPUS however has a larger coverage and consistently produced larger datasets. Consequently, analyses presented here are based on SCOPUS search results. Results include all publication types covered by SCOPUS, not only journal articles but also conference proceedings, books and book chapters, trade publications, and reports; this offers a better description of the research activities especially for emerging fields.

The periods covered continuously in the datasets obtained by different queries varied. Queries for "wastewater treatment" (wwt) recovered publications for the period from 1970 to 2015, the subset for the "wastewater treatment" and "algae" (wwt/a) recovered publications for the period from 1977 to 2015, while the query for "wastewater treatment" and "algae" and "(bio)fuel" (wwt/a/bf) only recovered any relevant publications for the period between 2006 and 2015. These variations in query coverage reflect the historical length of the publication record as identified via SCOPUS. The publications for the current year, 2016, yet to be finalized, were not included in the analysis. Keyword queries (Table 1) were carried out in the "title", "abstract" and "keywords" sections of the publication as parsed by SCOPUS. Eventually, keywords associated with each year for each query were summarized. This produced a total of 2402 keywords. These keywords were first normalized for grammatical and spelling variations, and then the keywords dataset was further reduced by eliminating redundancies due to words with similar meaning. All these modifications were replaced in the original datasets. Eventually a reduced dataset included 552 unique keywords. After eliminating general terms that would have biased any subsequent dissimilarity analysis (e.g., "algae" or "fuel"), the dataset was further reduced to 539 unique keywords; of these wwt query


included 270 keywords, wwt/a 419 keywords, and wwt/a/bf 202 keywords. Of these 49 keywords were found only in the wwt dataset, 169 only in the wwt/a dataset and 58 only in the wwt/a/bf dataset; 103 keywords were common for all three datasets. Variable counts of these keywords – i.e., abundance – were found in each datasets; to normalize their usage intensity the abundance of each keyword for a given query and year was divided by the respective publication counts. Subsequent analyses were thus carried out on these keywords intensity datasets. Statistical analyses were carried out mainly in PAST3.0 [13]. All errors reported here describe the statistical 95% confidence interval.


To estimate the intensity of research for the different research areas the publication records were compared to the publication records for "water" as returned by SCOPUS.

Results and Discussion

Publication rates

The annualized rate of increase in publication counts can be used as an indication of the maturity of the respective field. Figure 1 summarizes these rates from 2006 to 2015, the period with publications in wwt/a/bf area. A mature research area, such as water or algal research, while producing a large number of publications it does have a proportionally low publication rate increase. It is interesting to note that the use of algae for wastewater treatment also behaves like a relatively mature field despite the comparatively smaller publication count (Figure 1a).

On the other hand, the usage of algae for the production of biofuel, with or without wastewaters, is a new and growing field. This is confirmed by the similar trend in publishing between wwt/a and wwt/a/bf (Figure 1b); note that wwt/a/bf is a 20% subset of wwt/a. Moreover, the similarity carries into the type of wastewater researched; for both treatment and biofuel production, municipal, industrial, and farm wastewater streams are considered.

Keyword utilization patterns

Variable intensity in the keywords utilization can be used to infer the attention to the associated research areas. Initial interest in the wastewater treatment was obviously driven by environmental concerns (Figure 2), with proportionally less direct interest in the nutritional component of wastewaters. More recently, nutrients and nutrient removal became of greater interest for the research community, at the same time as bioreactor based research increased. It is interesting to note the spike in nutrient removal research, around 2010, that coincides with the more significant accumulation of wwt/a/bf research. Modeling, an indication of an interest for engineered management of wastewater systems, was a relative constant from 1970 on; nevertheless, the last 10 years, when wwt/a/bf research surged, an accompanying interest in modeling waned. This might be attributed to the novelty of this research and thus to the fact that much research is still descriptive in nature and has yet to mature and move into the development of coherent management tools.

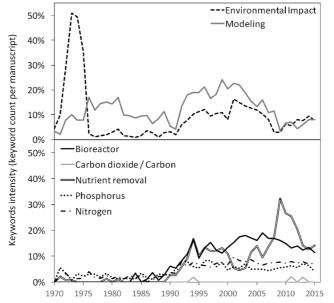


Figure 2. Selected keyword utilization rates for the "wastewater treatment" query

Keyword intensity, described as the proportional count of a keyword per articles, reflects the main foci of research in a given area.

It is quite obvious that wwt research was initially driven by concerns regarding the environment. Thus, for the 1972-1973 environmental impact keywords were identified in about 50% of related publications (Fig. 2). This was followed by a sustained increase in modeling efforts, likely summarizing the extensive modeling of wastewater treatment carried out by the profession of Civil Engineering [2]. A simple look at the most dominant keyword for the three datasets, for the period after 2000, shows "modeling" to dominate the wwt publications (11.5%), "management" and "water pollutants/pollution" closely linked for the wwt/a publications (20.1% and 19.0%, respectively), and "biomass", at 72.8%, clearly dominating the ww/a/bf publications. It is noteworthy that the pollution focus of the wwt/a publications is also associated with a significantly stronger focus on metal and toxicity terminology (see Supplementary table 2); average abundance for the keywords subset including As, Cd, Cr, Cu, Ni, Zn, "metals" and "metal ions" was 1.36%±0.69% for wwt and 4.39±1.66% for wwt/a; none were found in the wwt/a/bf publications dataset. This strengthens the conclusion that addition of algae to the wastewater treatment technologies was carried out with the goal of treating and not to obtain algal bio-products.

It is interesting to note the sustained, simultaneous, increase of both environmental impact and modeling research in the 1990-2010 period (Fig. 2). As the interest in utilization of wastewater for algal biofuel peaked after 2010, the general intensity shifted away from environmental impact and modeling to focus on nutrient removal (Fig. 2).

The interest in wastewater and algae can be followed by identifying the increased intensity of bioreactor type keywords (Fig 2a). This coincides with the conclusion of the first concerted effort to evaluate the utility of algae for energy production [5]. The intensity of research on N and P follows a similar trend. It is therefore of interest to note the peak of "nutrient removal" just around 2010, in the middle of the second revival of interest in wastewater and algae for biofuel [6]. Moreover, this also indicates that the dominant paradigm in wastewater and algae for biofuel research hovers around the capacity of algae to remove nutrients from wastewaters, not necessarily the capacity of wastewater to support algal growth. It might be argued that this is just a continuation of earlier efforts to use algae for wastewater for algal growth; the latter would be expected to be integrated and reflected into growth modeling research, when and if an industrial management system for algal bio-products produced on wastewater is considered for managed production conditions.

Wastewater treatment aims to lower BOD and remove nutrients to eventually minimize eutrophication risks in receiving waters [3]. On the other hand, it might be envisioned that if wastewaters are to be primarily employed for growth of algae and production of algal biomass then the availability of nutrients to algae ought to take priority. A high density of "nutrient removal" ("nr") is expected to support the former paradigm; a high density of "nutrient availability" ("na") or "nutrient uptake" ("nu") would support the later paradigm. Keyword abundance data for the after 2000 datasets supports the dominant use of "nr" (28.1% for wwt/a, and 17.5% for wwt/a/b) when algae and wastewater are concerned over the use of "na" and "nu", 0.97% and respectively 0.78% for the wwt/a/bf; the latter two terms are not present in the wwt dataset (Suppl. Table 2). This supports the conclusion that while the concept of algae employing wastewater as a source of nutrients starts to make inroads in the literature the main approach is, still, to use algae as removers of nutrients. The increasing use of "nutrient" for the wwt/a/bf literature (18.87%, versus 1.75% for wwt/a) also indicates a shift in the approach, but its direction more difficult to gage without a qualifier term.

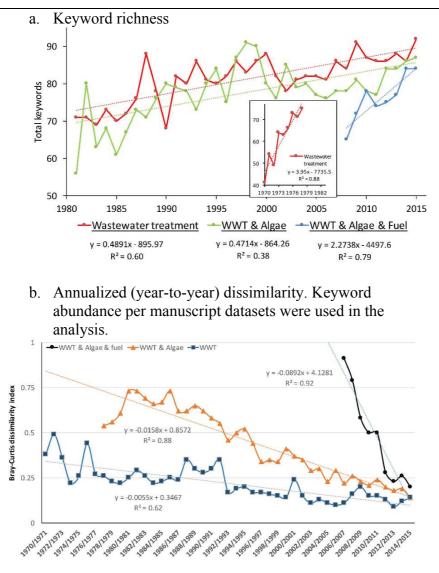
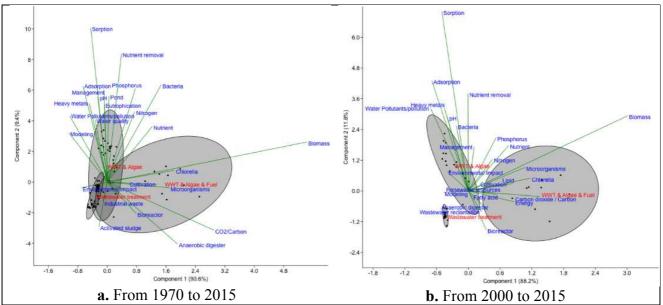


Figure 3 Temporal shifts in keyword utilization

Keyword utilization patterns

Keyword richness increases as the scope of a given research field expands. All three areas of research show an increased in keyword richness to reach a somewhat similar richness in 2015 (Figure 3a). For the more established wwt and wwt/a research areas there is an average annual increase of about 0.5 keywords y⁻¹. On the other hand, wwt/a/bf has shown a rapid increase of 2.3 keywords y⁻¹, consistent with a rapidly expanding research field; this pattern is consistent with the early stages of a newly establishing field as shown by the similar rapid increase of 3.95 keywords y⁻¹ in the early years of wwt research. There is an obvious reset in the keyword richness for wwt and wwt/a around year 2000; this is what prompted the dataset split in our evaluation to also include an only after 2000 data analysis.


Another indicator of a maturing research field is the stabilization of the range of inquiry. As the range expands proportional changes in the coverage over time normalizes, tending towards a steady state situation, one can assume, for a field that shifts from discovery to applications. We employed a Bray-Curtis dissimilarity index analysis to assess the year-over-year changes in similarity between the annual keyword datasets, i.e. the running dissimilarity (Figure 3b). Bray-Curtis considers both presence and abundance for the similarity calculation. For all fields the running Bray-Curtis index declines with time, more accelerated for the faster maturing fields.

Values of dissimilarity above the long term average trend (i.e. the linear fit line) indicate either a slower decrease in dissimilarity or even an increase in dissimilarity for the pair of years in comparison to the previous period of time. This would be expected to occur when the set of newly added keywords are significantly different from the previous year's keyword, thus an indication of an increase in the scope of research in the respective area, or in other words a more innovative period.

On the other hand, dissimilarities lower than the multiannual trend would indicate a relative stagnation in the scope of research, or a more stable, less innovative, research activity. For all three research areas evaluated here there is a consistent decrease trend in year-over-year dissimilarity values. It may be assumed that this is a reflection of a stabilization of the research foci.

A principal component analysis, carried out for the top 25 drivers of dissimilarity, according to a SIMPER analysis (Table 2 and 3) indicates a shift in the more recent period. While when the entire dataset is employed the dissimilarity among datasets is not statistically significant at an alpha of 0.05. The analysis confirms the shift from water quality and pollution issues towards biomass

production parameters. *Chlorella* sp. is the preferred organism. The utilization of algae for heavy metal remediation is again confirmed as a strong research focus during earlier wastewater and algae research (Fig 4 a and b) which all disappeared from the dataset that has a biofuel focus.

Figure 4. Principal Component Analysis (PCA) for the top 25 discriminant keywords (Table 2 and 3) for two distinct time periods; keyword intensity datasets were employed in the analysis (i.e. for each year and category keywords abundance was divided to the number of manuscripts). PCA was carried out in Past3.07, employing Bray-Curtis dissimilarity algorithm. The grey ellipses encompass the 95% confidence region.

	MPER analysis with Bray-Curtis distance, [13]) Dissimilarity Mean Abundance (%)						
Keyword	Average	Contribution %	wwt (2000-2015)	wwt/a (2000-2015)	wwt/a/bf (2006-2015)		
Biomass	3.11	5.04	5.30	21.3	72.8		
Sorption	1.43	2.32	1.10	24.6	0.00		
Water Pollutants/pollution	1.25	2.03	19.0	28.9	5.90		
CO ₂ /Carbon	1.25	2.02	0.20	2.00	34.9		
Adsorption	1.22	1.97	9.70	23.4	0.00		
Nutrient removal	1.20	1.95	14.8	28.1	16.7		
Bacteria	1.13	1.83	16.4	24.8	30.4		
Microorganisms	1.09	1.76	2.60	7.80	23.8		
Chlorella	1.05	1.70	0.00	4.00	23.2		
Nutrient	0.99	1.60	1.80	9.40	18.3		
Management	0.98	1.59	20.1	26.3	20.7		
pH	0.87	1.41	11.5	20.8	5.40		
Heavy metals	0.85	1.38	6.00	16.4	0.20		
Phosphorus	0.83	1.34	5.40	13.6	17.0		
Cultivation	0.81	1.32	0.00	2.30	17.1		
Lipid	0.80	1.29	0.00	2.60	16.6		
Anaerobic digester	0.79	1.28	4.20	2.20	25.5		
Energy	0.76	1.24	0.00	0.20	18.3		
Modeling	0.74	1.20	11.5	10.4	0.40		
Fatty acid	0.73	1.18	0.00	0.60	23.8		
Nitrogen	0.71	1.16	7.60	12.8	16.5		
Renewable resources	0.65	1.05	0.10	0.60	19.2		
Bioreactor	0.63	1.02	14.9	10.3	16.8		
Wastewater reclamation	0.63	1.02	7.10	4.70	9.60		
Environmental Impact	0.62	1.00	8.70	10.6	0.40		
Total	25.12	40.68					

Table 2 Top 25 keywords inducing dissimilarities between publication datasets for years 2000 to 2015 (SIMPER analysis with Bray-Curtis distance, [13])

	Dis	<u>ssimilarity</u>	Mean Abundance (%)			
Keyword	Average	Contribution %	wwt (1970-2015)	wwt/a (1077-2015)	wwt/a/bf	
			((1977-2015)	(2006-2015)	
Biomass	2.84	4.00	3.40	17.8	72.8	
Nutrient removal	1.64	2.30	7.60	19.9	16.7	
Bacteria	1.63	2.30	8.70	20.4	30.4	
Management	1.59	2.23	18.8	26.9	20.7	
Water Pollutants/pollution	1.28	1.80	16.4	20.4	5.90	
Phosphorus	1.13	1.59	4.30	14.3	17.0	
Sorption	1.08	1.52	0.50	13.5	0.00	
Modeling	1.06	1.49	11.9	14.2	0.40	
Nutrient	1.04	1.46	1.20	8.60	18.3	
pH	1.04	1.46	5.80	12.9	5.40	
Nitrogen	1.02	1.44	4.80	12.7	16.5	
Adsorption	1.02	1.43	5.10	12.4	0.00	
Microorganisms	0.93	1.31	2.80	5.60	23.8	
Chlorella	0.91	1.28	0.00	4.70	23.2	
Environmental Impact	0.89	1.25	9.30	7.40	0.40	
Bioreactor	0.87	1.22	7.90	6.70	16.8	
CO ₂ /Carbon	0.87	1.22	0.10	1.60	34.9	
Industrial waste	0.77	1.09	9.40	7.30	7.30	
Heavy metals	0.74	1.04	3.70	9.80	0.20	
Pond	0.70	0.99	0.20	8.00	3.60	
Anaerobic digester	0.70	0.98	3.60	1.80	25.5	
Water quality	0.68	0.96	5.50	10.5	3.40	
Cultivation	0.68	0.95	0.10	2.60	17.1	
Activated sludge	0.66	0.92	9.10	4.70	4.80	
Eutrophication	0.63	0.88	0.10	7.00	1.70	
Total	26.4	37.11				

Table 3. Top 25 Keywords inducing dissimilarities between publication datasets for years 1970 to 2015 (SIMPER analysis, [13])

Table 4. Statistical analysis of parameters for keyword induced dissimilarities among the publication datasets

Publications dataset	Dissin	nilarity	Proportional dis	similarity (%)	Keyword abundance $(\%)^3$		
i ubications dataset	SUM^1	MAD^2	SUM	MAD^2	Mean±CI ₉₅	$Median \pm MAD^2$	
After 1970							
wwt	7.41	0.05	12.01	0.08	2.04 ± 0.62	1.07±0.69	
wwt/a	21.06	0.14	34.12	0.23	5.37±1.58	2.74±2.16	
wwt/a/bf	32.84	0.14	53.21	0.23	7.84±1.92	4.76±3.75	
After 2000							
wwt	8.96	0.06	12.60	0.09	1.50±0.55	0.66 ± 0.58	
wwt/a	28.74	0.04	40.39	0.06	2.08 ± 0.60	0.53 ± 0.37	
wwt/a/bf	33.44	0.09	47.01	0.13	6.30±1.54	2.72±2.25	

¹ SUM, sum of the SIMPER calculated dissimilarity ² MAD, median absolute deviation

³Keyword occurrence per peer reviewed publication (from 0 to 100%).

The shift away of wwt/a/bf from wwt and wwt/a can be seen in the 53.21% total impact on dissimilarity of the keywords that were most dominant in wwt/a/bf. Both standard and robust statistical tests indicate a more concentrated focus for the wwt/a/bf publications (Table 4).

Review of reviews

In 1978 the Aquatic Species Program [5], an US national funded effort, also identified possibilities for producing biofuels through algae and microalgae cultivation. In 1979 Beneman et al. [4] published a conceptual map for the use of wastewater for the culturing algae on wastewaters for fuel production. Much of the initial efforts were focused on hydrogen production with biodiesel becoming a primary focus only after 1980. The program was terminated in 1996. In 2010, a new algae for biofuel program was established [6] that included again a focus on 'Integration with water treatment facilities". A summary of the relevant review articles might be expected to offer as a reasonable guide to the scope and the evolution of the state of the art knowledge in a given area of research. As described above, about 78 review publications were identified to focus on wastewater, algae and energy issues. A query, for reviews with the keywords "algae" (including "microalgae" and different spellings) and "wastewater" produced a dataset of 230 reviews. These reviews were examined and only the ones focusing on growth of algae in wastewater were retained. Reviews focused on the impacts of wastewaters on environment and on algal blooms in water bodies, and general wastewater treatment or biosorption reviews were excluded of this work. Eventually 78 reviews were identified as relevant to our interest in biofules from algal biomass cultivated in wastewater (as listed by SCOPUS on March 16, 2016). The bulk of reviews, many with a (bio)fuel perspective were published after 2010. Generally, the parameters affecting algae production in wastewater have been extensively reviewed with an engineering perspective.

The first identified review about the growth of algae in wastewater, from a biotechnology perspective, was published in 1997 [14]. The authors discussed the use of microalgae for bio-treatment and by-products with an emphasis on *Chlamydomonas reinhardtii*. The mass culture was already a matter of concern and the advantages of immobilization technique were also presented. Most reviews focused on the production of algae with a large majority included harvesting [7, 9, 10, 15-40] with two of them dedicated exclusively to harvest issues [41, 42]. Biodiesel production was the focus of several reviews, especially after 2010 [16, 21, 33]. The role of the light source as a specific topic for cultures in bioreactors was evaluated by two reviews, also after 2010, but not necessarily for wastewater based systems [43, 44].

A large number of reviews focused on system conceptualization with a focus on defining a bio refinery strategy [7, 9, 14, 16-20, 22, 23, 27-31, 37-39, 42, 45-54]. Makrou et al. highlighted the carbohydrate production as a specific product for biofuel production [55].

Very recently, after 2014, a number of somewhat similar reviews focused on algal biofilms for wastewater systems and biofuel production [56-58] an indication of the speed at which the field advances, and likely the tight competition among research groups. Genetic engineering is also touched by some of these reviews [16, 19, 21-24, 28, 29, 47, 52, 59, 60].

Impacts of large-scale cultures on environmental governance [61], environment [62, 63], resources (specific to China;[64]) and cost [63, 65] have also been analyzed. In most cases, there was no new exploration for algal biodiversity [59]. Alga species from the genus *Chlorella* remain dominant for algal growth and the exclusive focus for two reviews from 2013 and 2015 [49, 54]. While many studies on algal growth have been performed with artificial media a range of wastewaters have also been investigated [64]. It is encouraging that a more biological view, with elements of management are also considered by reviews summarizing the interactions among algae [66, 67], with microbial consortia [15, 34, 46, 49], and especially with wastewater associated microbes [68, 69]. Consortia of microalgae, as opposed to single species cultures, are shown to be advantageous for productivity and crop stability [67, 70]. A few of the recent reviews advocate for mixotrophic cultivation as a means to enhance biomass productivity [52, 53, 70, 71], while the two-stage cultivation, with a luxury consumption stage followed by nitrogen limitation, is recommended for lipid production [58, 70, 71]. Both nutrient removal [72-75] and nutrient uptake [32, 76, 77] are discussed in the context of lipid production.

Conclusions

Growing algae for biofuel on wastewater substrates is a rapidly growing area of research, with a comprehensive approach expanding outside the usual scientific disciplines commonly associated with wastewater treatment, even when algae are included as a treatment option. On the other hand, while the concept is several decades old, the relative rapid expansion led to a large number of exploratory research initiatives, with minimal focus on integrated bioengineering management protocols. We may therefore assume that we are likely in the data accumulation stage that will offer, hopefully soon, a sufficient basis for a strong shift of research into the development of management systems. Many other factors beyond the scope of the strict scientific endeavors will likely be decisive for such shift. Nevertheless, a focused global approach is clearly of benefit for a successful translation of current understanding into sustainable practice.

References

- [1] Anonymous, A Review of Literature of 1967 on Wastewater and Water Pollution Control - Water Pollution - Eutrophication, J Water Pollut Con F, 40 (1968) 897-1222.
- [2] W.W. Eckenfelder, Water quality engineering for practicing engineers, Barnes & Noble, Inc., New York, NY, 1970.
- [3] D. Gleisberg, J. Kandler, H. Ulrich, P. Hartz, Eutrophication and Wastewater Purification, Angew Chem Int Edit, 15 (1976) 354-365.
- [4] J.R. Benemann, W.J. Oswald, Integrating Wastewater-Treatment with Fuel Production Using Microalgae, J Electrochem Soc, 126 (1979) C139-C139.
- [5] J. Sheehan, T. Dunahay, J. Benemann, P. Roessler, Look Back at the U.S. Department of Energy's Aquatic Species Program: Biodiesel from Algae; Close-Out Report, United States, 1998.
- [6] U.S.DOE, National Algal Biofuels Technology Roadmap, U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program, 2010.
- [7] A. Kumar, S. Ergas, X. Yuan, A. Sahu, Q.O. Zhang, J. Dewulf, F.X. Malcata, H. van Langenhove, Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions, Trends Biotechnol, 28 (2010) 371-380.
- [8] F.G.A. Fernandez, C.V. Gonzalez-Lopez, J.M.F. Sevilla, E.M. Grima, Conversion of CO2 into biomass by microalgae: how realistic a contribution may it be to significant CO2 removal?, Appl Microbiol Biot, 96 (2012) 577-586.
- [9] J.C.M. Pires, M.C.M. Alvim-Ferraz, F.G. Martins, M. Simoes, Carbon dioxide capture from flue gases using microalgae: Engineering aspects and biorefinery concept, Renew Sust Energ Rev, 16 (2012) 3043-3053.
- [10] S.A. Razzak, M.M. Hossain, R.A. Lucky, A.S. Bassi, H. de Lasa, Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing-A review, Renew Sust Energ Rev, 27 (2013) 622-653.
- [11] C.M. Beal, A.S. Stillwell, C.W. King, S.M. Cohen, H. Berberoglu, R.P. Bhattarai, R.L. Connelly, M.E. Webber, R.E. Hebner, Energy return on investment for algal biofuel production coupled with wastewater treatment, Water Environment Research, 84 (2012) 692-710.
- [12] S. van Iersel, L. Gamba, A. Rossi, S. Alberici, B. Dehue, J. van de Staaij, A. Flammini, Algae-based biofuels: A review of challenges and opportunities for developing countries in: E.C.C.a.B. Division (Ed.), FAO, Rome, Italy, 2009, pp. 49.
- [13] Ø. Hammer, D.A.T. Harper, P.D. Ryan, PAST: Paleontological Statistics software package for education, 2001.
- [14] C. Vilchez, I. Garbayo, M.V. Lobato, J.M. Vega, Microalgae-mediated chemicals production and wastes removal, Enzyme Microb Tech, 20 (1997) 562-572.
- [15] R. Munoz, B. Guieysse, Algal-bacterial processes for the treatment of hazardous contaminants: A review, Water Res, 40 (2006) 2799-2815.
- [16] T.M. Mata, A.A. Martins, N.S. Caetano, Microalgae for biodiesel production and other applications: A review, Renew Sust Energ Rev, 14 (2010) 217-232.
- [17] L. Brennan, P. Owende, Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products, Renew Sust Energ Rev, 14 (2010) 557-577.
- [18] R. Rajkumar, Z. Yaakob, M.S. Takriff, Potential of the Micro and Macro Algae for Biofuel Production: A Brief Review, Bioresources, 9 (2014) 1606-1633.
- [19] S. Chen, Z. Chi, J.V. O'Fallon, Y. Zheng, M. Chakraborty, D.D. Laskar, System integration for producing microalgae as biofuel feedstock, Biofuels, 1 (2010) 889-910.

- [20] A. Dibenedetto, The potential of aquatic biomass for CO 2-enhanced fixation and energy production, Greenhouse Gases: Science and Technology, 1 (2011) 58-71.
- [21] Y.M. Gong, M.L. Jiang, Biodiesel production with microalgae as feedstock: from strains to biodiesel, Biotechnol Lett, 33 (2011) 1269-1284.
- [22] N.K. Singh, D.W. Dhar, Microalgae as second generation biofuel. A review, Agron Sustain Dev, 31 (2011) 605-629.
- [23] A. Parmar, N.K. Singh, A. Pandey, E. Gnansounou, D. Madamwar, Cyanobacteria and microalgae: A positive prospect for biofuels, Bioresource Technol, 102 (2011) 10163-10172.
- [24] L. Christenson, R. Sims, Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts, Biotechnol Adv, 29 (2011) 686-702.
- [25] H.N. Chanakya, D.M. Mahapatra, S. Ravi, V.S. Chauhan, R. Abitha, Sustainability of large-scale algal biofuel production in India, Journal of the Indian Institute of Science, 92 (2012) 63-98.
- [26] D. Aitken, B. Antizar-Ladislao, Achieving a Green Solution: Limitations and Focus Points for Sustainable Algal Fuels, Energies, 5 (2012) 1613-1647.
- [27] M.K. Lam, K.T. Lee, Microalgae biofuels: A critical review of issues, problems and the way forward, Biotechnol Adv, 30 (2012) 673-690.
- [28] M.Y. Menetrez, An Overview of Algae Biofuel Production and Potential Environmental Impact, Environ Sci Technol, 46 (2012) 7073-7085.
- [29] H.M. Amaro, A.C. Macedo, F.X. Malcata, Microalgae: An alternative as sustainable source of biofuels?, Energy, 44 (2012) 158-166.
- [30] E.J. Olguin, Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a Biorefinery, Biotechnol Adv, 30 (2012) 1031-1046.
- [31] U.B. Singh, A.S. Ahluwalia, Microalgae: a promising tool for carbon sequestration, Mitig Adapt Strat Gl, 18 (2013) 73-95.
- [32] T. Cai, S.Y. Park, Y.B. Li, Nutrient recovery from wastewater streams by microalgae: Status and prospects, Renew Sust Energ Rev, 19 (2013) 360-369.
- [33] V. Makareviciene, V. Skorupskaite, V. Andruleviciute, Biodiesel fuel from microalgaepromising alternative fuel for the future: a review, Rev Environ Sci Bio, 12 (2013) 119-130.
- [34] J.C.M. Pires, M.C.M. Alvim-Ferraz, F.G. Martins, M. Simões, Wastewater treatment to enhance the economic viability of microalgae culture, Environmental Science and Pollution Research, 20 (2013) 5096-5105.
- [35] S.K. Prajapati, P. Kaushik, A. Malik, V.K. Vijay, Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: Possibilities and challenges, Biotechnol Adv, 31 (2013) 1408-1425.
- [36] N.C. Bhatt, A. Panwar, T.S. Bisht, S. Tamta, Coupling of Algal Biofuel Production with Wastewater, Sci World J, (2014).
- [37] W.G. Zhou, P. Chen, M. Min, X.C. Ma, J.H. Wang, R. Griffith, F. Hussain, P. Peng, Q.L. Xie, Y. Li, J. Shi, J.Z. Meng, R. Ruan, Environment-enhancing algal biofuel production using wastewaters, Renew Sust Energ Rev, 36 (2014) 256-269.
- [38] K.F. Kamarudin, D.G. Tao, Z. Yaakob, M.S. Takriff, M.S.A. Rahaman, J. Salihon, A review on wastewater treatment and microalgal by-product production with a prospect of palm oil mill effluent (POME) utilization for algae, Der Pharma Chemica, 7 (2015) 73-89.

- [39] W. Klinthong, Y.H. Yang, C.H. Huang, C.S. Tan, A Review: Microalgae and Their Applications in CO2 Capture and Renewable Energy, Aerosol Air Qual Res, 15 (2015) 712-742.
- [40] A. Mehrabadi, R. Craggs, M.M. Farid, Wastewater treatment high rate algal ponds (WWT-HRAP) for low-cost biofuel production, Bioresource Technol, 184 (2015) 202-214.
- [41] S.O. Gultom, B. Hu, Review of Microalgae Harvesting via Co-Pelletization with Filamentous Fungus, Energies, 6 (2013) 5921-5939.
- [42] M.L. Gerardo, S. Van Den Hende, H. Vervaeren, T. Coward, S.C. Skill, Harvesting of microalgae within a biorefinery approach: A review of the developments and case studies from pilot-plants, Algal Res, 11 (2015) 248-262.
- [43] J.U. Grobbelaar, Microalgal biomass production: challenges and realities, Photosynth Res, 106 (2010) 135-144.
- [44] S.K. Wang, A.R. Stiles, C. Guo, C.Z. Liu, Microalgae cultivation in photobioreactors: An overview of light characteristics, Eng Life Sci, 14 (2014) 550-559.
- [45] J.U. Grobbelaar, Algal Biotechnology: Real Opportunities for Africa, Phycologia, 44 (2005) 39-39.
- [46] S.R. Subashchandrabose, B. Ramakrishnan, M. Megharaj, K. Venkateswarlu, R. Naidu, Consortia of cyanobacteria/microalgae and bacteria: Biotechnological potential, Biotechnol Adv, 29 (2011) 896-907.
- [47] N.K. Sharma, S.P. Tiwari, K. Tripathi, A.K. Rai, Sustainability and cyanobacteria (bluegreen algae): facts and challenges, J Appl Phycol, 23 (2011) 1059-1081.
- [48] J. Peccia, B. Haznedaroglu, J. Gutierrez, J.B. Zimmerman, Nitrogen supply is an important driver of sustainable microalgae biofuel production, Trends Biotechnol, 31 (2013) 134-138.
- [49] J.J. Tate, M.T. Gutierrez-Wing, K.A. Rusch, M.G. Benton, The Effects of Plant Growth Substances and Mixed Cultures on Growth and Metabolite Production of Green Algae Chlorella sp.: A Review, J Plant Growth Regul, 32 (2013) 417-428.
- [50] N. Rashid, M.S.U. Rehman, J.I. Han, Recycling and reuse of spent microalgal biomass for sustainable biofuels, Biochem Eng J, 75 (2013) 101-107.
- [51] A.J. Ward, D.M. Lewis, B. Green, Anaerobic digestion of algae biomass: A review, Algal Res, 5 (2014) 204-214.
- [52] J.H. Wang, H.Z. Yang, F. Wang, Mixotrophic Cultivation of Microalgae for Biodiesel Production: Status and Prospects, Appl Biochem Biotech, 172 (2014) 3307-3329.
- [53] J. Lowrey, M.S. Brooks, P.J. McGinn, Heterotrophic and mixotrophic cultivation of microalgae for biodiesel production in agricultural wastewaters and associated challenges-a critical review, J Appl Phycol, 27 (2015) 1485-1498.
- [54] S.Y. Chiu, C.Y. Kao, T.Y. Chen, Y.B. Chang, C.M. Kuo, C.S. Lin, Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource, Bioresource Technol, 184 (2015) 179-189.
- [55] G. Markou, I. Angelidaki, D. Georgakakis, Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels, Appl Microbiol Biot, 96 (2012) 631-645.
- [56] M. Kesaano, R.C. Sims, Algal biofilm based technology for wastewater treatment, Algal Res, 5 (2014) 231-240.
- [57] M. Gross, D. Jarboe, Z.Y. Wen, Biofilm-based algal cultivation systems, Appl Microbiol Biot, 99 (2015) 5781-5789.
- [58] P.J. Schnurr, D.G. Allen, Factors affecting algae biofilm growth and lipid production: A review, Renew Sust Energ Rev, 52 (2015) 418-429.

- [59] A.W.D. Larkum, I.L. Ross, O. Kruse, B. Hankamer, Selection, breeding and engineering of microalgae for bioenergy and biofuel production, Trends Biotechnol, 30 (2012) 198-205.
- [60] D.L. Sutherland, C. Howard-Williams, M.H. Turnbull, P.A. Broady, R.J. Craggs, Enhancing microalgal photosynthesis and productivity in wastewater treatment high rate algal ponds for biofuel production, Bioresource Technol, 184 (2015) 222-229.
- [61] D. Benson, K. Kerry, G. Malin, Algal biofuels: impact significance and implications for EU multi-level governance, J Clean Prod, 72 (2014) 4-13.
- [62] P.K. Usher, A.B. Ross, M.A. Camargo-Valero, A.S. Tomlin, W.F. Gale, An overview of the potential environmental impacts of large-scale microalgae cultivation, Biofuels, 5 (2014) 331-349.
- [63] G. Acien Fernandez, J.M. Fernandez, J.J. Magan, E. Molina, Production cost of a real microalgae production plant and strategies to reduce it, Biotechnol Adv, 30 (2012) 1344-1353.
- [64] S.H. Huo, R.J. Dong, Z.M. Wang, C.L. Pang, Z.H. Yuan, S.N. Zhu, L. Chen, Available Resources for Algal Biofuel Development in China, Energies, 4 (2011) 1321-1335.
- [65] G. Acien Fernandez, C.V. González-López, J.M. Fernández Sevilla, E. Molina Grima, Conversion of CO 2 into biomass by microalgae: How realistic a contribution may it be to significant CO 2 removal?, Appl Microbiol Biot, 96 (2012) 577-586.
- [66] V. Montemezzani, I.C. Duggan, I.D. Hogg, R.J. Craggs, A review of potential methods for zooplankton control in wastewater treatment High Rate Algal Ponds and algal production raceways, Algal Res, 11 (2015) 211-226.
- [67] N. Renuka, A. Sood, R. Prasanna, A.S. Ahluwalia, Phycoremediation of wastewaters: a synergistic approach using microalgae for bioremediation and biomass generation, Int J Environ Sci Te, 12 (2015) 1443-1460.
- [68] V.V. Unnithan, A. Unc, G.B. Smith, Mini-review: A priori considerations for bacteriaalgae interactions in algal biofuel systems receiving municipal wastewaters, Algal Res, 4 (2014) 35-40.
- [69] S. Chinnasamy, A. Sood, N. Renuka, R. Prasanna, S.K. Ratha, S. Bhaskar, R. Rengasamy, D.M. Lewis, Ecobiological aspects of algae cultivation in wastewaters for recycling of nutrients and biofuel applications, Biofuels, 5 (2014) 141-158.
- [70] L.D. Zhu, Microalgal culture strategies for biofuel production: a review, Biofuel Bioprod Bior, 9 (2015) 801-814.
- [71] G.Y. Chen, L. Zhao, Y. Qi, Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: A critical review, Appl Energ, 137 (2015) 282-291.
- [72] N. Abdel-Raouf, A.A. Al-Homaidan, I.B.M. Ibraheem, Microalgae and wastewater treatment, Saudi J Biol Sci, 19 (2012).
- [73] P.M. Mambo, D.K. Westensee, B.M. Zuma, A.K. Cowan, The Belmont Valley integrated algae pond system in retrospect, Water Sa, 40 (2014) 385-393.
- [74] X.H. Zeng, X.Y. Guo, G.M. Su, M.K. Danquah, S.D. Zhang, Y.H. Lu, Y. Sun, L. Lin, Bioprocess considerations for microalgal-based wastewater treatment and biomass production, Renew Sust Energ Rev, 42 (2015) 1385-1392.
- [75] S. Judd, L.J.P. van den Broeke, M. Shurair, Y. Kuti, H. Znad, Algal remediation of CO2 and nutrient discharges: A review, Water Res, 87 (2015) 356-366.
- [76] N. Brown, A. Shilton, Luxury uptake of phosphorus by microalgae in waste stabilisation ponds: current understanding and future direction, Rev Environ Sci Bio, 13 (2014) 321-328.

[77] A.N. Shilton, N. Powell, B. Guieysse, Plant based phosphorus recovery from wastewater via algae and macrophytes, Current Opinion in Biotechnology, 23 (2012) 884-889.

Supplementary data:

Supplementary Table 1: Keywords inducing dissimilarities between publication datasets for years <u>2000 to 2015</u> (SIMPER analysis,[13]); SIMPER analysis was carried out on keyword

intensity datasets.

Keyword (2000 to 2015)	Dataset where		ssimilarity	Mear	n abundance	(%)
	keyword is	Average	Contribution	wwt	wwt/a	wwt/a/bf
	dominant		(%)	(2000-	(2000-	(2006-
				2015)	2015)	2015)
1 Modeling	wwt	0.74	1.20	11.50	10.40	0.42
2 Activated sludge	wwt	0.50	0.81	9.56	4.54	4.79
3 Oxidation	wwt	0.45	0.74	6.68	3.57	2.27
4 Membrane bioreactor	wwt	0.36	0.59	4.91	0.11	1.75
5 Sludge	wwt	0.31	0.50	5.44	1.66	0.42
6 Water supply	wwt	0.29	0.48	5.15	2.85	1.94
7 Filtration	wwt	0.29	0.47	4.90	2.93	0.83
8 Phenols	wwt	0.27	0.44	4.23	0.00	0.00
9 Biofilm	wwt	0.27	0.43	3.71	2.11	2.72
10 Water management	wwt	0.26	0.43	4.28	3.69	1.90
11 Denitrification	wwt	0.25	0.40	4.22	1.01	0.00
12 Nitrification	wwt	0.22	0.36	3.77	0.96	0.29
13 Reaction Kinetics	wwt	0.22	0.35	3.30	3.24	0.00
14 Optimization	wwt	0.19	0.31	2.78	0.76	1.93
15 Oxidation-Reduction	wwt	0.17	0.28	2.69	0.48	0.00
16 Coagulation	wwt	0.16	0.25	2.07	0.70	1.11
17 Groundwater	wwt	0.15	0.25	2.42	0.20	0.00
18 Iron	wwt	0.15	0.25	2.36	1.36	0.00
19 Catalysis	wwt	0.13	0.22	1.74	0.00	0.83
20 Isolation and purification	wwt	0.13	0.21	1.04	0.91	1.01
21 Microbial activity	wwt	0.11	0.18	1.07	0.92	0.47
22 Mass spectrometry	wwt	0.10	0.17	1.61	0.14	0.00
23 Microbial community	wwt	0.10	0.16	1.06	0.48	0.64
24 Water sampling	wwt	0.10	0.16	1.18	0.74	0.00
25 Irrigation	wwt	0.10	0.16	1.46	0.20	0.00
26 Contamination	wwt	0.09	0.14	1.09	0.57	0.00
27 Wastewater disposal	wwt	0.07	0.12	1.07	0.19	0.00
28 Soil	wwt	0.07	0.12	1.07	0.20	0.00
29 Aeration	wwt	0.07	0.12	0.95	0.00	0.38
30 Hydrogen peroxide	wwt	0.07	0.12	1.14	0.00	0.00
31 Ozonation	wwt	0.07	0.11	1.09	0.00	0.00
32 Ultraviolet radiation	wwt	0.07	0.11	0.98	0.19	0.00
33 Gadus morhua	wwt	0.07	0.11	0.97	0.19	0.00
34 Waste disposal	wwt	0.06	0.10	0.74	0.37	0.00
35 Photocatalysis	wwt	0.06	0.10	0.92	0.00	0.00
36 Ultrafiltration	wwt	0.06	0.09	0.86	0.00	0.00
37 Escherichia coli	wwt	0.05	0.08	0.57	0.30	0.00
38 Engineering	wwt	0.05	0.08	0.67	0.22	0.00
39 X ray diffraction	wwt	0.05	0.08	0.71	0.00	0.00
40 Titanium dioxide	wwt	0.05	0.08	0.71	0.00	0.00

-	Keyword (2000 to 2015)	Dataset where		ssimilarity	Mear	n abundance	
		keyword is	Average	Contribution	wwt	wwt/a	wwt/a/bf
		dominant		(%)	(2000- 2015)	(2000- 2015)	(2006- 2015)
41	Wastewater, textile mills	wwt	0.04	0.07	0.59	0.18	0.00
	Reactors	wwt	0.04	0.07	0.69	0.10	0.00
	Acids	wwt	0.04	0.07	0.48	0.29	0.00
	Drinking water	wwt	0.04	0.07	0.38	0.36	0.00
	Nanoparticles	wwt	0.04	0.06	0.30	0.16	0.21
	Chlorine/chloride	wwt	0.03	0.05	0.51	0.00	0.00
	Fouling	wwt	0.03	0.05	0.31	0.16	0.00
	Wastewater, papermill	wwt	0.03	0.04	0.40	0.00	0.00
	Anaerobic metabolism	wwt	0.02	0.04	0.26	0.16	0.00
	Sequencing Batch reactors	wwt	0.02	0.03	0.30	0.00	0.00
	Liquid chromatography Photodegradation	wwt wwt	0.02	0.03	0.23	0.00	0.00
	Chromatography	wwt	0.01	0.02	0.23	0.00	0.00
	Aromatic compounds	wwt	0.01	0.02	0.23	0.00	0.00
	Transmission electron microscopy	wwt	0.01	0.02	0.19	0.00	0.00
	Sorption	wwt/a	1.43	2.32	1.10	24.60	0.00
	(Waste) Nutrient removal	wwt/a	1.45	2.04	15.30	24.00	17.53
	Water Pollutants/pollution	wwt/a	1.25	2.03	19.00	28.90	5.89
59	Adsorption	wwt/a	1.22	1.97	9.70	23.40	0.00
	Management	wwt/a	0.98	1.59	20.10	26.30	20.70
	pH	wwt/a	0.87	1.41	11.50	20.80	5.36
	Heavy metals	wwt/a	0.85	1.38	5.97	16.40	0.21
	Environmental Impact	wwt/a	0.62	1.00	8.66	10.60	0.35
	Industrial waste	wwt/a	0.59	0.95	7.88	10.00	7.28
	Water Purification	wwt/a	0.53	0.85	8.02	11.70	7.02
	Isotherms Biodegradation	wwt/a wwt/a	0.49	0.79	0.24	8.17 12.50	0.00
	Water quality	wwt/a	0.44	0.69	7.74	12.30	3.44
	Oxygen demand	wwt/a	0.43	0.66	5.53	5.95	4.82
	Pollutants/pollution	wwt/a	0.40	0.65	5.43	6.23	5.41
	Chromium	wwt/a	0.39	0.63	2.32	6.90	0.00
72	Eutrophication	wwt/a	0.38	0.61	0.00	6.27	1.66
	Kinetics	wwt/a	0.38	0.61	4.51	8.22	0.78
	Bioremediation	wwt/a	0.37	0.60	2.66	6.84	6.23
	Copper	wwt/a	0.36	0.59	2.82	7.09	0.00
	Toxicity	wwt/a	0.36	0.59	3.13	7.36	0.98
	Cadmium	wwt/a	0.36	0.59	1.38	6.61	0.00
	Pond Dyes	wwt/a wwt/a	0.35	0.57	0.00 4.47	4.60	3.60
	Microbiology	wwt/a	0.33	0.50	4.47	4.81	3.14
	Drug	wwt/a	0.28	0.45	3.69	3.73	0.96
	Ammonia(um)	wwt/a	0.20	0.44	5.32	6.39	4.75
	Stabilization Pond	wwt/a	0.27	0.43	0.09	4.56	0.00
84	Temperature	wwt/a	0.26	0.42	4.00	6.32	3.10
	Rivers	wwt/a	0.25	0.40	2.38	3.47	0.70
	Zinc	wwt/a	0.24	0.39	2.18	4.61	0.00
	Wetlands	wwt/a	0.23	0.37	1.05	1.64	0.00
	Metals	wwt/a	0.23	0.37	0.94	3.83	0.00
	Ecosystems Toxicity testing	wwt/a wwt/a	0.22	0.35	0.44	3.62 3.55	0.00
	Thermodynamics	wwt/a wwt/a	0.20	0.33	0.00	3.55	0.00
	Metals ion	wwt/a wwt/a	0.19	0.30	0.12	2.85	0.00
	Nickel	wwt/a	0.18	0.30	0.39	2.83	0.00
	Activated Carbon	wwt/a	0.17	0.28	2.36	2.63	0.00
	Wastewater, industrial	wwt/a	0.17	0.27	1.77	2.18	0.00
96	Organic matter	wwt/a	0.17	0.27	2.25	2.40	0.00
07	Bioaccumulation	wwt/a	0.17	0.27	0.00	2.61	0.38
	Scanning electron microscopy	wwt/a	0.17	0.27	1.51	1.99	0.00
98			0.16	0.25	1.63	2.09	0.00
98 99	Water contamination	wwt/a				· · · · · · · · · · · · · · · · · · ·	
98 99 100	Water contamination Dissolved Oxygen demand	wwt/a	0.12	0.19	0.67	1.58	0.29
98 99 100 101	Water contamination Dissolved Oxygen demand Bioassay	wwt/a wwt/a	0.12	0.19 0.18	0.67 0.00	2.00	0.00
98 99 100 101 102	Water contamination Dissolved Oxygen demand	wwt/a	0.12	0.19	0.67		

	Keyword (2000 to 2015)	Dataset where	Dis	ssimilarity	Mear		
		keyword is	Average	Contribution	wwt	wwt/a	wwt/a/bf
		dominant		(%)	(2000- 2015)	(2000- 2015)	(2006- 2015)
105	Infrared spectroscopy	wwt/a	0.10	0.15	0.11	1.52	0.00
	Fresh Water	wwt/a	0.09	0.13	0.00	0.99	0.93
	Performance assessment	wwt/a	0.08	0.14	0.49	1.10	0.00
	Lemna	wwt/a	0.08	0.13	0.00	1.36	0.00
	Daphnia	wwt/a	0.07	0.11	0.00	1.17	0.0
110	Ecotoxicology	wwt/a	0.07	0.11	0.00	1.11	0.00
	Absorption	wwt/a	0.06	0.09	0.00	0.97	0.0
	Animal	wwt/a	0.05	0.09	0.10	0.60	0.3
-	Fisheries	wwt/a	0.05	0.08	0.00	0.89	0.00
	Fourier transform infrared spectroscopy	wwt/a	0.05	0.08	0.24	0.59	0.00
	Immobilization	wwt/a	0.05	0.07	0.00	0.77	0.00
	Toxic materials	wwt/a	0.04	0.07	0.00	0.74	0.00
	Precipitation	wwt/a	0.04	0.07	0.22	0.48	0.00
	Dewatering	wwt/a	0.04	0.06	0.13	0.39	0.29
	Lagoons	wwt/a	0.03	0.05	0.00	0.58	0.00
	Calcium	wwt/a	0.03	0.05	0.14	0.44	0.00
	Marine environment	wwt/a	0.03	0.05	0.00	0.55	0.00
	Liquid-solid separation	wwt/a	0.03	0.04	0.12	0.35	0.00
	Macrophyte	wwt/a	0.03	0.04	0.00	0.47	0.00
	Turbidity Seawater weed	wwt/a	0.03	0.04	0.00	0.47	0.00
	Acidity	wwt/a wwt/a	0.02	0.04	0.00	0.40	0.00
	Zooplankton	wwt/a	0.02	0.04	0.00	0.41	0.00
	Antibiotics	wwt/a	0.02	0.04	0.00	0.41	0.00
	Arsenic	wwt/a	0.02	0.03	0.13	0.10	0.00
	Biomass	wwt/a/bf			5.33		
	CO2/carbon	wwt/a/bf	3.11	5.04	0.23	21.30 2.02	72.80
	Bacteria	wwt/a/bf	1.23	1.83	16.40	2.02	30.40
	Microorganisms	wwt/a/bf	1.09	1.76	2.57	7.79	23.80
	Chlorella	wwt/a/bf	1.05	1.70	0.00	3.96	23.20
	Nutrient	wwt/a/bf	0.99	1.60	1.75	9.38	18.30
	Phosphorus	wwt/a/bf	0.83	1.34	5.35	13.60	17.00
137	Cultivation	wwt/a/bf	0.81	1.32	0.00	2.34	17.10
	Lipid	wwt/a/bf	0.80	1.29	0.00	2.62	16.60
	Anaerobic digester	wwt/a/bf	0.79	1.28	4.19	2.24	25.50
140	Energy	wwt/a/bf	0.76	1.24	0.00	0.16	18.30
	Fatty acid	wwt/a/bf	0.73	1.18	0.00	0.56	23.80
	Nitrogen	wwt/a/bf	0.71	1.16	7.55	12.80	16.50
	Renewable resources	wwt/a/bf	0.65	1.05	0.13	0.65	19.20
	Bioreactor	wwt/a/bf	0.63	1.02	14.90	10.30	16.80
	Wastewater reclamation	wwt/a/bf	0.63	1.02 1.00	7.12	4.73	9.50
	Electricity Photobioreactor	wwt/a/bf wwt/a/bf	0.62	0.90	0.00	1.30	<u> </u>
	Energy production	wwt/a/bf	0.56	0.90	0.00	0.00	18.90
	Cyanobacteria	wwt/a/bf	0.54	0.84	0.00	6.37	6.82
	Growth rate	wwt/a/bf	0.52	0.83	0.00	3.38	9.5
	Photosynthesis	wwt/a/bf	0.52	0.82	0.00	3.32	12.70
	Biotechnology	wwt/a/bf	0.50	0.81	0.68	3.71	10.20
	Chlorophyll	wwt/a/bf	0.49	0.80	0.00	6.09	7.28
	Metabolism	wwt/a/bf	0.48	0.79	3.11	4.70	12.30
	Ethanol	wwt/a/bf	0.48	0.77	0.00	0.00	15.30
	Methane	wwt/a/bf	0.43	0.70	1.55	0.48	14.00
	Oil content	wwt/a/bf	0.41	0.67	0.00	0.00	7.37
	Wastewater, Municipal	wwt/a/bf	0.41	0.66	0.86	0.61	9.03
	BOD	wwt/a/bf	0.41	0.66	4.87	5.28	8.8
	Fermentation	wwt/a/bf	0.40	0.65	0.00	0.00	16.80
	Ecology	wwt/a/bf	0.40	0.65	0.09	2.62	7.79
	Scenedesmus	wwt/a/bf	0.36	0.58	0.00	1.88	6.53
	Greenhouse gases	wwt/a/bf	0.36	0.58	0.00	0.00	13.50
	Nitrogen removal	wwt/a/bf	0.33	0.53	3.13	2.75	6.18
	Agriculture	wwt/a/bf	0.32	0.52	2.14	2.32	8.74
100	Water recycling Carbon	wwt/a/bf wwt/a/bf	0.30	0.49	2.46	1.57 3.78	3.20

	Keyword (2000 to 2015)	Dataset where	Di	ssimilarity	Mea	n abundance	(%)
		keyword is	Average	Contribution	wwt	wwt/a	wwt/a/bf
		dominant		(%)	(2000-	(2000-	(2006-
160	Anaerobiosis	wwt/a/bf	0.28	0.45	2015)	2015)	<u>2015)</u> 7.92
	Phytoplankton	wwt/a/bf	0.28	0.45	0.00	2.36	4.23
	Bioprocess	wwt/a/bf	0.27	0.44	1.35	2.30	2.68
	Electron transport	wwt/a/bf	0.27	0.43	0.00	0.00	11.00
	Lake	wwt/a/bf	0.25	0.41	0.00	2.58	3.64
	Growth	wwt/a/bf	0.25	0.41	0.11	1.25	4.59
	Carbohydrate	wwt/a/bf	0.24	0.39	0.00	0.00	8.18
	Light	wwt/a/bf	0.23	0.37	0.00	0.15	5.43
176	Hydraulic retention time	wwt/a/bf	0.22	0.36	0.54	1.36	5.39
	Nitrates	wwt/a/bf	0.22	0.35	2.75	1.75	2.87
	Electrochemistry	wwt/a/bf	0.21	0.33	0.50	0.24	4.70
	Organic Carbon	wwt/a/bf	0.20	0.33	1.03	0.34	5.74
	Calorimetry	wwt/a/bf	0.19	0.31	0.00	0.00	9.30
	Sugars	wwt/a/bf	0.19	0.31	0.00	0.16	9.09
	Cell Cultivation	wwt/a/bf	0.19	0.30	0.00	0.84	3.90
	Bioelectric Flocculation	wwt/a/bf wwt/a/bf	0.19	0.30	0.00 2.08	0.00	<u>5.17</u> 3.49
	Wastewaters, dairy	wwt/a/bf	0.18	0.30	2.08	0.00	4.98
	Life Cycle Assessment (LCA)	wwt/a/bf	0.18	0.29	0.00	0.00	4.98
	Extraction	wwt/a/bf	0.15	0.25	0.86	0.00	4.76
	Nutrition	wwt/a/bf	0.13	0.21	0.00	0.47	4.85
	Lipid production	wwt/a/bf	0.13	0.21	0.00	0.00	2.88
	Microalgae cultivation	wwt/a/bf	0.12	0.20	0.00	0.11	2.68
191	Water resources	wwt/a/bf	0.12	0.20	0.97	0.21	1.63
	Anaerobic growth	wwt/a/bf	0.12	0.19	0.00	0.00	5.20
	Energy crops	wwt/a/bf	0.12	0.19	0.00	0.00	5.24
	Lipid content	wwt/a/bf	0.12	0.19	0.00	0.00	2.97
	Batch reactors	wwt/a/bf	0.11	0.18	0.63	0.37	1.70
	Fungi Seawater	wwt/a/bf	0.11 0.10	0.18	0.00	1.00 0.78	1.65
	Costs	wwt/a/bf wwt/a/bf	0.10	0.16	0.00	0.78	<u> </u>
	Biochemistry	wwt/a/bf	0.09	0.13	0.83	0.17	0.93
	High Rate Pond	wwt/a/bf	0.09	0.14	0.20	0.22	1.81
	Dry weight	wwt/a/bf	0.09	0.14	0.00	0.00	2.37
	Glucose	wwt/a/bf	0.08	0.14	0.00	0.00	2.05
203	Manure	wwt/a/bf	0.08	0.13	0.00	0.00	1.95
	Mixotrophy	wwt/a/bf	0.08	0.13	0.00	0.00	1.89
	Eukaryota	wwt/a/bf	0.08	0.12	0.00	0.42	1.53
	Lipid metabolism	wwt/a/bf	0.08	0.12	0.00	0.00	1.79
	Growth medium	wwt/a/bf	0.07	0.11	0.00	0.00	1.90
	Wastewater Swine	wwt/a/bf	0.07	0.11	0.00	0.00	1.49
	Bioconversion Flue gases	wwt/a/bf wwt/a/bf	0.06	0.10	0.11 0.00	0.00	<u> </u>
	Proteins	wwt/a/bf	0.06	0.10	0.00	0.00	1.67
	Microbial Biomass	wwt/a/bf	0.00	0.09	0.00	0.00	0.96
	Sodium	wwt/a/bf	0.05	0.09	0.00	0.22	0.70
	Physiology	wwt/a/bf	0.05	0.08	0.16	0.14	0.82
	Lipid composition	wwt/a/bf	0.05	0.08	0.00	0.00	1.24
	Nutrient availability	wwt/a/bf	0.04	0.07	0.00	0.00	0.97
	Acutodesmus obliquus	wwt/a/bf	0.04	0.07	0.00	0.00	1.02
	Lipid storage	wwt/a/bf	0.04	0.07	0.00	0.00	0.95
	Spirulina	wwt/a/bf	0.04	0.07	0.00	0.00	1.01
	Animal feed	wwt/a/bf	0.04	0.06	0.00	0.00	1.00
	Chlorella pyrenoidosa	wwt/a/bf	0.04	0.06	0.00	0.00	0.85
	Environment	wwt/a/bf	0.04	0.06	0.00	0.18	0.70
	Biodiversity Sludge diggstion	wwt/a/bf	0.04	0.06	0.00	0.16	0.70
	Sludge digestion Nutrient uptake	wwt/a/bf wwt/a/bf	0.04	0.06	0.14	0.00	0.70
	Bioethanol	wwt/a/bf	0.03	0.05	0.00	0.00	0.78
	Phycoremediation	wwt/a/bf	0.03	0.03	0.00	0.00	0.77
	Bioactivity	wwt/a/bf	0.03	0.04	0.00	0.00	0.34
	Genetics	wwt/a/bf	0.02	0.04	0.20	0.00	0.33
229			5.02	0.01	5.15	0.00	0.57

Supplementary Table 2: Keywords inducing dissimilarities between publication datasets for years <u>1970 to 2015</u> (SIMPER analysis, Hammer et al., 2001); SIMPER analysis was carried out on keyword intensity datasets.

Keyword (1970 to 2015)	Dataset where		ssimilarity	Mea	an abundance	(%)
	keyword is	Average	Contribution	wwt	wwt/a	wwt/a/bf
	dominant		(%)	(2000-	(2000-	(2006-
				2015)	2015)	2015)
1 Environmental impact	wwt	0.89	1.25	9.32	7.40	0.35
2 Industrial waste	wwt	0.77	1.09	9.37	7.33	7.28
3 Activated sludge	wwt	0.66	0.92	9.11	4.65	4.79
4 Filtration	wwt	0.53	0.75	5.15	4.95	0.83
5 Oxidation	wwt	0.42	0.59	3.52	2.69	2.27
6 Wastewater, paper mill	wwt	0.40	0.57	2.74	2.35	0.00
7 Sludge	wwt	0.34	0.48	3.83	2.11	0.42
8 Water supply	wwt	0.33	0.46	3.63	1.87	1.94
9 Nitrification	wwt	0.29	0.41	3.13	1.96	0.29
10 Denitrification	wwt	0.28	0.40	2.89	1.78	0.00
11 Membrane bioreactor	wwt	0.26	0.37	2.63	0.05	1.75
12 Water management	wwt	0.25	0.35	1.91	1.77	1.90
13 Reaction kinetics	wwt	0.24	0.33	2.49	1.78	0.00
14 Phenols	wwt	0.23	0.32	2.50	0.54	0.00
15 Irrigation	wwt	0.22	0.31	1.78	1.33	0.00
16 Aeration	wwt	0.22	0.31	1.62	1.23	0.38
17 Costs	wwt	0.21	0.30	1.80	1.03	1.14
18 Activated carbon	wwt	0.20	0.28	2.13	1.17	0.00
19 Sanitation	wwt	0.19	0.27	1.23	0.94	0.00
20 Waste disposal	wwt	0.18	0.25	1.70	0.37	0.00
21 Groundwater	wwt	0.17	0.23	1.48	0.81	0.00
22 Ozonation	wwt	0.16	0.22	1.07	0.67	0.00
23 Soil	wwt	0.14	0.20	1.22	0.55	0.00
24 Sludge disposal	wwt	0.14	0.19	0.93	0.70	0.00
25 Iron	wwt	0.12	0.16	0.98	0.88	0.00
26 Law and regulations	wwt	0.12	0.16	0.73	0.62	0.00
27 Oxidation-reduction	wwt	0.11	0.15	1.15	0.21	0.00
28 Wastewater disposal	wwt	0.09	0.13	0.92	0.29	0.00
29 Contamination	wwt	0.07	0.10	0.57	0.39	0.00
30 Hydrogen peroxide	wwt	0.07	0.10	0.64	0.17	0.00
31 Gadus morhua	wwt	0.07	0.09	0.66	0.17	0.00
32 Ultraviolet radiation	wwt	0.06	0.09	0.49	0.27	0.00
33 Reactors	wwt	0.06	0.08	0.64	0.00	0.00
34 Ultrafiltration	wwt	0.06	0.08	0.67	0.00	0.00
35 Mass spectrometry	wwt	0.06	0.08	0.58	0.14	0.00
36 Reverse osmosis	wwt	0.06	0.08	0.54	0.00	0.00
37 Diseases	wwt	0.04	0.06	0.25	0.13	0.00
38 Photocatalysis	wwt	0.03	0.04	0.33	0.00	0.00
39 Acids	wwt	0.02	0.03	0.19	0.12	0.00
40 X ray diffraction	wwt	0.02	0.03	0.26	0.00	0.00
41 Titanium dioxide	wwt	0.02	0.03	0.26	0.00	0.00
42 Methanogenesis	wwt	0.02	0.03	0.13	0.08	0.00
43 Volatile Pollutants/pollution	wwt	0.02	0.02	0.20	0.00	0.00
44 Sequencing batch reactors	wwt	0.02	0.02	0.11	0.07	0.00
45 Desalination	wwt	0.02	0.02	0.14	0.00	0.00
46 Water reclamation	wwt	0.01	0.02	0.15	0.00	0.00

dominant C (%) (2000)- (2000)- (2000)- (2015) 2015 47 Fouling wvt 0.01 0.02 0.01 0.02 0.01 0.07 0 49 Detargents wvt 0.01 0.02 0.08 0.077 0 49 Sindge devatering wvt 0.01 0.01 0.08 0.09 0 51 Liquid chromatography wvt 0.01 0.01 0.08 0.09 0 52 Photodegradation wvt 0.01 0.01 0.07 0.00 0 53 Informatic compounds wvt 0.01 0.01 0.07 0.00 0 54 Transmission electron microscopy wvt 0.00 0.01 0.05 0.00 0 53 Sorption wvt 0.00 0.01 0.04 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Keyword (1970 to 2015)	Dataset where		ssimilarity	Mea	an abundance	
Image: Image:<		keyword is	Average	Contribution			wwt/a/bf
47 [caling wwt 0.01 0.02 0.01 0.02 0.01 0.02 0.03 0.07 0 44 [Shidge dewatering wwt 0.01 0.02 0.13 0.00 0 50 [Liquid chromatography wwt 0.01 0.01 0.08 0.00 0 51 [Liquid chromatography wwt 0.01 0.01 0.08 0.00 0 52 [Potoclaggrafiation wwt 0.01 0.01 0.07 0.00 0 54 [Water reuse wwt 0.01 0.01 0.05 0.00 0 55 [Water reuse wwt 0.00 0.01 0.05 0.00 0 57 [Potymers wwt 0.00 0.01 0.04 0.00 0 60 [Matrian removal wwta 1.64 2.30 7.57 1.99 1.23 1.88 0 2.90 1.0 61 [Matagement wwta 1.28 1.80 1.64 0.24.00 5 5 5		dominant		(%)			(2006-
48 Description wwt 0.01 0.02 0.08 0.07 0 50 Drainage wwt 0.01 0.01 0.01 0.08 0.00 0 51 Liquid chromatography wwt 0.01 0.01 0.08 0.00 0 52 Photodegradation wwt 0.01 0.01 0.07 0.00 0 54 Transmission electron microscopy wwt 0.01 0.01 0.05 0.00 0 55 Mater rease wwt 0.00 0.01 0.05 0.00 0 56 Suffur wwt 0.00 0.01 0.04 0.00 0 58 Biological filtration beds wwt 0.00 0.01 0.04 0.00 0	47 Easting	4	0.01	0.02	,		2015)
49 Studge dewatering wwt 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0 51 Liquid chromatography wwt 0.01 0.01 0.08 0.00 0 52 Photodegradution wwt 0.01 0.01 0.07 0.00 0 54 Itansmission electron microscopy wwt 0.01 0.01 0.06 0.00 0 56 Water reuse wwt 0.00 0.01 0.05 0.00 0 57 Polymer wwt 0.00 0.01 0.04 0.00 0 58 Jacobic reatment wwt 0.00 0.01 0.04 0.00 0 60 Management wwta 1.64 2.30 7.57 19.90 11 61 Management wwta 1.08 1.52 0.50 13.50 0 62 Vater Politants polution wwta 1.04 <							0.00
50 Dirainage wwt 0.01 0.01 0.01 0.00 0.00 51 Liquid formatography wwt 0.01 0.01 0.08 0.00 0.00 52 Pronatic compounds wwt 0.01 0.01 0.07 0.00 0.01 54 Transmission electron microscopy wwt 0.01 0.01 0.05 0.00 0.03 54 Mater rease wwt 0.00 0.01 0.05 0.00 0.01 54 Priorization wwt 0.00 0.01 0.04 0.00 0.01 0.04 0.00 0.01 0.04 0.00 0.01 0.04 0.00 0.01 0.04 0.00 0.01 0.04 0.00 0.01 0.04 0.00 0.01 0.04 0.00 0.01 0.04 0.00 0.01 0.04 0.00 0.01 0.04 0.00 0.01 0.04 0.00 0.01 0.04 0.00 0.01 0.04 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0.00</td></t<>							0.00
[1] Liquid chromatography wwt 0.01 0.01 0.08 0.00 0.0 [3] Photodegradation wwt 0.01 0.01 0.07 0.00 0.00 [5] Iransmission electron microscopy wwt 0.01 0.01 0.07 0.00 0.00 [5] Water reuse wwt 0.01 0.01 0.05 0.00 0.0 [5] Bolymers wwt 0.00 0.01 0.05 0.00 0.0 [5] Bolymers wwt 0.00 0.01 0.04 0.00 0.0 [5] Bolymers wwt 0.00 0.01 0.04 0.00 0.0 [6] Management wwt/a 1.64 2.30 7.57 19.90 1. [6] Management wwt/a 1.28 1.80 16.40 20.40 5 [6] Management wwt/a 1.05 1.42 1.00 14.20 0 [6] Management wwt/a 1.04 1.46 5.76 12.90 5							0.00
52 Detodegradation wwt 0.01 0.01 0.08 0.00 0.00 53 Aromatic compounds wwt 0.01 0.01 0.07 0.00 0.00 54 Transmission electron microscopy wwt 0.01 0.06 0.00 0.05 55 Watr reuse wwt 0.00 0.01 0.05 0.00 0.00 57 Polymers wwt 0.00 0.01 0.04 0.00 0.00 58 Biological filtration beds wwt 0.00 0.01 0.04 0.00 0.00 59 Aerobic treatment wwt 0.00 0.01 0.04 0.00 0.00 60 Nottreintermoval wwt/a 1.64 1.64 2.04 0.75 1.990 1.0 61 Management wwt/a 1.04 1.42 1.04 1.42 0.01 1.02 1.43 5.07 1.24.0 0.0 64 Modeling wwt/a							0.00
33 Aromatic compounds wwt 0.01 0.01 0.07 0.00 0.0 55 Water reuse wwt 0.01 0.01 0.06 0.00 0.0 56 Sulfur wwt 0.00 0.01 0.05 0.00 0.0 56 Sulfur wwt 0.00 0.01 0.05 0.00 0.0 58 Biological filtration beds wwt 0.00 0.01 0.04 0.00 0.0 60 Nutrient removal wwta 1.64 2.30 7.57 19.90 1. 61 Management wwta 1.22 1.80 16.40 0.00 0.0 62 Water Pollutants/pollution wwta 1.08 1.52 0.50 13.50 0.0 64 Modeling wwta 1.02 1.43 5.70 12.40 0.0 65 Jell wwta 0.74 1.04 3.70 9.83 0.0 66 Adsorption wwta 0.63 0.98 0.17 8.01 3 01							0.00
s4 Transmission electron microscopy wwt 001 001 0.07 0.000 0 55 Watr reuse wwt 0.00 0.01 0.05 0.00 0 57 Rological filtration beds wwt 0.00 0.01 0.04 0.00 0 58 Biological filtration beds wwt 0.00 0.01 0.04 0.00 0 60 Nutrient removal wwt/a 1.69 2.33 1.880 1.64 2.04.00 5 62 Water Pollutants/pollution wwt/a 1.08 1.64 2.04.00 5 64 Modeling wwt/a 1.08 1.40 1.20 1.42 1.60 1.49 1.100 1.42 2.00 5 66 1.20 5.07 1.03 1.42 0.01 5 6 1.30 1.42 1.42 0.01 3 0 0 6 1.40 0.10 3 1.04 3.70 9.83 0							0.00
SE Water reuse wwt 0.01 0.01 0.06 0.00 0 56 Sulfur wwt 0.00 0.01 0.05 0.00 0 57 Polymers wwt 0.00 0.01 0.05 0.00 0 58 Biological filtration beds wwt 0.00 0.01 0.04 0.00 0 69 Acrobic treatment wwt/a 1.64 2.30 7.57 19.90 1 60 Muntrent removal wwt/a 1.59 2.23 18.80 26.90 2 62 Water Pollutants/pollution wwt/a 1.08 1.52 0.50 13.50 0 64 Modeling wwt/a 1.04 1.44 5.76 12.90 5 66 Adsorption wwt/a 0.74 1.04 3.70 2.98 3 69 Mater quality wwt/a 0.68 0.68 0.61 3.72.6 0 71 Biodegranditon wwt/a 0.63 0.88 0.12 6.696 1 71 Biodegranditon wwt/a 0.51 0.75 6.57 7.23 6							0.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		wwt					0.00
58 Biological filtration beds wwt 0.00 0.01 0.04 0.00 0 59 Acrobic treatment wwt/a 1.64 2.30 7.57 19.90 1 61 Management wwt/a 1.59 2.23 18.80 16.40 20.40 5 62 Water Pollutanis/pollution wwt/a 1.08 1.52 0.50 13.50 0 64 Modeling wwt/a 1.06 1.49 11.90 14.20 0 65 Sorption wwt/a 1.04 1.46 5.76 12.90 5 66 Adsorption wwt/a 0.74 1.04 3.70 9.83 0 67 Heary metals wwt/a 0.70 0.99 0.17 8.01 3 70 Eutrophication wwt/a 0.63 0.86 0.96 5.50 10.50 3 70 Eutrophication wwt/a 0.63 0.75 4.53 6.60 5 71 Biodgeradation wwt/a 0.53 0.75 6.1	56 Sulfur	wwt	0.00	0.01	0.05	0.00	0.00
59 Aerobic treatment wwt 0.00 0.01 0.04 0.00 00 60 Nutrient removal wwt/a 1.64 2.30 7.57 19.90 11 61 Management wwt/a 1.28 1.80 16.40 20.40 52 62 Water Pollutants/pollution wwt/a 1.08 1.52 0.50 13.50 0 64 Modeling wwt/a 1.06 1.49 11.90 14.20 0 65 Jator 1.04 1.46 5.76 12.40 0 66 Adsorption wwt/a 0.74 1.04 3.70 12.40 0 66 Adsorption wwt/a 0.74 1.04 3.70 12.80 0 70 Biodegradation wwt/a 0.63 0.88 0.12 6.56 7.23 6 71 Biodegradation wwt/a 0.53 0.75 4.53 6.60 5 71		wwt					0.00
60 Nutrient removal wwt/a 1.64 2.30 7.57 19.90 1 61 Management wwt/a 1.28 1.80 16.40 20.40 5 62 Water Pollutants/pollution wwt/a 1.08 1.52 0.50 13.50 0 64 Modeling wwt/a 1.06 1.49 11.90 14.20 0 65 plf wwt/a 1.04 1.46 5.76 12.90 5 66 Adsorption wwt/a 1.02 1.43 5.07 12.40 0 67 Heavy metals wwt/a 0.74 1.04 3.70 9.83 0 69 Pater quality wwt/a 0.63 0.88 0.12 6.96 1 70 Eutrophication wwt/a 0.63 0.87 5.61 7.23 6 72 Toxicity wwt/a 0.51 0.75 4.33 6.60 5 71 Biod		wwt				1	0.00
61 Management wwt/a 1.59 2.23 18.80 26.90 22 62 Water Pollutants/pollution wwt/a 1.08 1.80 16.40 20.40 5 63 Sorption wwt/a 1.08 1.52 0.50 13.50 0 64 Modeling wwt/a 1.04 1.49 11.90 14.20 0 65 pH wwt/a 1.02 1.43 5.07 12.40 0 67 Heavy metals wwt/a 0.74 1.04 3.70 9.83 0 68 Pond wwt/a 0.70 0.99 0.17 8.01 3 70 Eutophication wwt/a 0.63 0.88 0.12 6.96 1 71 Biodegradation wwt/a 0.53 0.75 4.53 6.60 5 72 Doxicity wwt/a 0.53 0.75 6.17 6.57 6 7 Minonia(um) wwt/a </td <td>59 Aerobic treatment</td> <td>wwt</td> <td>0.00</td> <td>0.01</td> <td>0.04</td> <td>0.00</td> <td>0.00</td>	59 Aerobic treatment	wwt	0.00	0.01	0.04	0.00	0.00
fc2 Water Pollutants/pollution wwt/a 1.28 1.80 16.40 20.40 55 63 Sorption wwt/a 1.08 1.52 0.50 13.50 0 64 Modeling wwt/a 1.06 1.49 11.90 14.20 0 65 pH wwt/a 1.04 1.46 5.76 12.90 5 66 Adsorption wwt/a 0.74 1.04 3.70 9.83 0 67 Heavy metals wwt/a 0.68 0.96 5.50 10.50 3 70 Eutrophication wwt/a 0.63 0.88 0.12 6.96 1 71 Biodgradation wwt/a 0.53 0.75 4.53 6.60 5 72 Extrophication wwt/a 0.53 0.75 6.17 6.57 6 73 Pollutants/pollution wwt/a 0.48 0.67 0.09 4.30 3 7.700 4 <	60 Nutrient removal	wwt/a					16.70
63 Sorption wwt/a 1.08 1.52 0.50 13.50 0 64 Modeling wwt/a 1.06 1.49 11.90 14.20 0 65 pH wwt/a 1.04 1.46 5.76 12.90 S 66 Adsorption wwt/a 1.02 1.43 5.07 12.40 0 67 Heavy metals wwt/a 0.74 1.04 3.70 9.83 0 68 Pond wwt/a 0.70 0.99 0.17 8.01 3 69 Water quality wwt/a 0.63 0.88 0.12 6.97 1.3 70 Eutophication wwt/a 0.61 0.87 5.65 7.23 6 72 Toxicity wwt/a 0.51 0.72 3.27 7.00 4 74 Chemical Oxygen Demand wwt/a 0.48 0.66 4.03 4.06 3 77 Microbiology							20.70
64 Modeling wwt/a 1.06 1.49 11.90 14.20 0 65 pH wwt/a 1.04 1.46 5.76 12.90 5 66 Adsorption wwt/a 1.02 1.43 5.07 12.40 0 67 Heavy metals wwt/a 0.74 1.04 3.70 9.83 0 68 Pond wwt/a 0.68 0.99 0.17 8.01 3 69 Water quality wwt/a 0.63 0.88 0.12 6.96 1 17 Biodegradation wwt/a 0.53 0.75 6.17 6.57 2.6 72 Toxicity wwt/a 0.53 0.75 6.17 6.57 6.0 74 Chemical Oxygen Demand wwt/a 0.48 0.67 0.09 4.30 3 77 Microbiology wwt/a 0.44 0.62 1.84 4.06 3 78 Stabilization pond<							5.89
65 pH wwt/a 1.04 1.46 5.76 12.90 5 66 Adsorption wwt/a 1.02 1.43 5.07 12.40 0 67 Heavy metals wwt/a 0.74 1.04 3.70 9.83 0 68 Pond wwt/a 0.74 1.04 3.70 9.83 0 69 Water quality wwt/a 0.63 0.88 0.12 6.96 1 71 Biodegradation wwt/a 0.62 0.87 5.65 7.23 6 72 Toxicity wwt/a 0.53 0.75 4.53 6.60 5 74 Chemical Oxygen Demand wwt/a 0.51 0.72 3.27 7.00 4 76 Lake wwt/a 0.48 0.67 0.09 4.30 3 77 Microbiology wwt/a 0.44 0.62 0.18 5.45 0 78 Stabilization pond							0.00
66 Adsorption wwt/a 1.02 1.43 5.07 12.40 0 67 Heavy metals wwt/a 0.74 1.04 3.70 9.83 0 68 Pond wwt/a 0.70 0.99 0.17 8.01 3 69 Water quality wwt/a 0.63 0.88 0.12 6.96 1 70 Eutrophication wwt/a 0.63 0.87 5.65 7.2.3 6 71 Biodegradation wwt/a 0.53 0.75 4.53 6.60 5 74 Chemical Oxygen Demand wwt/a 0.53 0.75 6.17 6.57 6 75 Ammonia(um) wwt/a 0.48 0.67 0.09 4.30 3 76 Itants/pollution pond wwt/a 0.44 0.62 0.18 5.45 0 78 Stabilization pond wwt/a 0.42 0.60 1.28 4.77 0 80	-						0.42
67 Heavy metals wwt/a 0.74 1.04 3.70 9.83 0 68 Pond wwt/a 0.70 0.99 0.17 8.01 3 69 Water quality wwt/a 0.68 0.96 5.50 10.50 3 70 Eutrophication wwt/a 0.62 0.87 5.65 7.23 6 71 Biodegradation wwt/a 0.53 0.75 6.17 6.57 6 72 Toxicity wwt/a 0.53 0.75 6.17 6.57 6 74 Chemical Oxygen Demand wwt/a 0.43 0.65 4.03 4.06 3 75 Ammonia(um) wwt/a 0.44 0.65 4.03 4.06 3 77 Microbiology wwt/a 0.44 0.62 0.18 5.45 0 78 Stabilization pond wwt/a 0.42 0.60 1.53 5.16 0 79 Rivers wwt/a 0.39 0.54 1.53 5.15 0 0							5.36
68 Pond wwt/a 0.70 0.99 0.17 8.01 33 69 Water quality wwt/a 0.68 0.96 5.50 10.50 33 70 Eutrophication wwt/a 0.63 0.88 0.12 6.96 11 71 Biodegradation wwt/a 0.63 0.88 0.12 6.96 11 71 Diodegradation wwt/a 0.63 0.87 5.65 7.23 66 71 Diodegradation wwt/a 0.53 0.75 4.53 6.60 5 74 Chemical Oxygen Demand wwt/a 0.51 0.72 3.27 7.00 4 76 Lake wwt/a 0.48 0.67 0.09 4.30 3 77 Microbiology wwt/a 0.44 0.62 0.18 5.45 0 79 Rivers wwt/a 0.39 0.54 1.53 5.16 0 2 80							0.00
69 Water quality wwt/a 0.68 0.96 5.50 10.50 3 70 Eutrophication wwt/a 0.62 0.87 5.65 7.23 6 71 Biodegradation wwt/a 0.52 0.87 5.65 7.23 6 72 Toxicity wwt/a 0.53 0.75 6.17 6.57 6 74 Chemical Oxygen Demand wwt/a 0.53 0.75 6.17 6.57 6 74 Chemical Oxygen Demand wwt/a 0.48 0.67 0.09 4.30 3 77 Microbiology wwt/a 0.44 0.65 4.03 4.06 3 77 Microbiology wwt/a 0.44 0.62 1.28 4.77 0 80 Copper wwt/a 0.39 0.54 1.53 5.16 0 81 Bioprocess wwt/a 0.33 0.54 0.86 4.78 0 82 Cadmium wwt/a 0.33 0.47 0.28 3.59 0 0							0.21
70 Eutrophication wwt/a 0.63 0.88 0.12 6.96 1 71 Biodegradation wwt/a 0.62 0.87 5.65 7.23 6 72 Toxicity wwt/a 0.53 0.75 4.53 6.60 5 74 Chemical Oxygen Demand wwt/a 0.53 0.75 6.17 6.57 6 75 Ammonia(um) wwt/a 0.43 0.72 3.27 7.00 4 76 Lake wwt/a 0.48 0.67 0.09 4.30 3 77 Microbiology wwt/a 0.44 0.62 0.18 5.45 0 79 Rivers wwt/a 0.42 0.60 1.28 4.77 0 80 Copper wwt/a 0.38 0.54 1.53 3.55 2 81 Bioprocess wwt/a 0.37 0.52 2.29 4.11 0 83 Kinetics wwt/a 0.33 0.47 0.28 3.59 0 84 Temperature wwt							3.60
71 Biodegradation wwt/a 0.62 0.87 5.65 7.23 6 72 Toxicity wwt/a 0.57 0.81 2.03 7.26 0 73 Pollutants/pollution wwt/a 0.53 0.75 6.17 6.57 6 74 Chemical Oxygen Demand wwt/a 0.51 0.72 3.27 7.00 4 75 Ammonia(um) wwt/a 0.48 0.67 0.09 4.30 3 77 Microbiology wwt/a 0.46 0.65 4.03 4.06 3 78 Stabilization pond wwt/a 0.42 0.60 1.28 4.77 0 80 Copper wwt/a 0.39 0.54 1.53 3.56 2 2damium wwt/a 0.38 0.54 0.86 4.78 0 81 Bioprocess wwt/a 0.31 0.43 1.09 3.60 0 84 Temperature							3.44 1.66
72 Toxicity wwt/a 0.57 0.81 2.03 7.26 0.73 73 Pollutants/pollution wwt/a 0.53 0.75 4.53 6.60 55 74 Chemical Oxygen Demand wwt/a 0.51 0.75 6.17 6.57 6.77 75 Ammonia(um) wwt/a 0.48 0.67 0.09 4.30 33 77 Microbiology wwt/a 0.44 0.62 0.18 5.45 0.67 78 Stabilization pond wwt/a 0.44 0.62 0.18 5.45 0.67 79 Rivers wwt/a 0.44 0.62 1.53 5.16 0.67 80 Copper wwt/a 0.34 0.64 1.53 3.55 2.2 81 Emperature wwt/a 0.33 0.54 0.86 4.78 0.6 83 Kinetics wwt/a 0.33 0.47 0.28 3.59 0.6 84 Temperature wwt/a							6.90
73 Pollutants/pollution wwt/a 0.53 0.75 4.53 6.60 55 74 Chemical Oxygen Demand wwt/a 0.53 0.75 6.17 6.57 6 75 Ammonia(um) wwt/a 0.51 0.72 3.27 7.00 4 76 Lake wwt/a 0.48 0.67 0.09 4.30 3 77 Microbiology wwt/a 0.44 0.62 0.18 5.45 0 78 Stabilization pond wwt/a 0.44 0.62 0.18 5.45 0 79 Rivers wwt/a 0.44 0.62 0.18 5.45 0 80 Copper wwt/a 0.39 0.54 1.53 3.55 2 0 81 Bioprocess wwt/a 0.37 0.52 2.29 4.11 0 82 Cadmium wwt/a 0.33 0.47 0.28 3.59 0 84 <							0.90
74 Chemical Öxygen Demand wwt/a 0.53 0.75 6.17 6.57 6 75 Ammonia(um) wwt/a 0.51 0.72 3.27 7.00 4 76 Lake wwt/a 0.48 0.67 0.09 4.30 3 77 Microbiology wwt/a 0.44 0.62 0.18 5.45 0 78 Stabilization pond wwt/a 0.42 0.60 1.28 4.77 0 80 Copper wwt/a 0.42 0.60 1.28 4.77 0 80 Copper wwt/a 0.39 0.54 1.53 3.55 2 80 Cadmium wwt/a 0.37 0.52 2.29 4.11 0 83 Kinetics wwt/a 0.33 0.47 0.28 3.59 0 84 Temperature wwt/a 0.31 0.43 1.09 3.60 0 85 Fisheries w							5.41
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							6.39
77Microbiologywwt/a 0.46 0.65 4.03 4.06 3 78Stabilization pondwwt/a 0.44 0.62 0.18 5.45 0 79Riverswwt/a 0.42 0.60 1.28 4.77 0 80Copperwwt/a 0.39 0.54 1.53 5.16 0 81Bioprocesswwt/a 0.39 0.54 1.53 3.55 2 82Cadmiumwwt/a 0.38 0.54 0.86 4.78 0 83Kineticswwt/a 0.37 0.52 2.29 4.11 0 84Temperaturewwt/a 0.33 0.47 0.28 3.59 0 86Chromiumwwt/a 0.31 0.43 1.09 3.60 0 87Eagoonswwt/a 0.30 0.42 0.09 3.65 0 88Isothermswwt/a 0.30 0.42 0.09 3.65 0 90Chlorine/chloridewwt/a 0.29 0.40 2.58 2.74 0 91Dyeswwt/a 0.28 0.40 1.84 2.24 0 92Ecosystemswwt/a 0.28 0.40 1.84 2.24 0 93Drugwwt/a 0.28 0.40 1.84 2.24 0 94Organic matterwwt/a 0.22 0.35 1.40 2.11 0 94Organic matterwwt/							4.75
78 Stabilization pond wwt/a 0.44 0.62 0.18 5.45 0.79 Rivers wwt/a 0.42 0.60 1.28 4.77 0.79 80 Copper wwt/a 0.39 0.54 1.53 5.16 0.60 81 Bioprocess wwt/a 0.39 0.54 1.53 3.55 2.2 82 Cadmium wwt/a 0.37 0.52 2.29 4.11 0.60 83 Kinetics wwt/a 0.33 0.47 0.28 3.59 0.60 84 Cromium wwt/a 0.31 0.43 1.09 3.60 0.60 85 Fisheries wwt/a 0.30 0.43 0.08 3.10 0.60 86 Chromium wwt/a 0.29 0.40 2.58 2.74 0.60 89 Wastewater, industrial wwt/a 0.29 0.40 0.70 2.53 0.60 90 Chorine/chloride wwt/a 0.28 <td< td=""><td>76 Lake</td><td>wwt/a</td><td>0.48</td><td>0.67</td><td>0.09</td><td>4.30</td><td>3.64</td></td<>	76 Lake	wwt/a	0.48	0.67	0.09	4.30	3.64
79Riverswwt/a 0.42 0.60 1.28 4.77 0.60 80Copperwwt/a 0.40 0.56 1.53 5.16 0.60 81Bioprocesswwt/a 0.39 0.54 1.53 3.55 2.60 82Cadmiumwwt/a 0.38 0.54 0.86 4.78 0.60 83Kineticswwt/a 0.37 0.52 2.29 4.11 0.60 84Temperaturewwt/a 0.35 0.49 2.04 4.05 3.66 85Fisherieswwt/a 0.33 0.47 0.28 3.59 0.60 86Chromiumwwt/a 0.30 0.43 1.09 3.60 0.60 87Lagoonswwt/a 0.30 0.43 0.08 3.10 0.68 88Isothermswwt/a 0.30 0.42 0.09 3.65 0.60 89Wastewater, industrialwwt/a 0.29 0.40 2.58 2.74 0.60 90Chlorine/chloridewwt/a 0.28 0.40 1.84 2.24 0.60 91Dyeswwt/a 0.28 0.40 0.25 3.42 0.60 91Dyeswwt/a 0.28 0.40 1.84 2.24 0.60 92Ecosystemswwt/a 0.28 0.40 0.25 3.42 0.60 93Drugwwt/a 0.25 0.35 1.29 2.78 0.60 <td< td=""><td></td><td>wwt/a</td><td></td><td>0.65</td><td>4.03</td><td>4.06</td><td>3.14</td></td<>		wwt/a		0.65	4.03	4.06	3.14
80 Copper wwt/a 0.40 0.56 1.53 5.16 0 81 Bioprocess wwt/a 0.39 0.54 1.53 3.55 2 82 Cadmium wwt/a 0.38 0.54 0.86 4.78 0 83 Kinetics wwt/a 0.37 0.52 2.29 4.11 0 84 Temperature wwt/a 0.35 0.49 2.04 4.05 3 85 Fisheries wwt/a 0.33 0.47 0.28 3.59 0 86 Chromium wwt/a 0.30 0.43 1.09 3.60 0 87 Lagoons wwt/a 0.30 0.42 0.09 3.65 0 88 Isotherms wwt/a 0.29 0.40 2.58 2.74 0 90 Chlorine/chloride wwt/a 0.28 0.40 1.84 2.24 0 91 Dyes wwt/a 0.28 0.40 0.25 3.42 0 92 Ecosystems wwt/a 0.2	78 Stabilization pond	wwt/a	0.44	0.62	0.18	5.45	0.00
81 Bioprocess wwt/a 0.39 0.54 1.53 3.55 22 82 Cadmium wwt/a 0.38 0.54 0.86 4.78 0.66 83 Kinetics wwt/a 0.37 0.52 2.29 4.11 0.66 84 Temperature wwt/a 0.35 0.49 2.04 4.05 3.59 85 Fisheries wwt/a 0.33 0.47 0.28 3.59 0.66 86 Chromium wwt/a 0.31 0.43 1.09 3.60 0.60 87 Lagoons wwt/a 0.30 0.43 0.08 3.10 0.66 88 Isotherms wwt/a 0.29 0.40 2.58 2.74 0.69 90 Chlorine/chloride wwt/a 0.28 0.40 0.76 2.53 0.60 91 Dyes wwt/a 0.28 0.40 0.25 3.42 0.60 92 Ecosystems wwt/a 0.25 0.35 1		wwt/a	0.42	0.60			0.70
82 (admium)wwt/a0.380.540.864.78083 Kineticswwt/a0.370.522.294.11084 Femperaturewwt/a0.350.492.044.05385 							0.00
83Kineticswwt/a 0.37 0.52 2.29 4.11 0.6 84Temperaturewwt/a 0.35 0.49 2.04 4.05 3.3 85Fisherieswwt/a 0.33 0.47 0.28 3.59 0.6 86Chromiumwwt/a 0.31 0.43 1.09 3.60 0.6 87Lagoonswwt/a 0.30 0.43 0.08 3.10 0.6 88Isothermswwt/a 0.30 0.42 0.09 3.65 0.6 89Wastewater, industrialwwt/a 0.29 0.40 2.58 2.74 0.6 90Chlorine/chloridewwt/a 0.29 0.40 0.70 2.53 0.6 91Dyeswwt/a 0.28 0.40 1.84 2.24 0.6 92Ecosystemswwt/a 0.28 0.40 1.84 2.24 0.6 93Drugwwt/a 0.25 0.35 1.29 2.78 0.6 94Organic matterwwt/a 0.25 0.35 1.29 2.78 0.6 95Surface waterswwt/a 0.23 0.33 1.17 2.65 0.6 96Coliformswwt/a 0.22 0.31 0.06 2.41 0.6 97Zincwwt/a 0.22 0.33 1.17 2.65 0.6 98Food industrywwt/a 0.22 0.31 0.06 2.41 0.6 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>2.68</td></t<>							2.68
84 Temperaturewwt/a 0.35 0.49 2.04 4.05 3.3 85 Fisherieswwt/a 0.33 0.47 0.28 3.59 0.35 86 Chromiumwwt/a 0.31 0.43 1.09 3.60 0.60 87 Lagoonswwt/a 0.30 0.43 0.08 3.10 0.60 88 Isothermswwt/a 0.30 0.42 0.09 3.65 0.60 89 Wastewater, industrialwwt/a 0.29 0.40 2.58 2.74 0.60 90 Chlorine/chloridewwt/a 0.29 0.40 0.70 2.53 0.60 91 Dyeswwt/a 0.28 0.40 1.84 2.24 0.60 92 Ecosystemswwt/a 0.28 0.40 1.84 2.24 0.60 93 Drugwwt/a 0.25 0.35 1.29 2.78 0.60 94 Organic matterwwt/a 0.25 0.35 1.29 2.78 0.60 95 Surface waterswwt/a 0.25 0.35 0.60 2.44 0.60 96 Coliformswwt/a 0.22 0.33 1.17 2.65 0.60 98 Food industrywwt/a 0.22 0.31 0.06 2.41 0.60 99 Aquaculturewwt/a 0.22 0.31 0.06 2.41 0.60 100 Daphniawwt/a 0.19 0.27 0.92 1.32 0.60 103 Metalswwt/a 0.18 0.26 0.38 2.18 0.60 <		wwt/a	0.38		0.86	4.78	0.00
85Fisherieswwt/a 0.33 0.47 0.28 3.59 0.60 86Chromiumwwt/a 0.31 0.43 1.09 3.60 0.60 87Lagoonswwt/a 0.30 0.43 0.08 3.10 0.60 88Isothermswwt/a 0.30 0.42 0.09 3.65 0.60 89Wastewater, industrialwwt/a 0.29 0.40 2.58 2.74 0.60 90Chlorine/chloridewwt/a 0.29 0.40 0.70 2.53 0.60 91Dyeswwt/a 0.28 0.40 1.84 2.24 0.60 92Ecosystemswwt/a 0.28 0.40 1.84 2.24 0.60 93Drugwwt/a 0.28 0.40 0.25 3.42 0.60 93Drugwwt/a 0.25 0.36 1.40 2.11 0.60 94Organic matterwwt/a 0.25 0.35 1.29 2.78 0.60 95Surface waterswwt/a 0.25 0.35 1.29 2.78 0.60 96Coliformswwt/a 0.22 0.33 1.17 2.65 0.60 97Zincwwt/a 0.22 0.33 1.17 2.65 0.60 98Food industrywwt/a 0.22 0.31 0.06 2.41 0.60 100Daphniawwt/a 0.19 0.26 0.02 2.32 0.60 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.78</td>							0.78
86 Chromiumwwt/a 0.31 0.43 1.09 3.60 0.60 87 Lagoonswwt/a 0.30 0.43 0.08 3.10 0.61 88 Isothermswwt/a 0.30 0.42 0.09 3.65 0.60 89 Wastewater, industrialwwt/a 0.29 0.40 2.58 2.74 0.60 90 Chlorine/chloridewwt/a 0.29 0.40 2.58 2.74 0.60 91 Dyeswwt/a 0.29 0.40 0.70 2.53 0.60 92 Ecosystemswwt/a 0.28 0.40 1.84 2.24 0.60 93 Drugwwt/a 0.25 0.36 1.40 2.11 0.60 94 Organic matterwwt/a 0.25 0.35 1.29 2.78 0.60 94 Organic matterwwt/a 0.25 0.35 1.29 2.78 0.60 96 Coliformswwt/a 0.25 0.35 1.29 2.78 0.60 96 Coliformswwt/a 0.225 0.35 1.29 2.78 0.60 97 Zincwwt/a 0.23 0.33 1.17 2.65 0.60 98 Food industrywwt/a 0.23 0.32 0.52 1.79 0.60 99 Aquaculturewwt/a 0.22 0.31 0.06 2.41 0.60 100 Daphniawwt/a 0.19 0.26 0.02 2.32 0.60 101 Disinfectionwwt/a 0.18 0.26 0	· · ·						3.10
87 Lagoons wwt/a 0.30 0.43 0.08 3.10 0.08 88 Isotherms wwt/a 0.30 0.42 0.09 3.65 0.09 89 Wastewater, industrial wwt/a 0.29 0.40 2.58 2.74 0.09 90 Chlorine/chloride wwt/a 0.29 0.40 0.70 2.53 0.09 91 Dyes wwt/a 0.28 0.40 1.84 2.24 0.09 92 Ecosystems wwt/a 0.28 0.40 1.84 2.24 0.09 93 Drug wwt/a 0.25 0.36 1.40 2.11 0.09 94 Organic matter wwt/a 0.25 0.35 1.29 2.78 0.09 95 Surface waters wwt/a 0.23 0.33 1.17 2.65 0.00 96 Coliforms wwt/a 0.23 0.32 0.52 1.79 0.0 97							0.00
88 Isotherms wwt/a 0.30 0.42 0.09 3.65 0 89 Wastewater, industrial wwt/a 0.29 0.40 2.58 2.74 0 90 Chlorine/chloride wwt/a 0.29 0.40 2.58 2.74 0 91 Dyes wwt/a 0.29 0.40 0.70 2.53 0 92 Ecosystems wwt/a 0.28 0.40 1.84 2.24 0 93 Drug wwt/a 0.25 0.36 1.40 2.11 0 94 Organic matter wwt/a 0.25 0.35 1.29 2.78 0 95 Surface waters wwt/a 0.25 0.35 0.60 2.44 0 96 Coliforms wwt/a 0.23 0.33 1.17 2.65 0 97 Zinc wwt/a 0.23 0.32 0.52 1.79 0 98 Food industry							0.00
89 Wastewater, industrial wwt/a 0.29 0.40 2.58 2.74 00 90 Chlorine/chloride wwt/a 0.29 0.40 0.70 2.53 00 91 Dyes wwt/a 0.28 0.40 1.84 2.24 00 92 Ecosystems wwt/a 0.28 0.40 0.25 3.42 00 93 Drug wwt/a 0.25 0.36 1.40 2.11 00 94 Organic matter wwt/a 0.25 0.35 1.29 2.78 00 95 Surface waters wwt/a 0.25 0.35 1.60 2.44 00 96 Coliforms wwt/a 0.23 0.33 1.17 2.65 00 97 Zinc wwt/a 0.23 0.32 0.52 1.79 00 98 Food industry wwt/a 0.20 0.29 0.00 2.38 00 100 Daphnia <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.00</td>							0.00
90 Chlorine/chloride wwt/a 0.29 0.40 0.70 2.53 00 91 Dyes wwt/a 0.28 0.40 1.84 2.24 00 92 Ecosystems wwt/a 0.28 0.40 0.25 3.42 00 93 Drug wwt/a 0.25 0.36 1.40 2.11 00 94 Organic matter wwt/a 0.25 0.35 1.29 2.78 00 95 Surface waters wwt/a 0.25 0.35 0.60 2.44 00 96 Coliforms wwt/a 0.23 0.33 1.17 2.65 00 97 Zinc wwt/a 0.23 0.32 0.52 1.79 00 98 Food industry wwt/a 0.22 0.31 0.06 2.41 00 100 Daphnia wwt/a 0.20 0.29 0.00 2.38 00 102 Toxicity testing							0.00 0.00
91Dyeswwt/a0.280.401.842.24092Ecosystemswwt/a0.280.400.253.42093Drugwwt/a0.250.361.402.11094Organic matterwwt/a0.250.351.292.78095Surface waterswwt/a0.250.350.602.44096Coliformswwt/a0.240.340.392.53097Zincwwt/a0.230.331.172.65098Food industrywwt/a0.230.320.521.79099Aquaculturewwt/a0.220.310.062.410100Daphniawwt/a0.190.270.921.320101Disinfectionwwt/a0.180.260.382.180103Metalswwt/a0.180.250.431.820104Dissolved Oxygen demandwwt/a0.170.240.001.840							0.00
92 Ecosystems wwt/a 0.28 0.40 0.25 3.42 0.0 93 Drug wwt/a 0.25 0.36 1.40 2.11 0.0 94 Organic matter wwt/a 0.25 0.35 1.29 2.78 0.0 95 Surface waters wwt/a 0.25 0.35 0.60 2.44 0.0 96 Coliforms wwt/a 0.24 0.34 0.39 2.53 0.0 97 Zinc wwt/a 0.23 0.33 1.17 2.65 0.0 98 Food industry wwt/a 0.22 0.31 0.06 2.41 0.0 99 Aquaculture wwt/a 0.22 0.31 0.06 2.41 0.0 100 Daphnia wwt/a 0.20 0.29 0.00 2.38 0.0 102 Toxicity testing wwt/a 0.19 0.26 0.02 2.32 0.0 103 Metals </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.83</td>							0.83
93 Drug wwt/a 0.25 0.36 1.40 2.11 00 94 Organic matter wwt/a 0.25 0.35 1.29 2.78 00 95 Surface waters wwt/a 0.25 0.35 1.29 2.78 00 96 Coliforms wwt/a 0.25 0.35 0.60 2.44 00 96 Coliforms wwt/a 0.24 0.34 0.39 2.53 00 97 Zinc wwt/a 0.23 0.33 1.17 2.65 00 98 Food industry wwt/a 0.23 0.32 0.52 1.79 00 99 Aquaculture wwt/a 0.22 0.31 0.06 2.41 00 100 Daphnia wwt/a 0.20 0.29 0.00 2.38 00 101 Disinfection wwt/a 0.19 0.26 0.02 2.32 00 102 Toxicity testing							0.00
94 Organic matter wwt/a 0.25 0.35 1.29 2.78 00 95 Surface waters wwt/a 0.25 0.35 0.60 2.44 00 96 Coliforms wwt/a 0.24 0.34 0.39 2.53 00 97 Zinc wwt/a 0.23 0.33 1.17 2.65 00 98 Food industry wwt/a 0.23 0.32 0.52 1.79 00 99 Aquaculture wwt/a 0.22 0.31 0.06 2.41 00 100 Daphnia wwt/a 0.20 0.29 0.00 2.38 00 101 Disinfection wwt/a 0.19 0.27 0.92 1.32 00 102 Toxicity testing wwt/a 0.19 0.26 0.02 2.32 00 103 Metals wwt/a 0.18 0.25 0.43 1.82 00 104 Dissolved Oxygen demand wwt/a 0.17 0.24 0.00 1.84 00 106 Bioa							0.96
95 Surface waters wwt/a 0.25 0.35 0.60 2.44 00 96 Coliforms wwt/a 0.24 0.34 0.39 2.53 00 97 Zinc wwt/a 0.23 0.33 1.17 2.65 00 98 Food industry wwt/a 0.23 0.32 0.52 1.79 00 99 Aquaculture wwt/a 0.22 0.31 0.06 2.41 00 100 Daphnia wwt/a 0.20 0.29 0.00 2.38 00 101 Disinfection wwt/a 0.19 0.27 0.92 1.32 00 102 Toxicity testing wwt/a 0.19 0.26 0.02 2.32 00 103 Metals wwt/a 0.18 0.25 0.43 1.82 00 104 Dissolved Oxygen demand wwt/a 0.17 0.24 0.00 1.84 00 106 Bi							0.00
96 Coliforms wwt/a 0.24 0.34 0.39 2.53 00 97 Zinc wwt/a 0.23 0.33 1.17 2.65 00 98 Food industry wwt/a 0.23 0.32 0.52 1.79 00 99 Aquaculture wwt/a 0.22 0.31 0.06 2.41 00 100 Daphnia wwt/a 0.20 0.29 0.00 2.38 00 101 Disinfection wwt/a 0.19 0.27 0.92 1.32 00 102 Toxicity testing wwt/a 0.19 0.26 0.02 2.32 00 103 Metals wwt/a 0.18 0.26 0.38 2.18 00 104 Dissolved Oxygen demand wwt/a 0.17 0.24 0.00 1.84 00 106 Bioaccumulation wwt/a 0.17 0.24 0.00 1.99 00							0.00
98 Food industry wwt/a 0.23 0.32 0.52 1.79 0 99 Aquaculture wwt/a 0.22 0.31 0.06 2.41 0 100 Daphnia wwt/a 0.20 0.29 0.00 2.38 0 101 Disinfection wwt/a 0.19 0.27 0.92 1.32 0 102 Toxicity testing wwt/a 0.19 0.26 0.02 2.32 0 103 Metals wwt/a 0.18 0.26 0.38 2.18 0 104 Dissolved Oxygen demand wwt/a 0.18 0.25 0.43 1.82 0 105 Oxidation pond wwt/a 0.17 0.24 0.00 1.84 0	96 Coliforms	wwt/a	0.24	0.34			0.00
99 Aquaculture wwt/a 0.22 0.31 0.06 2.41 00 100 Daphnia wwt/a 0.20 0.29 0.00 2.38 00 101 Disinfection wwt/a 0.19 0.27 0.92 1.32 00 102 Toxicity testing wwt/a 0.19 0.26 0.02 2.32 00 103 Metals wwt/a 0.18 0.26 0.38 2.18 00 104 Dissolved Oxygen demand wwt/a 0.18 0.25 0.43 1.82 00 105 Oxidation pond wwt/a 0.17 0.24 0.00 1.84 00 106 Bioaccumulation wwt/a 0.17 0.24 0.00 1.99 00		wwt/a					0.00
100 Daphnia wwt/a 0.20 0.29 0.00 2.38 00 101 Disinfection wwt/a 0.19 0.27 0.92 1.32 00 102 Toxicity testing wwt/a 0.19 0.26 0.02 2.32 00 103 Metals wwt/a 0.18 0.26 0.38 2.18 00 104 Dissolved Oxygen demand wwt/a 0.18 0.25 0.43 1.82 00 105 Oxidation pond wwt/a 0.17 0.24 0.00 1.84 00 106 Bioaccumulation wwt/a 0.17 0.24 0.00 1.99 00							0.83
101Disinfectionwwt/a0.190.270.921.320102Toxicity testingwwt/a0.190.260.022.320103Metalswwt/a0.180.260.382.180104Dissolved Oxygen demandwwt/a0.180.250.431.820105Oxidation pondwwt/a0.170.240.001.840106Bioaccumulationwwt/a0.170.240.001.990							0.00
102 Toxicity testing wwt/a 0.19 0.26 0.02 2.32 00 103 Metals wwt/a 0.18 0.26 0.38 2.18 00 104 Dissolved Oxygen demand wwt/a 0.18 0.25 0.43 1.82 00 105 Oxidation pond wwt/a 0.17 0.24 0.00 1.84 00 106 Bioaccumulation wwt/a 0.17 0.24 0.00 1.99 00							0.00
103 Metals wwt/a 0.18 0.26 0.38 2.18 0 104 Dissolved Oxygen demand wwt/a 0.18 0.25 0.43 1.82 0 105 Oxidation pond wwt/a 0.17 0.24 0.00 1.84 0 106 Bioaccumulation wwt/a 0.17 0.24 0.00 1.99 0							0.83
104 Dissolved Oxygen demandwwt/a0.180.250.431.820105 Oxidation pondwwt/a0.170.240.001.840106 Bioaccumulationwwt/a0.170.240.001.990							0.00
105 Oxidation pond wwt/a 0.17 0.24 0.00 1.84 0 106 Bioaccumulation wwt/a 0.17 0.24 0.00 1.99 0							0.00
106 Bioaccumulation wwt/a 0.17 0.24 0.00 1.99 0							0.29 0.00
							0.00
							0.00
							0.00

	Keyword (1970 to 2015)	Dataset where		ssimilarity	Mea	an abundance	
		keyword is	Average	Contribution	wwt	wwt/a	wwt/a/bf
		dominant		(%)	(2000-	(2000-	(2006-
100			0.45	0.01	2015)	2015)	2015)
	Viruses	wwt/a	0.15	0.21	0.17	1.36	0.00
	Nickel	wwt/a	0.15	0.20	0.21	1.74	0.00
	Thermodynamics	wwt/a	0.14	0.20	0.18	1.64	0.00
	Drinking water	wwt/a	0.14	0.19	0.60	1.12	0.00
	Metals ion	wwt/a	0.13	0.19	0.31	1.41	0.00
	Lemna	wwt/a	0.13	0.18	0.00	1.53	0.00
	Engineering	wwt/a	0.13	0.18	0.74	0.81	0.00
	Arthropod	wwt/a	0.12	0.17	0.02	1.28	0.00
	Water contamination	wwt/a	0.12	0.17	0.74	1.09	0.00
	Land application	wwt/a	0.11	0.16	0.54	0.64	0.00
	Marine biology	wwt/a	0.11	0.15	0.01	1.11	0.00
	Fertilizers	wwt/a	0.11	0.15	0.18	0.93	0.00
	Scanning electron microscopy	wwt/a	0.11	0.15	0.55	0.84	0.00
	Performance assessment	wwt/a	0.10	0.15	0.65	0.85	0.00
	Invertebrate	wwt/a	0.10	0.14	0.04	0.97	0.00
	Risk assessment	wwt/a	0.10	0.13	0.21	1.03	0.00
	Sludge stabilization	wwt/a	0.09	0.13 0.12	0.03	0.98	0.00
	Wastewater, textile mills Escherichia coli	wwt/a	0.09	0.12	0.42	0.53	0.00 0.00
	Escherichia coli Ecotoxicology	wwt/a			0.35	0.58	
	Chemical industry	wwt/a wwt/a	0.08	0.11	0.00	0.91	0.00 0.00
	Coastal		0.07	0.10	0.22	0.87	
		wwt/a		0.10			0.00
	Water sampling Calcium	wwt/a	0.07	0.10	0.43 0.05	0.58	0.00
	Immobilization	wwt/a					0.00
	Precipitation	wwt/a	0.07	0.10 0.09	0.00 0.38	0.84 0.48	0.00 0.00
	Zooplankton	wwt/a wwt/a	0.07	0.09	0.38	0.48	0.00
	Enzyme	wwt/a	0.06	0.09	0.00	0.81	0.00
	Seawater weed		0.06	0.09	0.03	0.01	0.00
	Odor	wwt/a wwt/a	0.06	0.09	0.00	0.74	0.00
	Animal	wwt/a	0.06	0.08	0.14	0.33	0.00
	Infrared spectroscopy	wwt/a	0.06	0.08	0.13	0.65	0.00
	Food	wwt/a wwt/a	0.06	0.08	0.04	0.05	0.00
	Macrophyte	wwt/a	0.06	0.08	0.00	0.59	0.00
	Wastewater reuse	wwt/a	0.05	0.07	0.18	0.40	0.00
	Septic tank	wwt/a	0.05	0.07	0.10	0.44	0.00
	Selenastrum	wwt/a	0.05	0.07	0.00	0.51	0.00
	Chlamydomonas	wwt/a	0.05	0.07	0.00	0.44	0.38
	Wastewater, poultry	wwt/a	0.05	0.07	0.03	0.45	0.00
	Farm waste treatment	wwt/a	0.04	0.06	0.01	0.45	0.00
	Nitrite	wwt/a	0.04	0.06	0.07	0.46	0.00
	Wastewater standard	wwt/a	0.04	0.06	0.13	0.42	0.00
	Chromatography	wwt/a	0.04	0.06	0.18	0.31	0.00
	Operational regime	wwt/a	0.04	0.06	0.00	0.50	0.00
	Wastewater, mine	wwt/a	0.04	0.06	0.05	0.35	0.00
	Hazardous materials	wwt/a	0.04	0.06	0.24	0.29	0.00
	Mercury	wwt/a	0.04	0.06	0.04	0.35	0.00
	Absorption	wwt/a	0.04	0.05	0.01	0.50	0.00
	Phosphoric acid	wwt/a	0.04	0.05	0.04	0.30	0.00
	Ceriodaphnia	wwt/a	0.04	0.05	0.00	0.38	0
	Isotopes	wwt/a	0.04	0.05	0.05	0.34	0.00
	Alkalinity	wwt/a	0.03	0.05	0.04	0.37	0.00
	Crustacea	wwt/a	0.03	0.05	0.01	0.34	0.00
	Radioactive	wwt/a	0.03	0.05	0.05	0.29	0.00
163	Periphyton	wwt/a	0.03	0.05	0.01	0.37	0.00
	Turbidity	wwt/a	0.03	0.05	0.00	0.42	0.00
	Polychlorinated bisphenols	wwt/a	0.03	0.05	0.03	0.29	0.00
	Diatom	wwt/a	0.03	0.04	0.00	0.33	0.00
	Carageenan	wwt/a	0.03	0.04	0.00	0.32	0.00
	Toxic materials	wwt/a	0.03	0.04	0.00	0.39	0.00
169	Sargassum	wwt/a	0.03	0.04	0.00	0.32	0.00
	Fourier transform infrared	wwt/a	0.03	0.04	0.09	0.25	0.00

	Keyword (1970 to 2015)	Dataset where	Dissimilarity		Mean abundance (%)		
		keyword is	Average	Contribution	wwt	wwt/a	wwt/a/bf
		dominant		(%)	(2000-	(2000-	(2006-
171	N 6 11 1	. /	0.02	0.04	2015)	2015)	2015)
	Mollusks	wwt/a	0.03	0.04	0.00	0.30	0.00
	15N tracer Organization and management	wwt/a wwt/a	0.03	0.04	0.00	0.30 0.13	0.00 0.00
	Nitrogen fixation	wwt/a	0.03	0.04	0.12	0.13	0.00
	Slurry	wwt/a	0.03	0.04	0.00	0.31	0.00
	Trace element	wwt/a	0.03	0.04	0.00	0.29	0.00
	Magnesium	wwt/a	0.03	0.04	0.00	0.29	0.00
	Sludge settling tanks	wwt/a	0.02	0.04	0.08	0.18	0
-	Sea	wwt/a	0.02	0.03	0.04	0.21	0.00
180	Eichhornia crassipes	wwt/a	0.02	0.03	0.00	0.24	0.00
	Bacillariophyta	wwt/a	0.02	0.03	0.00	0.26	0.00
	Calcium (bi)Carbonate	wwt/a	0.02	0.03	0.00	0.23	0.00
	Alginate	wwt/a	0.02	0.03	0.00	0.29	0.00
	Clarifiers	wwt/a	0.02	0.03	0.02	0.20	0.00
	Slaughterhouse	wwt/a	0.02	0.03	0.00	0.21	0.00
	Microcystis Protozoa	wwt/a wwt/a	0.02	0.03	0.00	0.21	0.00
	Protozoa Mining	wwt/a wwt/a	0.02	0.03	0.00	0.21 0.20	0.00 0.00
	Gas chromatography	wwt/a	0.02	0.03	0.03	0.20	0.00
	Biomonitoring	wwt/a	0.02	0.03	0.03	0.17	0.00
	Anaerobic metabolism	wwt/a	0.02	0.03	0.09	0.16	0.00
	Wastewater, canning	wwt/a	0.02	0.03	0.00	0.19	0.00
	Spectroscopy	wwt/a	0.02	0.03	0.02	0.18	0.00
	Bloom	wwt/a	0.02	0.03	0.00	0.18	0.00
195	Limnology	wwt/a	0.02	0.03	0.01	0.17	0.00
	Fixed-bed Reactors	wwt/a	0.02	0.03	0.02	0.16	0.00
	Giardia	wwt/a	0.02	0.02	0.00	0.18	0.00
	Marine environment	wwt/a	0.02	0.02	0.00	0.23	0.00
-	Fly ash	wwt/a	0.02	0.02	0.02	0.13	0.00
	Poultry	wwt/a	0.02	0.02	0.00	0.16	0.00
	Marine Pollutants/pollution	wwt/a	0.02	0.02	0.00	0.21	0.00
	<i>Tracheophyta</i> Potassium	wwt/a	0.02	0.02	0.00	0.15	0.00
	Ulva	wwt/a wwt/a	0.02	0.02	0.00	0.18 0.16	0.00
	Liquid-solid separation	wwt/a	0.01	0.02	0.00	0.10	0.00
	Cladocera	wwt/a	0.01	0.02	0.04	0.15	0.00
	Enzyme kinetics	wwt/a	0.01	0.02	0.00	0.13	0.00
	Acidity	wwt/a	0.01	0.02	0.00	0.18	0.00
	Wastewaters, cyanide	wwt/a	0.01	0.02	0.04	0.09	0.00
210	Pesticide	wwt/a	0.01	0.02	0.03	0.10	0.00
	Cation	wwt/a	0.01	0.02	0.00	0.16	0.00
-	Sulfide	wwt/a	0.01	0.02	0.02	0.13	0.00
	Antibiotics	wwt/a	0.01	0.02	0.05	0.07	0.00
	Wastewater, process	wwt/a	0.01	0.02	0.03	0.09	0.00
	Cattle	wwt/a	0.01	0.02	0.00	0.13	0.00
	Hazardous waste	wwt/a	0.01	0.02	0.04	0.09	0.00
	Arsenic Sludge bulking	wwt/a	0.01	0.01	0.00	0.12 0.09	0.00
	Sludge bulking Calcium oxide	wwt/a	0.01	0.01	0.02	0.09	0.00
	Surfactant	wwt/a wwt/a	0.01	0.01	0.01	0.09	0.00
	Aerobic metabolism	wwt/a	0.01	0.01	0.02	0.08	0.00
	Biomass	wwt/a/bf	2.84	4.00	3.39	17.80	72.80
	Bacteria	wwt/a/bf	1.63	2.30	8.72	20.40	30.40
	Phosphorus	wwt/a/bf	1.13	1.59	4.31	14.30	17.00
	Nutrient	wwt/a/bf	1.04	1.46	1.15	8.59	18.30
	Nitrogen Microorganisms	wwt/a/bf wwt/a/bf	1.02 0.93	1.44	4.81 2.77	12.70 5.63	16.50 23.80
	Chlorella	wwt/a/bf wwt/a/bf	0.93	1.31	0.00	4.70	23.80
	Bioreactor	wwt/a/bf	0.91	1.28	7.94	6.68	16.80
	CO2/carbon	wwt/a/bf	0.87	1.22	0.12	1.59	34.90
	Anaerobic digester	wwt/a/bf	0.70	0.98	3.60	1.84	25.50

	Keyword (1970 to 2015)	Dataset where	Dissimilarity		Mean abundance (%)		
		keyword is	Average	Contribution	wwt	wwt/a	wwt/a/bf
		dominant		(%)	(2000- 2015)	(2000- 2015)	(2006- 2015)
222	Chlorophyll	wwt/a/bf	0.61	0.86	0.00	6.02	7.28
	Cyanobacteria/ bluegreen algae	wwt/a/bf	0.60	0.85	0.00	5.78	0.0682
	Water purification	wwt/a/bf	0.59	0.83	2.90	4.96	7.02
	Ecology	wwt/a/bf	0.57	0.80	0.84	4.73	7.79
	Photosynthesis	wwt/a/bf	0.55	0.77	0.01	3.95	12.70
	Lipid	wwt/a/bf	0.54	0.76	0.00	1.12	16.60
239	Energy	wwt/a/bf	0.54	0.76	0.22	0.55	18.30
	Wastewater reclamation	wwt/a/bf	0.54	0.75	3.36	2.40	9.56
241		wwt/a/bf	0.53	0.75	4.09	7.04	8.85
	Fatty acid	wwt/a/bf	0.50	0.70	0.00	0.56	23.80
	Oxygen demand Electricity	wwt/a/bf wwt/a/bf	0.44	0.62	3.07 0.07	3.49 0.28	4.82 15.20
	Growth rate	wwt/a/bf	0.44	0.61	0.07	2.47	9.57
	Biotechnology	wwt/a/bf	0.43	0.61	0.58	2.57	10.20
	Metabolism	wwt/a/bf	0.43	0.61	1.16	2.13	12.30
	Renewable resources	wwt/a/bf	0.41	0.58	0.05	0.28	19.20
	Bioremediation	wwt/a/bf	0.40	0.56	0.96	3.42	6.23
	Photobioreactor	wwt/a/bf	0.38	0.54	0.00	0.66	11.90
	Wastewater, municipal	wwt/a/bf	0.37	0.52	0.56	1.43	9.03
	Nitrogen removal	wwt/a/bf	0.36	0.50	1.56	2.36	6.18
	Carbon	wwt/a/bf	0.34	0.48	2.17	2.41	6.75
	Energy production	wwt/a/bf	0.34	0.48	0.00	0.07	18.90
	<i>Scenedesmus</i> Methane	wwt/a/bf wwt/a/bf	0.34 0.32	0.47	0.00	2.03 0.36	6.53 14.00
	Agriculture	wwt/a/bf	0.32	0.45	1.10	2.27	8.74
	Phytoplankton	wwt/a/bf	0.32	0.43	0.03	2.27	4.23
	Ethanol	wwt/a/bf	0.31	0.43	0.00	0.00	15.30
	Oil content	wwt/a/bf	0.30	0.42	0.12	0.07	7.37
	Fermentation	wwt/a/bf	0.28	0.40	0.18	0.35	16.80
	Flocculation	wwt/a/bf	0.28	0.40	1.31	2.69	3.49
	Growth	wwt/a/bf	0.28	0.40	0.09	1.92	4.59
	Nitrates	wwt/a/bf	0.28	0.39	1.80	2.18	2.87
	Biofilm	wwt/a/bf	0.28	0.39	2.57	1.15	2.72
	Cell cultivation Economics	wwt/a/bf wwt/a/bf	0.25	0.35	0.00	2.02 1.16	3.90 1.65
	Agricultural wastes	wwt/a/bf	0.24	0.32	0.17	1.10	9.09
	Water recycling	wwt/a/bf	0.23	0.31	1.33	0.87	3.20
	Greenhouse gases	wwt/a/bf	0.22	0.31	0.00	0.00	13.50
	Water resources	wwt/a/bf	0.21	0.30	1.49	0.71	1.63
272	Light	wwt/a/bf	0.19	0.27	0.00	0.69	5.43
	Anaerobiosis	wwt/a/bf	0.17	0.24	0.54	0.00	7.92
	Carbohydrate	wwt/a/bf	0.17	0.24	0.00	0.20	8.18
	Coagulation	wwt/a/bf	0.16	0.22	0.90	1.05	1.11
	Electron transport	wwt/a/bf	0.15	0.22	0.00	0.00	11.00
	Optimization Hydraulic retention time	wwt/a/bf wwt/a/bf	0.15	0.22 0.22	1.22 0.20	0.51 0.75	1.93 5.39
	Proteins	wwt/a/bf	0.15	0.22	0.20	1.23	1.42
	High rate pond	wwt/a/bf	0.13	0.22	0.00	1.23	1.42
	Fungi	wwt/a/bf	0.14	0.19	0.02	1.16	1.65
	Organic carbon	wwt/a/bf	0.13	0.18	0.39	0.15	5.74
283	Wastewaters, dairy	wwt/a/bf	0.13	0.18	0.00	0.20	4.98
284	Seawater	wwt/a/bf	0.13	0.18	0.09	1.08	1.55
	Electrochemistry	wwt/a/bf	0.13	0.18	0.22	0.10	4.70
	Manure	wwt/a/bf	0.12	0.17	0.03	0.88	1.95
	Sugars	wwt/a/bf	0.12	0.17	0.01	0.14	9.09
	Calorimetry	wwt/a/bf	0.12	0.16	0.00	0.00	9.30
	Biochemistry Bioelectric	wwt/a/bf wwt/a/bf	0.12	0.16	0.30	0.82	0.93 5.17
	Life cycle assessment (lca)	wwt/a/bf	0.11 0.10	0.16	0.00	0.00	3.75
	Life eyere assessment (rea)			0.14	0.00	0.80	1.65
		wwt/a/hf	010	0.14	() ()()	0.00	
292	Solar radiation	wwt/a/bf wwt/a/bf	0.10		0.00		
292 293		wwt/a/bf wwt/a/bf wwt/a/bf	0.10 0.10 0.10	0.14 0.13 0.13		0.62 0.07	1.49 4.76

Keyword (1970 to 2015)	Dataset where	Dissimilarity		Mean abundance (%)		
	keyword is	Average	Contribution	wwt	wwt/a	wwt/a/bf
	dominant		(%)	(2000-	(2000-	(2006-
				2015)	2015)	2015)
296 Isolation and purification	wwt/a/bf	0.09	0.12	0.44	0.39	1.01
297 Lipid production	wwt/a/bf	0.08	0.12	0.00	0.00	2.88
298 Nutrition	wwt/a/bf	0.08	0.12	0.00	0.26	4.85
299 Fresh water	wwt/a/bf	0.08	0.12	0.00	0.73	0.93
300 Coal gasification	wwt/a/bf	0.08	0.11	0.18	0.50	0.70
301 Animal feed	wwt/a/bf	0.08	0.11	0.00	0.56	1.00
302 Carbonate	wwt/a/bf	0.08	0.11	0.00	0.11	3.31
303 Lipid content	wwt/a/bf	0.08	0.11	0.00	0.00	2.97
304 Anaerobic growth	wwt/a/bf	0.07	0.10	0.02	0.00	5.20
305 Batch reactors	wwt/a/bf	0.07	0.10	0.23	0.16	1.70
306 Glucose	wwt/a/bf	0.07	0.10	0.03	0.20	2.05
307 Energy crops	wwt/a/bf	0.07	0.10	0.00	0.00	5.24
308 Catalysis	wwt/a/bf	0.07	0.10	0.67	0.00	0.83
309 Microbial activity	wwt/a/bf	0.07	0.10	0.39	0.39	0.47
310 Dry weight	wwt/a/bf	0.07	0.10	0.00	0.19	2.37
311 Sludge digestion	wwt/a/bf	0.06	0.09	0.55	0.00	0.70
312 Microbial community	wwt/a/bf	0.06	0.09	0.38	0.20	0.64
313 Sodium	wwt/a/bf	0.06	0.09	0.09	0.41	0.70
314 Acetic acid	wwt/a/bf	0.06	0.08	0.34	0.28	0.38
315 Eukaryota	wwt/a/bf	0.05	0.07	0.00	0.25	1.53
316 Mixotrophy	wwt/a/bf	0.05	0.07	0.00	0.00	1.89
317 Lipid metabolism	wwt/a/bf	0.05	0.07	0.00	0.00	1.79
318 Environment	wwt/a/bf	0.05	0.07	0.02	0.37	0.70
319 Bioconversion	wwt/a/bf	0.05	0.07	0.04	0.10	1.53
320 Waste Nutrient removal	wwt/a/bf	0.05	0.07	0.34	0.00	0.83
321 Fluidized bed Reactors	wwt/a/bf	0.05	0.07	0.24	0.12	0.83
322 Wastewater, distillery	wwt/a/bf	0.05	0.06	0.00	0.29	0.83
323 Chlorella pyrenoidosa	wwt/a/bf	0.05	0.06	0.00	0.26	0.85
324 Air Pollutants/pollution	wwt/a/bf	0.04	0.06	0.26	0.09	0.47
325 Growth medium 326 Physiology	wwt/a/bf wwt/a/bf	0.04	0.06	0.00 0.06	0.00 0.17	1.90 0.82
320 Flue gases		0.04	0.06	0.00	0.17	1.67
328 Lipid composition	wwt/a/bf	0.04				
329 Microbial biomass	wwt/a/bf wwt/a/bf	0.04	0.05	0.00 0.00	0.05 0.09	1.24 0.96
330 Aerobiosis	wwt/a/bf	0.04	0.05	0.00	0.09	1.65
331 Dewatering	wwt/a/bf	0.04	0.05	0.02	0.00	0.29
332 Nutrient availability	wwt/a/bf	0.03	0.03	0.18	0.17	0.29
333 Genetics	wwt/a/bf	0.03	0.04	0.00	0.00	0.37
334 Acutodesmus obliquus	wwt/a/bf	0.03	0.04	0.00	0.00	1.02
335 Nutrient uptake	wwt/a/bf	0.03	0.04	0.00	0.00	0.78
336 Pilot scale/plant	wwt/a/bf	0.03	0.04	0.00	0.08	0.78
337 Lipid storage	wwt/a/bf	0.03	0.04	0.04	0.13	0.95
338 Carotenoid	wwt/a/bf	0.03	0.04	0.00	0.00	0.93
339 Spirulina	wwt/a/bf	0.03	0.04	0.00	0.00	1.01
340 Biosynthesis	wwt/a/bf	0.03	0.04	0.00	0.00	0.64
341 Hydrolysis	wwt/a/bf	0.02	0.03	0.00	0.07	0.04
342 Brewery wastewater	wwt/a/bf	0.02	0.03	0.00	0.11	0.33
343 Nanoparticles	wwt/a/bf	0.02	0.03	0.00	0.13	0.21
344 Biodiversity	wwt/a/bf	0.02	0.03	0.00	0.07	0.21
345 Brackish water	wwt/a/bf	0.02	0.03	0.00	0.07	0.70
346 Heterotrophy	wwt/a/bf	0.02	0.03	0.00	0.00	0.46
347 Bioethanol	wwt/a/bf	0.02	0.03	0.00	0.00	0.77
348 Land use	wwt/a/bf	0.02	0.03	0.00	0.00	0.47
349 Design	wwt/a/bf	0.02	0.03	0.00	0.00	0.83
350 Bicarbonate	wwt/a/bf	0.02	0.02	0.00	0.09	0.35
351 Phycoremediation	wwt/a/bf	0.02	0.02	0.00	0.00	0.53
352 Glycerol	wwt/a/bf	0.02	0.02	0.00	0.07	0.28
353 Forestry	wwt/a/bf	0.01	0.02	0.03	0.00	0.47
354 Bioactivity	wwt/a/bf	0.01	0.02	0.07	0.00	0.35
		0.01	0.02	0.07	0.00	0.00