
This is a repository copy of Shepherding with robots that do not compute.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/118675/

Version: Accepted Version

Proceedings Paper:
Özdemir, A., Gauci, M. and Groß, R. orcid.org/0000-0003-1826-1375 (2018) Shepherding 
with robots that do not compute. In: ECAL 2017: The Fourteenth European Conference on 
Artificial Life. European Conference on Artificial Life, ECAL 2017, 04-08 Sep 2017, Lyon, 
France. MIT Press , Cambridge, MA , pp. 332-339. ISBN 9780262346337 

https://doi.org/10.7551/ecal_a_056

© 2017 Massachusetts Institute of Technology. Article available under the Creative 
Commons Attribution - NonCommercial - NoDerivatives 4.0 license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Shepherding with Robots That Do Not Compute

Anıl Özdemir1, Melvin Gauci2, and Roderich Groß1

1Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield, UK
2Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA

r.gross@sheffield.ac.uk

Abstract

We examine the problem solving capabilities of swarms of
computation- and memory-free agents. Each agent has a sin-
gle line-of-sight sensor providing two bits of information.
The agent maps this information directly onto constant motor
commands. In previous work, we showed that such simplis-
tic agents can solve tasks requiring them to organize spatially
(multi-robot aggregation and circle formation) and manipu-
late passive objects (clustering). In the present work, we ad-
dress the shepherding problem, where the computation- and
memory-free agents—the shepherds—are tasked to gather
and move a group of dynamic agents—the sheep—towards
a pre-defined goal. The shepherds and sheep are modelled
as e-puck robots using computer simulations. Our findings
show that the shepherding problem does not fundamentally
require arithmetic computation or memory to be solved. The
obtained controller solution is robust with respect to sensory
noise, and copes well with changes in the number of sheep.

Introduction

The simplicity of individual robots has always been at the

core of multi-robot systems research. It is intimately re-

lated with the fundamental advantages that multi-robot sys-

tems aim to offer in comparison to monolithic robot sys-

tems, namely robustness, scalability, and flexibility (Bram-

billa et al., 2013). Over the last two decades, several bodies

of work have shown and reaffirmed that simple robots can

solve complex tasks with a performance that matches—and

in some cases even exceeds—that of complex, individual

robots (Parker, 2008). However, the simplicity of the in-

dividual robots constituting a multi-robot system is usually

measured in relative terms; that is, in comparison with the

complexity of the task. As such, in many multi-robot sys-

tems to date the individual robots are still fairly complex ma-

chines, often combining various sensing modalities as well

as powerful computation and communication capabilities.

More recently, there has been a surging interest in exploring

what is possible with robots that operate at a level of extreme

simplicity; a question that had hitherto received little atten-

tion (Jones and Mataric, 2003; Groß and Dorigo, 2008; Yu

et al., 2012; Becker et al., 2013; Rubenstein et al., 2013). A

major motivation for such robotic systems is their potential

feasibility for implementation at small scales, where more

conventional robotic systems are not feasible to implement

due to the acute constraints on the space available for hard-

ware (Requicha, 2003).

In previous work, we introduced a framework to study the

capabilities of robots of extreme objective simplicity. The

robots lacked the ability to compute arithmetically and store

information during run-time. They used a single line-of-

sight sensor that returns discrete readings about the envi-

ronment; namely, what the robot is instantaneously pointing

towards. The sensor does not provide any other informa-

tion about numbers of or distances to objects in the envi-

ronment. This framework was first applied to the problems

of multi-robot aggregation and circle formation [see Gauci

et al. (2014b), and references therein], where a number of

robots that are initially dispersed in the environment are re-

quired to organize spatially without using external cues. The

framework was then applied to a more complex scenario in

the form of object clustering (Gauci et al., 2014a). This time,

the robots had to interact with static objects in the environ-

ment in order to bring them together into a single cluster.

Johnson and Brown (2015) have applied this framework to

some other problems, such as perimeter formation and for-

aging. Using novelty search, Brown et al. (2017) discovered

that the framework can also be used to produce wall follow-

ing, dispersal, and milling behaviors. In this paper, we show

for the first time that the framework can be applied to sce-

narios where the minimalist robots are required to interact

with other active agents in the environment.

We study the shepherding problem, which involves guid-

ing the motion of multiple dynamic sheep agents by one or

more shepherd agents towards a pre-specified goal location.

Aside from the shepherding of actual sheep by dogs, this

problem, in a more general setting, has other manifestations

in nature—one example is human crowd control in large-

scale events by trained officials. Potential robotics applica-

tions involving this task include: containing oil spillages (oil

on the surface of water behaves as a dynamic entity), manip-

ulation of micro-organisms such as bacteria, and other uses

in nanomedicine (Requicha, 2003). We now provide a brief



overview of related work in robotics that has addressed the

shepherding problem.

One of the earliest studies on the shepherding problem

was conducted by Vaughan et al. (2000). They developed a

controller strategy to herd (real) ducks using a single robot.

The controller required an external camera system for track-

ing the robot’s position and orientation. This, along with

information on the center of mass and size of the flock of

ducks, was computed to provide quasi-instantaneous path

planning for the robot to herd the ducks towards a goal

location. Lien et al. (2005) proposed and analyzed sev-

eral formations that the shepherds can assume. Their work

suggested that multiple robotic shepherds are superior to

a single one in solving the problem. Strömbom et al.

(2014) developed an algorithm based on empirical data from

sheep/dog interactions. This algorithm contains two steps:

firstly, the shepherds gather a dispersed flock of sheep; sec-

ondly, they herd them to a goal location. Pierson and Schwa-

ger (2015) proposed another controller for a multi-robot sys-

tem where the robots have non-holonomic constraints (a uni-

cycle model). Using Lyapunov theory, they proved that this

controller is always guaranteed to herd the flock to the goal

location.

In all of these works, the controller strategies required

the shepherd agents to have memory, and be able to per-

form arithmetic computations. In addition, they required

the sensors to provide distance information. In contrast, we

here present a minimalist controller strategy for the shepherd

agents that eliminates all these requirements.

This paper is organized as follows. We first present the

methods, including the problem formulation, details about

the simulations of shepherds and sheep, and the optimization

method used for synthesizing the shepherd controllers. We

then evaluate the controller obtained and discuss the results

obtained from simulation experiments.

Methods

Problem Formulation

Consider an unbounded, continuous-space environment

containing m ≥ 1 shepherd agents, n ≥ 1 sheep agents,

and an object representing a goal location. The sheep and

shepherds are initially dispersed and away from the goal lo-

cation. The shepherding problem is to control the shepherds

such that they gather the sheep and herd them towards the

goal location.

Simulation Setup

We use the open-source physics library Enki (Magnenat

et al., 2009), which simulates the dynamics and kinemat-

ics of rigid bodies in two dimensions. Space is represented

continuously (with floating point precision). The physics are

updated at 0.01 s intervals.

The shepherds and sheep are modelled as e-puck

robots (Mondada et al., 2009). The robots are represented

as cylinders of radius 3.7 cm. In order to allow the line-of-

sight sensor to make distinctions, the shepherds are colored

green and the sheep are colored red. The goal is represented

as a blue cylinder and has a radius of 22.2 cm, which is six

times larger than the radius of the e-puck.

The robots have two wheels arranged in a differential

drive configuration (axle length = 5.2 cm). The control cy-

cle of the robot is activated every 0.1 s. The robot needs

to set the desired velocities of its left and right wheels,

vℓ ∈ [−1, 1] and vr ∈ [−1, 1], where −1 and 1 represent the

normalized maximum angular velocity at which the wheel

can turn backward and forward, respectively1. The corre-

sponding velocity of the robot ranges in ±12.8 cm/s.

Shepherd

The shepherd has a line-of-sight sensor pointing forwards.

The range of the sensor is unlimited2. The sensor reading,

I , is defined by the first object that is detected in the line of

sight, if any:

I =



















0 if no object is detected,

1 if a red object (sheep) is detected,

2 if a green object (shepherd) is detected,

3 if the blue object (goal) is detected.

(1)

Note that sensor reading I does not contain any information

about the distance to a perceived object, or about the number

of objects in a given area.

All shepherds execute an identical controller. The con-

troller is reactive: it maps the shepherd’s input I onto its

output—the pair of wheel velocities, (vℓ, vr). Formally, the

controller is defined by:

v = (vℓ,0, vr,0, vℓ,1, vr,1, vℓ,2, vr,2, vℓ,3, vr,3) ∈ [−1 , 1 ]8 , (2)

where the left and right wheel velocities for sensor reading

I = 0 are denoted by vℓ,0 and vr,0, and so on. Note that

the controller does not need to store information during run-

time, and does not need to perform arithmetic computations.

The velocities in Eqn. (2) are free parameters that need

to be tuned in order for the swarm to produce the desired

global behavior (in this case, shepherding). The method for

optimizing these parameters will be discussed in the sections

Optimization Method and Objective Function.

Sheep

In contrast to the shepherd agents, the behavior of the sheep

agents is not subjected to an optimization process. Rather,

the sheep agents execute a fixed, manually-designed behav-

ior in which they react both to each other and to shepherd

agents. This behavior is based on the magnitude-dependent

1Uniform noise of 5% is applied to each value.
2In a practical scenario, the environment could be bounded.

The sensor would then need to span the entire environment.



motion control model proposed by Ferrante et al. (2012).

The sheep have omnidirectional vision3, and can distinguish

between shepherds and other sheep; however, they cannot

see the goal. Each sheep is repelled by all shepherds and—

to a lesser extent—by other sheep4. Let S be the set of (suit-

ably relabelled) indices of all agents. Formally, the repulsion

force is given by

Fi =
∑

k∈S\{i}

ck
‖xi − xk‖2

r̂ki, (3)

where xi is the position of sheep i, xk is the position of

agent k (either a shepherd or a sheep, but excluding the focal

sheep), r̂ki is the unit vector pointing from agent k towards

sheep i, and ck is 450 if agent k is a shepherd, and 100 oth-

erwise. In other words, the sheep repel more strongly from

the shepherds than from other sheep.

The motion of each sheep is the result of (i) the repulsion

force and (ii) a natural tendency to move forward. Formally,

(

vℓ
vr

)

=

(

K1 K2

K1 −K2

)(

fx
fy

)

+

(

u
u

)

, (4)

where fx and fy are the horizontal and vertical components

of the repulsion force in the sheep’s local coordinate frame,

K1 = 2.0 and K2 = 1.3 are the linear and angular gain, and

u = 2.0 cm/s is the constant forward speed. The maximum

speed for a sheep is 6.4 cm/s—which is half of a shepherd’s

maximum speed. If the velocities exceed their range, they

get truncated.

Optimization Method

We have so far devised the structure of a reactive controller

for the shepherds (Eqn. (2)). The remaining problem is to

optimize the eight free parameters in this controller such

that it leads to the desired global behavior (i.e., shepherd-

ing). We employ an evolutionary robotics approach to this

problem (Nolfi and Floreano, 2000; Trianni et al., 2008),

whereby an optimizer searches for the best controller pa-

rameters that maximize an objective function.

As an optimizer, we use the covariance matrix adaptation-

evolution strategy (CMA-ES) (Hansen and Ostermeier,

2001). CMA-ES is a stochastic optimization algorithm and

operates on real-valued decision variables. It self-adapts the

variance of each decision variable, as well as all the covari-

ances between the decision variables.

In our problem, the decision variables are the set of all

possible left and right wheel speeds corresponding to the

sensor readings of the shepherd robots (Eqn. (2)). Con-

sidering normalized wheel speeds, this corresponds to the

3It is typical for natural “prey” to have very wide fields of view
(Piggins and Phillips, 1996).

4Although it may be unrealistic to assume that a sheep could
perceive all other agents in the environment, the magnitude of the
repulsive force decreases as the square of distance, and hence its
effect can be neglected when the other agent is far away.

Figure 1: Illustration of the experimental setup. The goal

object is represented by the blue disk, the shepherds and the

sheep are indicated by the green and the red disks, respec-

tively. Initially, the robots are randomly distributed into a

circular region of radius 200 cm and 400 cm away from the

goal object. The goal region is the circular area indicated by

the blue dashed line with radius 100 cm from the center of

the goal object.

space [−1, 1]2d, where d is the number of possible sensor

states. In its original version, CMA-ES operates in uncon-

strained, real space: R
2d. Therefore we need to perform a

mapping from the candidate solutions provided by CMA-

ES onto valid controllers. We achieve this by applying the

following sigmoid-based function to each value in the can-

didate solution:

sig(x) =
1− e−x

1 + e−x
, ∀x ∈ R. (5)

The only external parameters that are required by the

CMA-ES algorithm are the following: a population size λ,

an initial guess of a solution, m(0), and an initial step size

σ(0). We set the population size to λ = 20. We set m(0) = 0

and σ(0) = 0.72. Using Monte Carlo simulations, Gauci

et al. (2014a) reported that these settings provide an approx-

imately uniform distribution over [−1, 1]2d in the initial gen-

eration.

Objective Function

The optimization method requires that each candidate solu-

tion (i.e., controller) is assigned a value reflecting its quality

(hereafter referred to as fitness) that reflects how well it ad-

dresses the problem. This is achieved by running a number

of simulations using the controller and computing an objec-

tive function (hereafter referred to as fitness function) based

on the performance of the agents during these simulations.

Figure 1 shows the simulation setup. Initially, the shepherds

and the sheep are distributed uniformly randomly within a

circular region of radius 200 cm, whose center is 400 cm
away from the goal.

The fitness function for a single simulation—to be



Figure 2: Evolutionary dynamics. Best fitness (solid line),

averaged over 30 evolutionary runs. The envelope indicates

the minimum and the maximum fitness values in each gen-

eration.

minimized—is given by

F (T ) =
T
∑

t=1

tf(t), (6)

where T is the duration of the simulation and

f(t) =
1

4nr2

n
∑

i=1

‖x(t)− xi(t)‖
2‖x(t)− g‖2, (7)

where n is the number of sheep, r is the radius of the agents,

xi(t) is the position of sheep i at time t, x(t) is the centroid

of the sheep flock at time t, and g is the position of the goal.

The multiplier outside the summation normalizes for n and

r. Eqn. (7) takes into account how widely the sheep are scat-

tered and how far away they are from the goal. The weighted

summation over time in Eqn. (6) rewards solutions for ac-

complishing the task faster, while still giving prominence to

a stable configuration later on in the simulation.

The overall fitness of a controller is given by averaging

F (T ) over a number N of simulations with different initial

conditions.

Results

A set of 30 evolutions were performed with m = 10 shep-

herds and n = 20 sheep. Each evolution was run for 80
generations, and in each generation, each of the λ = 20
candidate solutions was evaluated using N = 50 trials with

different initial configurations of agents. Each trial returned

a fitness value according to Eqn. (6), and the mean of these

50 values was used as the overall fitness of that candidate so-

lution. Each trial lasted 1500 s (i.e., T = 15000 in Eqn. (6)).

Figure 2 shows the evolutionary dynamics. During the

first approximately 20 generations, the fitness values of the

vℓ,0 vℓ,1 vℓ,2 vℓ,3
0.9998 0.0082 0.5471 0.9993

vr,0 vr,1 vr,2 vr,3
0.8520 0.9996 0.6098 0.9447

Table 1: The best controller found by the optimization

method.

best individuals improve rapidly. The fitness values continue

to improve thereafter, but seem to approach a stable plateau.

Selecting the Best Controller

Throughout an evolution, a population consists of λ = 20
candidate solutions (i.e., shepherd controllers). The candi-

date solution with the best fitness in the last generation was

considered as the best controller for that evolution. As 30
evolutions were performed, there were 30 best controller

candidates in total. In a post-evaluation session, each of

these 30 controllers was reevaluated 100 times in simula-

tions with different initial configurations of agents. The con-

troller with the best average fitness was selected, and is con-

sidered as the best controller across the set of evolutions. Its

parameter values are provided in Table 1.

Behavioral Analysis

Figure 3 shows a sequence of snapshots taken from a sim-

ulation trial with the best controller. At the beginning, the

shepherds spread out from the initial formation towards the

periphery. They then cage the sheep by orbiting around them

in a clockwise manner. As the sheep are repelled more by

the shepherds than by each other, they assume a compact,

round formation. While orbiting around the sheep, the shep-

herds are also attracted towards the goal. This results in the

gradual movement of the agents (i.e., shepherds and sheep)

towards the goal.

To gain a deeper understanding of the shepherding be-

havior, we monitored the sensor reading values of shep-

herds over 100 additional simulation trials. Note that the

reading values directly determine a shepherd’s action (i.e.,

wheel velocities) according to Eqn. (2). Figure 4 shows the

average number of shepherds detecting objects of different

types. Shepherds most often detect nothing, followed by

other shepherds. The detection of sheep seems to be rel-

evant only in the initial stages—prior to the caging being

completed. The goal becomes more frequently observed as

the agents approach it, until the agents are caging it as well.

Noise Analysis

In the following sections, we explore the capabilities of the

controller through noise, sensitivity, and scalability analy-

ses. In these analyses, a success rate is used to measure the

performance of the shepherds. The success rate is defined

as the percentage of sheep that reside within the goal region

(see Figure 1) after 1500 s.



(a) t = 0 s (b) t = 100 s (c) t = 200 s

(d) t = 400 s (e) t = 600 s (f) t = 1500 s

Figure 3: Sequence of snapshots showing how a group of 10 shepherds gather and move a group of 20 sheep towards the goal.

Figure 4: Number of shepherds that detect objects of partic-

ular types (averaged over 100 trials with 10 shepherds and

20 sheep). The shepherds can either detect nothing (I = 0),

sheep (I = 1), other shepherds (I = 2), or the goal (I = 3).

We examine the effect of noise on the performance of

shepherds. In particular, we consider false negative noise; in

other words, noise preventing the detection of objects (i.e.,

sheep, shepherd, or goal). Formally, given an unperturbed

sensor reading of I ∈ {1, 2, 3}, the actual reading value re-

turned by the sensor is 0 with probability p, and I otherwise.

If no object is in the line of sight of the shepherd, the sensor

value remains I = 0. We performed 100 simulation trials for

each of p ∈ {0, 0.1, 0.2, ..., 1}. In addition, we performed

an equivalent number of trials for the situation where only a

single type of sensor reading (e.g., I = 1) was affected by

the noise.

Figure 5 show the success rates for the different proba-

bility levels of noise. The success rate decreases rapidly if

the sensor is subjected to noise levels of more than p = 0.3
on all readings (black curve). However, the impact of noise

varies if only certain readings are subjected to it. For ex-

ample, if the shepherds cannot reliably detect the sheep (red

curve) the performance is better than if they cannot reliably

detect the goal (blue curve). The shepherds are also toler-

ant to the situation where they cannot reliably detect each

other (green curve)—even at a noise level of p = 0.5, they

succeed in solving the task cooperatively without any signif-

icant degradation in performance.

Sensitivity Analysis

We examine how sensitive the controller’s performance is

with respect to changes in its parameters. Each of the eight

controller parameters was varied from −1 to 1 in steps of



Figure 5: Noise analysis. The colored curves represent dif-

ferent types of sensor readings that experience noise (see the

text for details). Error bars represent standard deviations.

0.05, with the other seven parameters remained fixed ac-

cording to Table 1. For each parameter configuration, 100
trials were performed.

Figure 6 shows the average success rate obtained in the

sensitivity analysis trials. The controller is sensitive to the

parameters associated with the sensor reading for nothing

(vℓ,0 and vr,0). This is the most commonly observed sen-

sor reading according to Fig. 4. On the other hand, the

shepherd’s motion when it detects a sheep (I = 1) is not

highly critical, as long as vℓ,1 < vr,1 (i.e., the robot turns

left). When the shepherd detects the goal (I = 3), surpris-

ingly, the velocity of the left wheel, vℓ,3, is not critical. For

vℓ,3 < vr,3, a distinct strategy emerges, where shepherds or-

bit around both sheep and goal throughout the trial. When

the shepherd detects another shepherd, there is some leeway

in sensitivity as long as vℓ,2 ≤ vr,2, but the margin is smaller

than for the sheep and goal cases.

Scalability Analysis

We examine the performance of the shepherd’s con-

troller in situations where the number of shepherds (m)

and/or sheep (n) are different with respect to the stan-

dard conditions. The numbers of shepherds considered were

{5, 10, 15, 20, 30, 40}. The numbers of sheep considered

were {10, 20, . . . , 100}. For each combination of m and

n, 100 simulation trials with the best controller were per-

formed. Each trial lasted 1500 s. The initialization region

for all robots remained the same as shown in Figure 1.

Figure 7(a) shows the success rate. Due to the dynamic

interactions, the relation between success rate and the num-

ber of agents can be nonlinear. The performance of the shep-

herd’s controller scales well up to 70 sheep and 10 shepherds

(which is the number of shepherds that was used during op-

timization). Beyond this point, however, the performance

Figure 6: Sensitivity analysis. Each of the eight velocity pa-

rameters is varied from −1 to 1 while the remaining seven

parameters are kept constant. The color map shows the aver-

age success rate across 100 trials. The red circles represent

the unchanged parameters of the best controller, as shown in

Table 1.

degrades. As the number of other agents in the environment

increases, it becomes less likely for the shepherd to detect

the goal. We hypothesize that the reason for the drop in per-

formance could be that the sight of the goal is occluded for

most of the time.

To alleviate the problem, we equipped the shepherd with

a dedicated goal sensor, which can detect the goal even if be-

hind some agents5. In this new setup, the shepherd can dis-

tinguish between six sensory states. Accordingly, the sensor

reading, I , can be redefined by:

I =







































0 if no object is detected,

1 if a sheep is detected,

2 if a shepherd is detected,

3 if only the goal is detected,

4 if both a sheep and the goal are detected,

5 if both a shepherd and the goal are detected.

(8)

Note that the sensor is unable to detect a sheep or shepherd

if located “behind” the goal.

We conducted 30 evolutions using 10 shepherds (with the

6-state sensor) and 20 sheep. We refer to the best controller

as the extended controller. Figure 7(b) shows its success

rate. The performance of the extended controller scales far

better with the number of sheep and shepherds.

Figure 8 shows the behavior of the shepherds through a

sequence of snapshots taken from a simulation trial using the

extended controller. It can be observed that it is similar to the

5In practice, this is achievable if the goal object is significantly
taller than the robots.



(a)

(b)

Figure 7: Success rates (percentage of sheep retrieved to the

goal region, averaged over 100 trials) for different numbers

of shepherds and sheep. (a) Controller optimized for a 4-

state sensor; (b) controller optimized for a 6-state sensor.

behavior using the best controller. The process of herding

100 sheep takes about twice the time than herding 20 sheep.

Please check the supplementary materials (Özdemir et al.,

2017) for demo videos.

The experimental setup can be modified to have a dy-

namic goal location. The controller still performs success-

fully (see the supplementary materials for videos).

Conclusions

This paper showed for the first time that the problem of herd-

ing a group of dynamic agents can be addressed by a control

group of embodied agents that lack the ability to compute.

The controlling agents needed only to extract 2 bits of infor-

mation from their environment—what object they first detect

in their line of sight, if any. The controller directly mapped

this information onto constant motor commands. This was

sufficient to move the controlled group reliably to a goal re-

gion. The controller solution, which was obtained by an

evolutionary algorithm, was robust with respect to sensory

noise. It was also flexible with respect to moderate changes

in the number of shepherds and sheep. We also investigated

shepherds using 2 trits (i.e., 2 ternary digits) of information.

These shepherds were able to simultaneously detect another

agent and the goal, if in the line of sight. This enhanced

sensing modality yielded better scalability with respect to

the number of sheep and shepherds.

Although various solutions to the collective shepherding

problem had been previously proposed, minimizing the in-

formation that needs to be gathered and processed by the in-

dividual agents could help pave the way for applications at

small scale—such as in nanomedicine—where the space and

energy available for hardware is at a premium. An example

of the shepherding concept in this domain can be observed

in the manner in which white blood cells chase and engulf

pathogens in the body. Future work will study to general-

ize our shepherding strategy to operate in more realistic 3D
environments.

References
Becker, A., Habibi, G., Werfel, J., Rubenstein, M., and McLurkin,

J. (2013). Massive uniform manipulation: Controlling large
populations of simple robots with a common input signal. In
Proceedings of the 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 520–527. IEEE.

Brambilla, M., Ferrante, E., Birattari, M., and Dorigo, M. (2013).
Swarm robotics: a review from the swarm engineering per-
spective. Swarm Intelligence, 7(1):1–41.

Brown, D. S., Turner, R., Hennigh, O., and Loscalzo, S. (2017).
Discovery and exploration of novel swarm behaviors given
limited robot capabilities. In Proceedings of the 13th Inter-
national Symposium on Distributed Autonomous Robotic Sys-
tems. Springer.

Ferrante, E., Turgut, A. E., Huepe, C., Stranieri, A., Pinciroli, C.,
and Dorigo, M. (2012). Self-organized flocking with a mo-
bile robot swarm: A novel motion control method. Adaptive
Behavior, 20(6):460–477.

Gauci, M., Chen, J., Li, W., Dodd, T. J., and Groß, R. (2014a).
Clustering objects with robots that do not compute. In
Proceedings of the 2014 International Conference on Au-
tonomous Agents and Multiagent Systems, pages 421–428.
IFAAMAS.

Gauci, M., Chen, J., Li, W., Dodd, T. J., and Groß, R. (2014b).
Self-organized aggregation without computation. The Inter-
national Journal of Robotics Research, 33(8):1145–1161.

Groß, R. and Dorigo, M. (2008). Evolution of solitary and group
transport behaviors for autonomous robots capable of self-
assembling. Adaptive Behavior, 16(5):285–305.

Hansen, N. and Ostermeier, A. (2001). Completely derandomized
self-adaptation in evolution strategies. Evolutionary Compu-
tation, 9(2):159–195.

Johnson, M. and Brown, D. S. (2015). Evolving and con-
trolling perimeter, rendezvous, and foraging behaviors in a



(a) t = 0 s (b) t = 200 s (c) t = 600 s

(d) t = 1000 s (e) t = 1200 s (f) t = 1500 s

Figure 8: Sequence of snapshots showing how a group of 10 shepherds gather and move a group of 100 sheep towards the goal

using the extended controller.

computation-free robot swarm. In Proceedings of the 9th EAI
International Conference on Bio-inspired Information and
Communications Technologies, pages 311–314. ICST, Brus-
sels, Belgium.

Jones, C. and Mataric, M. J. (2003). Adaptive division of labor in
large-scale minimalist multi-robot systems. In Proceedings
of the 2003 IEEE/RSJ International Conference on Intelligent
Robots and Systems, volume 2, pages 1969–1974. IEEE.

Lien, J.-M., Rodriguez, S., Malric, J.-P., and Amato, N. M. (2005).
Shepherding behaviors with multiple shepherds. In Proceed-
ings of the 2005 IEEE International Conference on Robotics
and Automation, pages 3402–3407. IEEE.

Magnenat, S., Waibel, M., and Beyeler, A. (2009). Enki: An open
source fast 2D robot simulator. http://home.gna.org/
enki/.

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klap-
tocz, A., Magnenat, S., Zufferey, J.-C., Floreano, D., and
Martinoli, A. (2009). The e-puck, a robot designed for ed-
ucation in engineering. In Proceedings of the 9th Conference
on Autonomous Robot Systems and Competitions, volume 1,
pages 59–65.

Nolfi, S. and Floreano, D. (2000). Evolutionary robotics: The biol-
ogy, intelligence, and technology of self-organizing machines.
MIT press.

Özdemir, A., Gauci, M., and Groß, R. (2017). Online supplemen-
tary material. http://naturalrobotics.group.

shef.ac.uk/supp/2017-002/.

Parker, L. E. (2008). Multiple mobile robot systems. In Springer
Handbook of Robotics, pages 921–941. Springer.

Pierson, A. and Schwager, M. (2015). Bio-inspired non-
cooperative multi-robot herding. In Proceedings of the 2015
IEEE International Conference on Robotics and Automation,
pages 1843–1849.

Piggins, D. and Phillips, C. (1996). The eye of the domesti-
cated sheep with implications for vision. Animal Science,
62(2):301–308.

Requicha, A. A. (2003). Nanorobots, NEMS, and nanoassembly.
Proceedings of the IEEE, 91(11):1922–1933.

Rubenstein, M., Cabrera, A., Werfel, J., Habibi, G., McLurkin, J.,
and Nagpal, R. (2013). Collective transport of complex ob-
jects by simple robots: Theory and experiments. In Proceed-
ings of the 2013 International Conference on Autonomous
Agents and Multiagent Systems, pages 47–54. IFAAMAS.

Strömbom, D., Mann, R. P., Wilson, A. M., Hailes, S., Morton,
A. J., Sumpter, D. J., and King, A. J. (2014). Solving the
shepherding problem: Heuristics for herding autonomous,
interacting agents. Journal of the Royal Society Interface,
11(100):20140719.

Trianni, V., Nolfi, S., and Dorigo, M. (2008). Evolution, self-
organization and swarm robotics, pages 163–191. Springer.

Vaughan, R., Sumpter, N., Henderson, J., Frost, A., and Cameron,
S. (2000). Experiments in automatic flock control. Robotics
and Autonomous Systems, 31(1):109–117.

Yu, J., LaValle, S. M., and Liberzon, D. (2012). Rendezvous with-
out coordinates. IEEE Transactions on Automatic Control,
57(2):421–434.

http://home.gna.org/enki/
http://home.gna.org/enki/
http://naturalrobotics.group.shef.ac.uk/supp/2017-002/
http://naturalrobotics.group.shef.ac.uk/supp/2017-002/

	Introduction
	Methods
	Problem Formulation
	Simulation Setup
	Shepherd
	Sheep
	Optimization Method
	Objective Function

	Results
	Selecting the Best Controller
	Behavioral Analysis
	Noise Analysis
	Sensitivity Analysis
	Scalability Analysis

	Conclusions

