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Abstract

A castable, dielectric bulk glass-ceramic material of the La2O3-TiO2-SiO2-B2O3

system is developed which is able to fulfill the requirements for dielectric loading-

based mobile communication technologies (εr > 20, Qf > 5000 GHz, |τf | < 20

ppm/K; at GHz frequencies). It is shown that the given dielectric requirements

can be fulfilled by glass-ceramic materials without being dependent on complex

ceramic processing techniques which intrinsically lead to unfavorable structural

properties (porosity, inhomogeneity, non-uniformity). Depending on the heat

treatment during the ceramming process, the material exhibited permittivity

values of 20 < εr < 30, quality factor 2000 GHz < Qf < 10000 GHz and a

temperature coefficient of resonance frequency -100 < τf < +180 ppm/K. A

zero τf material with a Qf value of 9500 GHz and εr = 21.4 could be achieved

at a ceramming temperature Tcer = 870 ◦C. The material is aimed to provide an
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alternative to existing, commercially used sintered ceramic materials. Further

focus is laid on the investigation of the dominant dielectric loss mechanisms in

the GHz frequency range and how they are correlated with the microstructure.

Keywords: dielectric glass-ceramics, titanate-based glass-ceramics, microwave

materials, GHz materials, dielectric-loaded antenna materials

1. Introduction

Dielectric oxide ceramics have revolutionized the microwave wireless com-

munication industry by reducing size and cost of filter, resonator and antenna

components in various applications ranging from cellular phones to global posi-

tioning systems [1]. This is apparent by the increasing number of smart phones5

combining the use of multiple microelectronic components of different operating

frequencies on a limited spatial area (GSM/UMTS/LTE, GPS, WLAN, Blue-

tooth). Miniaturization is a critical factor for hand-held devices and can be

directly observed in the decrease of size and weight of the devices in recent

years. The required performance increase for future technologies (e.g. 5G) can10

be achieved by the use of MIMO-based antenna systems [2]. Miniaturization

and MIMO can be realized by the use of dielectric loading-based implementa-

tion solutions. While for cavity filters, exceptionally low-loss materials (Qf >

100000 GHz) are necessary [3], dielectric loading-based wireless communication

technologies (MIMO, GPS, multiresonant dielectric resonator antennas) as for15

example dielectrically loaded antennas (DLA) can utilize dielectrics with higher

losses (Qf > 5000 GHz, εr > 20, |τf | < 20 ppm/K), as their antenna efficiency

is mainly dominated by metallization losses [4]. A quite large number of com-

mercially available ceramics with excellent dielectric properties already exists

[3], but due to their manufacturing process (sintering) they show some disad-20

vantageous non-electronic properties which cause problems for their use in DLA

applications [5, 6]:

� porosity (problematic for metallization processes)

� blank inhomogeneity/non-uniformity (performance deterioration)

2



� batch-to-batch variation of the dielectric properties (∆εr/εr ≈ 1-2 %)25

At low frequency ranges dielectric resonators become larger which intensifies

these manufacturing-related problems. Especially for the frequency range be-

low 2 GHz, which is important for mobile communications large blank geome-

tries are necessary [7]. For these applications glass-ceramic materials can be

a suitable alternative to sintered ceramic materials. Glass-ceramic-based di-30

electrics tend to have comparatively higher dielectric losses due to the residual

glassy phase, but provide superior structural properties to sintered ceramics.

As glass-ceramics are initially produced from a homogeneous liquid glass melt,

they are intrinsically pore-free and provide a better material homogeneity and

reproducibility. First work on glass-ceramic-based dielectrics for DLA applica-35

tions was made in the Bi2O3-Nb2O5-SiO2-B2O3 system by Mirsaneh et al. [8, 4],

but the dielectric requirements could not be sufficiently fulfilled. In this work

the development of a dielectric glass-ceramic material with suitable dielectric

properties (Qf = 9500 GHz, εr = 21.4, τf = -1 ppm/K) is presented.

2. Material development and characterization40

2.1. Motivation for the choice of the La2O3-TiO2-SiO2-B2O3 system

The dielectric properties of glass-ceramic material system dominantly deter-

mined by the dielectric properties of the existing crystalline phases, which were

investigated in literature (e.g. [1]) under consideration of the requirements of

the aimed application (εr > 20, Qf > 5000 GHz and |τf | ≤ 20 ppm/K). In the45

ternary system La2O3-TiO2-SiO2, two optimal crystalline phases (La4Ti9O24

and La2Ti2SiO9, see Tab. 1) exist, which show sufficiently high εr and Qf , in

combination with a small positive τf . The τf values are optimal for the use in

glass-ceramic materials, as the residual glassy phase generally has a negative τf

[1, 9] and both phases can thereby compensate to an overall τf close to zero.50

TiO2 (rutile) and LaBO3 are minor phases (< 20 wt%) for some glass compo-

sitions/ceramming programs. TiO2 (rutile) has excellent dielectric properties

[10] but also an extremely high τf . LaBO3 crystallizes from the excess B2O3
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and La2O3 which is not used in the major crystalline phases. To enhance the

glass forming ability of the system (avoid devitrification), a combination of the55

two network former oxides SiO2 and B2O3 was added. This enables a glass

composition in the field of crystallization of the two target crystalline phases.

Nevertheless, the aim is always a one-crystalline-phase material with main con-

tent of La4Ti9O24 or La2Ti2SiO9, as multiple-phase materials always tend to

have a higher dielectric losses [11]. Unfortunately SiO2 and B2O3 only have a60

low ionic polarizability due to their strong covalent bonds, but also they have a

comparatively low dielectric loss [12, 1]. The amount of SiO2 and B2O3 was kept

to a minimum to achieve a maximum amount of crystalline phase respectively

minimum amount of residual glass phase content after the ceramming process.

2.2. Glass melting and ceramming process65

The glass samples were melted from milled dry powders according to the

batch composition inside a one litre Pt-Ir alloy crucible. The melts are cast

into size-adjustable steel molds. From each melt 4 glass bars of 2 × 5 × 23 cm

size could be made, which were then cut into suitable geometries for subsequent

measurements. The high volume and the possibility to stir the melt ensured70

homogeneous samples. The melting temperature Tm varied between 1450 ◦C to

1650 ◦C. A typical melting procedure can be summarized as:

� Insertion of raw materials in 5 g steps at Tm - 100 ◦C (typically 1500 ◦C),

until batch is melted

� Oxygen bubbling and stirring (to achieve oxidizing melting conditions)75

with 27 l/h for 30 min at Tm - 50 ◦C (typically 1550 ◦C)

� Keeping time at the high temperature chamber furnace for tk = 30 min

at Tm (typically 1600 ◦C)

� Casting into steel mold (on room temperature)

� Cooling in the cooling furnace to prevent crack formation (preheated at80

Tg - 20 ◦C) with 20 K/h until room temperature
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First compositional attempts were made with La:Ti ratios close to the stoi-

chiometry of the La4Ti9O24 phase (e.g. sample S2, see Fig. 1). These glasses

showed a strong devitrification tendency (see Fig. 2) and therefore the com-

position was moved closer to the stoichiometry of the La2Ti2SiO9 phase. An85

important concept to stabilize glass formation in multicomponent systems is

the principle of glass frustration [13]. The increase of the number of different

cations/components leads to a ”geometrical frustration” which increases/decreases

(?) disorder of the system and thereby retards the formation of an ordered

crystalline state [14], respectively stabilizes the disordered amorphous glassy90

phase. Fig. 1 shows a pseudo-ternary compositional diagram and a compar-

atively small glass-forming area. TiO2 was partially substituted by ZrO2 and

La2O3 by other rare earth oxides (RE: CeO2, Nd2O3, Sm2O3, Gd2O3) to cre-

ate additional disorder and thereby improve the glass-forming properties of the

system. A Ti substitution with 10 - 20 % Zr and a La substitution with 1 - 5 %95

RE showed the best results. The composition S1 (see Fig. 2) showed optimum

glass-forming abilities (purely amorphous) in combination with sufficiently good

dielectric properties after the ceramming process (Tg = 870 ◦C).

2.3. Ceramming & phase assemblage

During the ceramming process the purely amorphous sample partially crys-100

tallizes. The ceramming temperatures for the investigated system were around

800 ◦C to 1050 ◦C with the program shown in Tab. 2. The best dielectric results

(high Qf & small |τf |) were achieved for samples ceramized at comparatively

low temperatures (e.g. ceramming program P1: Tcer = 870 ◦C, tcer = 50 h).

The dominant nucleation of the major phases (La4Ti9O24, TiO2, La2Ti2SiO9) is105

caused by dissolved Pt particles which are corroded from the crucible. At higher

temperatures (Tcer > 950 ◦C) also surface crystallization is observed. The Pt

particles effectively nucleate La4Ti9O24 as main phase at low ceramming tem-

peratures in combination with minor amounts of an unknown lanthanum-silicate

phase (approximate stoichiometry La:Si = 1:1 (identified by TEM/EELS), as-110

sumed: La2Si2O7, but does not match with the XRD peaks) and SiO2 as minor
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phases, which are found between the dendrite branches (see Fig. 4). It is ob-

served via TEM/EELS, that Zr partially substitutes on the Ti lattice site in the

La4Ti9O24 phase. Due to the unidentified peaks (⋄) in the XRD diffractogram

(Fig. 3), which might be caused by the lanthanum-titanate phase, no Rietveld115

analysis could be performed. At medium ceramming temperatures 900 ◦C <

Tcer < 940 ◦C, the La4Ti9O24 phase decreases and TiO2 becomes dominant

leading to a strong increase of εr and τf . High ceramming temperatures Tcer

> 940 ◦C, favor the formation of La2Ti2SiO9 as main crystalline phase. The

excess TiO2 and B2O3 form the minor phases TiO2 (rutile needles) and LaBO3120

in the boundary regions between the La2Ti2SiO9 areas. LaBO3 is present in

all temperature ranges as minor phase and its amount increases with increasing

temperature. For Tcer > 950 ◦C LaBSiO5 is formed probably in a reaction of

the LaBO3 and the SiO2. Further small amounts of amorphous SiO2 are found,

which do not show any XRD peaks and were detected by TEM/EELS.125

2.4. Dielectric properties

The dielectric properties in the GHz frequency range were measured using

the Hakki-Coleman method [15] (εr and Qf) and the cylindrical cavity res-

onance technique [16, 17] (τf ). Further electrical conductivity measurements

with an impedance analyzer were made from the Hz to MHz range (see Fig. 6)130

to investigate the contribution of conductive losses in the GHz region.

2.4.1. Low frequency properties - electrical conductivity

The electrical conductivity of a wide class of conducting materials (including

amorphous semiconductors, defect containing single crystals, polymers, ionic

conductors and glasses) shows this universal frequency dependence (Eq. (1))

which is given by the phenomenological UDR model (universal dielectric re-

sponse) proposed by Jonscher [18, 19, 20]

σ(f) = σDC + σ0f
s . (1)

The exponent s varies in the range 0.3 to 1 for different materials and the

temperature dependence of σDC and σ0 follows a thermally activated Arrhenius
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type behavior. Jonscher [20] states that this model is valid up to GHz frequencies

until the low frequency flank of the phonon modes starts to show contributions.

The room temperature conductivity is therefore fitted by this model, shown for

S1 and S1P1 in Fig. 6. The associated dielectric loss tan(δ)ex (calculated via

Eq. (2)) values were extrapolated to the GHz region and compared to the values

measured directly by the Hakki-Coleman method.

tan(δ)(ω) =
ε′′r
ε′r

=
σ(ω)

ωε0ε′r
. (2)

It could be shown that for glass S1 and glass-ceramic S1P1, the (extrapolated)

conductive losses tan(δ)ex were approximately one order of magnitude lower

than the directly measured tan(δ) values in the GHz range. The tempera-135

ture dependent measurements show the expected behavior with a comparatively

strong temperature dependence of the σDC-contribution. It can be seen that

the conductivity at room temperature is dominated by the frequency dependent

contribution and only for higher temperatures (> 200 ◦C) the DC contribution

can not be neglected. Glass (S1) and glass-ceramic (S1P1) show a similar be-140

havior. In Tab. 3 a comparison between the extrapolated tan(δ)ex values and

the ones measured in the GHz range via Hakki-Coleman is made. The conduc-

tivities of both samples are at least one order of magnitude too low to signifi-

cantly contribute to the overall dielectric loss in the GHz range. The dominant

loss contribution is probably caused by anharmonic interaction between the mi-145

crowave photons and phonons, with main loss contributions given by two or

three-phonon processes as described by Gurevich and Tagantsev [21, 22, 23].

2.4.2. Microwave properties

At low ceramming temperatures Tcer = 850 - 900 ◦C the dielectric properties

are dominated by the presence of La4Ti9O24, leading to significant increase of150

the Qf value up to 9000 - 9500 GHz in combination with a sufficiently high

εr = 21.5 - 22.5 and τf close to 0 ppm/K, fulfilling all dielectric requirements.

From Tcer = 900 - 940 ◦C the La4Ti9O24 phase reduces and TiO2 (rutile) starts

to become the dominant phase accompanied by a large increase in permittivity
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(up to εr = 30) and temperature coefficient (τf = 170 ppm/K), whereby the155

Qf value reduces to approx. 7000 GHz. The high τf value makes this tem-

perature region unsuitable for the given DLA requirements. Above 940 ◦C the

La2Ti2SiO9 becomes the dominant main phase, but due to the minor amounts

of TiO2, the τf values are still too large. For ceramming temperatures Tcer >

1000 ◦C the Qf value even decreased further, probably due to the increasing160

amount of LaBO3 and LaBSiO5.

In Tab. 4 the most relevant ceramized samples of S1 are summarized.

3. Conclusion

A devitrification-stable basic glass in the La2O3-TiO2-SiO2-B2O3 system has

been developed and stabilized by doping. The nucleation mechanism of Pt par-165

ticles was investigated and the ceramming process was adapted for a maximum

amount of the desired lanthanum-titanate crystalline phases to achieve optimum

dielectric properties. The microstructure of the glass-ceramic was analyzed by

SEM/TEM and XRD measurements and correlated with the macroscopic dielec-

tric microwave properties which were characterized by GHz resonance methods.170

An optimum material with dielectric properties suitable for DLA applications

could be realized (S1P1: εr = 21.4, Qf = 9500 GHz, τf = -1 ppm/K). The

dielectric loss in the GHz range and low frequency regions (Hz to MHz) was

investigated to achieve a general understanding of the dominant high frequency

loss mechanisms. The evaluated dielectric properties were extrapolated from the175

adjacent frequency range to the GHz region, showing that the conductive loss

is no major contribution of the dielectric loss in the GHz range. In conclusion,

it can be summarized that within the framework of this work, the suitability

of the investigated La2O3-TiO2-SiO2-B2O3-based glass-ceramics for the use in

DLA applications was proven and the macroscopic dielectric properties could180

be correlated respectively modified by the control of the microstructure of the

material.
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Phase εr Qf [GHz](fmeas) τf [ppm/K] Ref. JCPDS(ICCD)

La4Ti9O24 37 24800(8 GHz) +15 [24, 11] 00-036-0137

La2Ti2SiO9 28 29500(5 GHz) +23 [25] 01-082-1490

TiO2(Rutile) 104 44000(4 GHz) +450 [26, 1] 01-086-0148

LaBO3 12.5 53000(12 GHz) N/A [27, 28] 00-012-0762

LaSiBO5 N/A N/A N/A N/A 01-077-0989

SiO2(glass) 3.8 67000(9 GHz) < 0 [29]

Table 1: Microwave properties and JCPDS code for the relevant crystal phases in the La2O3-

TiO2-SiO2-B2O3 system
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Figure 1: Pseudo-ternary diagram to visualize the glass-forming area, the black dashed lines

correspond to La:Ti ratios of 1:1 (La2Ti2SiO9) resp. 4:9 (La4Ti9O24)
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SiO2

(glass)

S1

(glass)

S1P1

(glass-ceramic)

S2 (devitrified)

hole
Diffraction

pattern

50 nm

Figure 2: Top picture: left: ceramized glass S1P1 (P1: Tcer= 870 ◦C, tcer= 50 h, see Tab.

2), middle: commercial SiO2 glass, right: glass S1, bottom left: devitrified glass S2, bottom

picture: TEM image and diffraction pattern of glass S1, showing a purely amorphous sample
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R1 Z1 H1 R2 Z2 H2 R3 Z3 H3 R4 Z4

200 Tcer tcer 40 750 0 20 550 0 40 20

Table 2: Typical ceramming program (Abbr.: R: Rate [K/h], Z: holding temperature [◦C], H:

holding time [h])
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Figure 3: XRD diffractogram of S1 ceramized at different Tcer/tcer (the peaks marked with ⋄

could not be assigned and also do not correspond to the La2Si2O7 phase, which was detected

by TEM/EELS measurements but not seen in the XRD, see Fig. 5)
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50 µm

2 µm

Figure 4: Top: SEM magnification of S1P1 showing a dendritic crystal growth induced by Pt,

bottom: Pt particle as nucleus in the center of the crystal
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1 µm

500 nm

3

1

2

Figure 5: Dark field TEM image of S1P1 (dendrite growth direction parallel to the image

plane, phases identified via TEM/EELS: 1: La4(Ti1−δZrδ)9O24 (δ ≈ 0.1-0.2), 2: La2Si2O7,

3: amorphous SiO2)
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Figure 6: Electrical conductivity in dependence of frequency (The room temperature values

of S1 and S1P1 are fitted with the Jonscher model to show the consistency with Eq. (1)
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Sample f [GHz] εr tan(δ) σ0 s σex[S/cm] tan(δ)ex q[%]

S1 10.57 20.4 5.76 1.56·10−14 0.91 2.2·10−5 0.18 3.2

S1P1 10.42 21.4 1.1 1.08·10−13 0.84 2.6 ·10−5 0.16 18.8

Table 3: Extrapolation of the conductivity loss contribution to the GHz frequency range

by using the Jonscher model (whereby σDC ≈ 0 for both samples, q = tan(δ)ex/tan(δ) (ex:

extrapolated), tan(δ)(ex) values given in 10−3 and σ0 in S/cm Hz−s (not shown above due to

the lack of space)
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Figure 7: Dielectric properties of S1 after different ceramming temperatures (top: εr and Qf ,

bottom: εr and τf , the ceramming times vary between 5 h < tcer < 50 h and are chosen in a

way that the crystallization process in all samples is completed)
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Ceramming εr Qf [GHz] tan(δ)[10−3] τf [ppm/K] f [GHz]

S1 20.4 1840 5.8 -83 10.6

870◦C/50h 21.4 9500 1.1 -1 10.4

880◦C/50h 22.5 9590 1.1 +18 10.2

920◦C/20h 30.1 6860 1.3 +169 8.9

950◦C/10h 25.3 7870 1.2 +72 9.5

Table 4: Summary of the most relevant ceramized samples of glass S1
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