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Abstract—Population diversity is essential for avoiding pre-
mature convergence in Genetic Algorithms and for the effective
use of crossover. Yet the dynamics of how diversity emerges in
populations are not well understood. We use rigorous run time
analysis to gain insight into population dynamics and Genetic
Algorithm performance for the (1+1) Genetic Algorithm and the
Jump test function. We show that the interplay of crossover
followed by mutation may serve as a catalyst leading to a
sudden burst of diversity. This leads to significant improvements
of the expected optimisation time compared to mutation-only
algorithms like the (1+1) Evolutionary Algorithm. Moreover,
increasing the mutation rate by an arbitrarily small constant
factor can facilitate the generation of diversity, leading to even
larger speedups. Experiments were conducted to complement our
theoretical findings and further highlight the benefits of crossover
on the function class.

Index Terms—Genetic algorithms, recombination, diversity,
run time analysis, theory

I. INTRODUCTION

Genetic Algorithms (GAs) are powerful general-purpose
optimisers that perform surprisingly well in many applications,
including those where the problem is not well understood to
apply a tailored algorithm. Their wide-spread success is based
on a number of factors: using populations to diversify search,
using mutation to generate novel solutions, and using crossover
to combine features of good solutions.

Priigel-Bennett [29] gives several reasons for the success
of populations and crossover. Crossover can combine building
blocks of good solutions and help to focus the search on bits
where parents disagree [29]. For both tasks, the population
needs to be diverse enough; without sufficient diversity in
the population, crossover is not effective. A common problem
in the application of GAs is the loss of diversity when the
population converges to copies of the same search point, often
called premature convergence. Understanding how populations
gain and lose diversity during the course of the optimisation is
vital for understanding the working principles of GAs and for
tuning the design of GAs to get the best possible performance.

Rigorous run time analysis has emerged as a powerful
theory that has provided many insights into the performance
of GAs [1], [5], [17], [24], [26], [27], including the benefit
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of crossover [9], [18], [20], [21], [25], [31]. It has guided
algorithm design, including the discovery of new variants of
GAs such as the (1+(\,\)) GA [8], which has shown very
good performance across a range of hard problems [14].

However, understanding population diversity and crossover
has proved elusive. The first example function where crossover
was proven to be beneficial is called Jump,,. In this problem,
GAs have to overcome a fitness valley such that all local
optima have Hamming distance k to the global optimum.
Jansen and Wegener [18] showed that, while mutation-only
algorithms such as the (1+1) EA require expected time
O(n*), a simple (u+1) GA with crossover only needs time
O(un?k® + 4% /p.). This time is O(4"/p.) for large k, and
hence significantly faster than mutation-only GAs. However,
their analysis requires an unrealistically small crossover prob-
ability p. < 1/(ckn) for a large constant ¢ > 0.

Kotzing, Sudholt, and Theile [20] later refined these re-
sults towards a crossover probability p. < k/m, which is
still unrealistically small. Both approaches focus on creating
diversity through a sequence of lucky mutations, relying on
crossover to create the optimum, once sufficient diversity has
been created. Their arguments break down if crossover is
applied frequently. Hence, these analyses do not reflect the
typical behaviour in GA populations with constant crossover
probabilities p. = ©(1) as used in practice [22].

Lehre and Yao analysed the run time of the (u+1) GA with
deterministic crowding for arbitrary crossover rates p. > 0,
showing exponential run time gaps between the case p, = 0
and p. > 0 [21]. The gain in performance in that analysis
stems from the ability of a diverse population to optimise mul-
tiple, separated paths in parallel using a diversity-preservation
mechanism. Similar results have been also shown for instances
of the vertex cover problem by generating diversity, either
through deterministic crowding [25] or through island models
[23]. Recently in [7], we have shown that a small change
to the tie-breaking rule of the (u+1) GA to introduce many
common principles of preserving diversity can lead to a size-
able advantage on the expected optimisation time of Jump,
function. The results hold for realistic crossover probabilities
pe =1 —Q(1). In the present paper, we will consider a very
different effect.

We provide a novel approach loosely inspired from popu-
lation genetics: we show that diversity can also be created by
crossover, followed by mutation. Note that the perspective of
crossover creating diversity is common in population genet-
ics [19], [33]. A frequent assumption is that crossover mixes
all alleles in a population, leading to a situation called linkage
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equilibrium, where the state of a population is described by
the frequency of alleles [3].

For the maximum crossover probability p. = 1, we show
that on Jump, diversity emerges naturally in a population:
the interplay of crossover, followed by mutation, can serve as
a catalyst for creating a diverse range of search points out
of few different individuals. This naturally emerging diversity
allows proving a speedup of order n/logn for k¥ > 3 and
standard mutation rate p,, = 1/n compared to mutation-only
algorithms such as the (1+1) EA. Increasing the mutation rate
to pr, = (140)/n for an arbitrarily small constant § > 0, leads
to a speedup of order n. The detail can be seen in Table I.

Both operators are proven to be vital: mutation requires
©(n*) expected iterations to hit the optimum from a local
optimum. Also using crossover on its own does not help
much. As shown in [20, Theorem 8], using only crossover
with p. = Q(1) but no mutation following crossover, diversity
reduces quickly, leading to inefficient running times for small
population sizes (1 = O(logn)).

All our analyses are based on observing the dynamic
behaviour of the size of the largest species, referring to a
collection of identical genotypes as species. A population con-
tains no diversity when only one species is present. However,
mutation can create further species, and then the combination
of crossover and mutation is able to rapidly create further
species in a highly stochastic process. This diversity can then
be exploited to find the global optimum on Jump,, efficiently.
A higher mutation rate facilitates the generation of new species
and leads to better performance, with respect to rigorous upper
run time bounds and empirical performance.

Using Jump,, as a case study, our analyses shed light on
how diversity emerges in populations and how to facilitate
the emergence of diversity by tuning the mutation rate. The
general proof strategy we take is as follows. We characterise
the size of the largest species as a stochastic process and
calculate the transition probabilities of this process taking into
account both mutation and crossover. We prove that the size
of the largest species is described either by an almost-fair
random walk (for standard mutation rates), or by an unfair
random walk that is biased toward increased diversity (for
higher mutation rates). This ultimately allows us to bound
the expected time until sufficient diversity is present in the
population to perform a crossover that successfully generates
the global optimum. Our main results are stated in Theorems 6
and 10, which yield our run time bounds under the assumed
conditions. Critical lemmas are Lemma 2, which estimates
the time until the entire population has reached the plateau
using the method of fitness-based partitions, and Lemma 4,
which bounds the transition probabilities for the random walk
dynamics of the size of the largest species. The proof of
Lemma 4 is carried out by a careful analysis of the different
events that can occur while the entire population resides on
the plateau.

This work is based upon our preliminary study published
in [6]. Here we extend the analysis to higher mutation
rates, leading to the surprising conclusion that increasing the
mutation rates leads to smaller run time bounds, compared
to the standard mutation rate 1/n. Furthermore, the analysis
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Figure 1. Tllustration of the Jumpy fitness function for the case n = 10 and
k = 3, including the levels Aq, ..., A1o defined in the proof of Lemma 2.

of standard mutation rates in [6] was restricted to very short
jumps, k = O(1). Here we generalise the results to a much
larger class of Jump, functions, only requiring k& = o(n).
Experiments were conducted to complement the theoretical re-
sults and further highlight the benefits of combining crossover
with mutation. In fact, the experimental results showed that the
setting of high mutation rate can be as competitive as using
specific diversity mechanisms from [7].

II. PRELIMINARIES

The Jump,,: {0,1}"™ — IN class of pseudo-Boolean fitness
functions was originally introduced by Jansen and Wegener
[18]. The function value increases with the number of 1-bits
in the bit string until a plateau of local optima is reached,
consisting of all points with n — k 1-bits. However, its only
global optimum is the all-ones string 1™ Between the plateau
and the global optimum, there is a valley of bad fitness, which
we call the gap of length k, and the algorithm has to jump
over this gap to optimise the function.

The function is formally defined as

k‘+|x\1

n — |.T‘1

{ if |z =nor|z) <n-—k,
Jump, (z) = .
otherwise,

where |z[; = Y, ; is the number of 1-bits in z. Figure 1
illustrates the function, with the number of 1-bits on the
horizontal axis, and the function value on the vertical axis.

We will analyse the performance of a standard steady-state
(u+1) GA [18] using uniform crossover (i.e., each bit of the
offspring is chosen uniformly at random from one of the
parents) and standard bit mutation (i.e., each bit is flipped
with probability py,). The algorithm uses a population of u
individuals. In each generation, a new individual is created.
With probability p., it is created by selecting two parents
from the population uniformly at random, crossing them over,
and then applying mutation to the resulting offspring. With
probability 1 — p. instead, one single individual is selected
and only mutation is applied. The generation is concluded
by removing the worst individual from the population and
breaking ties uniformly at random. Algorithm 1 shows the
pseudocode for the (u+1) GA. Note that P is a multiset.

The most interesting behaviour of the population presented
in this paper occurs after the entire population is stuck at
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Table 1
SOME EXAMPLES OF RUN TIME BOUNDS WE OBTAIN FOR THE (1+1) GA ON Jump,,.

Algorithmic setting L Pe Pm Problem
k=2 k=4 k = o(n)
\/E n3Ao nk70.5
Standard mutation, Thm. 6 ( Viegn n) 1 1/n ( Viogn ) ( Viog n) 0 ( Viogn )
O(n) 1 1/n O(n’logn) O(n®logn) O (nk_l logn)
High mutation, Thm. 10 O(logn) 1 (1+90)/ O(nlognloglogn) o(r*) O (n\/E log nloglogn + n*~ 1)

Algorithm 1: (u+1) GA

1 P + p individuals, uniformly at random from {0, 1}™;
2 while 1" ¢ P do
3 Choose p € [0, 1] uniformly at random;
if p < p. then
Choose z,y € P uniformly at random;
z + mutate(crossover(z, y));
else
Choose = € P uniformly at random;
L z < mutate(x, pm);

RIS B Y

10 P+ PU{z};
11 Remove one element from P with lowest fitness,
breaking ties uniformly at random;

local optima, the so-called plateau. That is because under the
right condition the population diversity will emerge during
this stage. Then after sufficient progress is made in diversity,
crossover and mutation can work together on the plateau to
create an optimal solution in o(n*) time. This is captured by
Lemma 14, which will be presented later in the paper.

For the sake of completeness, in the next section, we provide
the time bounds for the population to reach the plateau for the
general setting of p. = Q(1). This covers the case of p. = 1
which we will actually focus on in the main results.

III. TIME TO PLATEAU

In the setting of p. = Q(1), we direct the attention to the
steps that crossover occurs. We make use of the following
general result, which provides an upper bound on the expected
time for the (u+1) GA to reach some region A,, of the search
space. Here we consider a fitness-based partition (see [17] for
a formal definition) into levels (A;);c[m) (thus, Ay, is the last
level) and define A>; :=J;~ . A;

i=j

Theorem 1. Let (A;);c[m) be a fitness-based partition of the
search space into m € IN levels. If there exist parameters
€,81,--y8m—1 € (0,1] such that for all j € [m — 1]

I) minmeAzj,yeAszrl

Pr(mutate(crossover(x,y)) € A>;11) > ¢ and

2) ming yea; Pr(mutate(crossover(z,y)) € A>j11) > s;
then the expected number of iterations until the entire pop-
ulation of the (u+1) GA with p. = Q1) is in A, is

O((um/e)log(p) + X275 1/s; ).

Proof. The proof follows [5], but we avoid a detailed drift
analysis because the algorithm is elitist, i.e., the maximum
fitness in the population does not decrease. Let the current
level be the smallest 7 € [m] such that the population contains
less than (/2 individuals in A>, 1. By definition, there are at
least /2 individuals in A> j» where j is the current level.

Since the algorithm is elitist, the number of individuals in
A>; is non-decreasing for any j € [m]. For an upper bound,
we ignore any improvements where mutation only is used (i.e.,
lines 8 and 9 in Alg. 1).

Assume that there are 4 individuals in A>;1, hence 0 <
i < p/2.1f i = 0, then an individual in A>;,, can be created
by selecting two individuals from A;, crossing them over, and
mutating them such that the offspring is in A>;4; and an
individual not in A>;4; is removed. The probability of this
event is at least p.s;/4, where the 1/4 is the probability of
selecting two individuals from A, which contains at least /2
individuals.

If 0 < 4 < p/2, then the number of individuals in A> ;44
can be increased by selecting an individual in A>; and an
individual in A>;,4, crossing them over, and mutating them
such that the offspring is in A> ;11 and one of the p—i > /2
individuals not in A ;. is removed. This event occurs with
probability at least (p./2)(i/p)e.

The expected time to increase the number of individuals
in A>;41 from O to /2, ie., to increase the current level
by at least one, is 4/(pcs;) + 21/ (pce) Z“/ 1/i. Hence, the
expected time until at least half of the population is in A,, is
O( (/e log() + 275" 1/s; ).

We now consider the time to remove individuals from the
lowest fitness level in the population, assuming that at least
half of the population has reached the last level A,,,. Assume
that there are 0 < 7' < p/2 individuals in the lowest level
7 < m. The number of individuals in level j can be reduced
by crossing over an individual in level j and one of the at least
/2 individuals in level m, and mutating the offspring so that
it belongs to A> ;1. By condition 1, this event occurs with
probability at least p.(£/2)(i’/1). Hence, the expected time to
remove all individuals from the lowest level j is no more than
(2/pee)p Z”ﬂ 1/i" = O((u/e)log u). The expected time
until all individuals in fitness levels lower than m have been
removed is therefore O(u(m/e)log ). O

We apply Theorem 1 to bound the time until the entire
population reaches the plateau.
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Lemma 2. Consider the (u+1) GA optimising Jump,, with
pe = Q1) and py, = O(1/n). Then the expected time until
either the optimum has been found or the entire population is
on the plateau is O(n\/E(,u log v + log n))

Proof. We divide the search space into m := n fitness levels
with the partition

{z {0, 1}" [z} =n—j} if1<j <k
{z€{0,1}" | |z|, = j — k} ifk<j<n,
{z€{0,1}" ||z} € {n—k,n}} ifj=n.

A=

J

We call any search point z € {0,1}" withn—k < |z|; <n
a gap-point. Gap-points have worse fitness than any other
search point, hence once there are no gap-points left in the
population, the algorithm will not accept any further gap-
points. We can therefore divide the run into two phases, with
phase 1 lasting as long as the population contains at least
one gap-individual, followed by phase 2, which lasts until the
optimum or a plateau individual has been found.

We bound the duration of the two phases by applying
Theorem 1 twice, once for each of the two phases.

We start by estimating the expected duration of phase 2
using Theorem 1 with respect to levels Ay to level A,,. We
claim that the probability of producing a gap-point by crossing
over two individuals * € A>; and y € A> 41 with £ < j <
n + 1 satisfies

1 1

Pr(n — k < |crossover(x,y)|1 <n) < RV (1)
To see why this claim holds, we first argue that the
probability of producing a gap-point is highest when both
parents, z and y, have n — k 1-bits. More formally, obtain
2’ by flipping an arbitrary 0-bit in z, and ¢y’ by flipping an
arbitrary 0-bit in y. Then, we have the stochastic dominance
relationships |crossover(z,y)|; =< |crossover(z’,y)|; and
|crossover(x, y)|1 < |crossover(x,y’)|;. By repeating this ar-
gument, we obtain |crossover(z,y)|1 = |crossover(z”,y")|1
for two bit strings =’ and y” with |2"|; = |y"’|1 = n — k.
The probability of obtaining a search point with exactly &
0-bits when crossing over two bit strings with k& 0-bits each
is minimised when all positions of the 0-bits in the two bit
strings differ. Hence, for bit strings =’/ and y”, we have by

Stirling’s approximation the lower bound

2k
Pr(|crossover(z”,y" )1 =n — k) > < . ) 972k
> ﬁ .92k s )
~2Vk 2Vk
Uniform crossover of the bit strings x” and y” creates two

bit strings »” and v”, and returns either u” or v" with equal
probability. We then have

2(n — k) = |2" |1 + [y"|1 = Ju""[1 + [v"]1 . (2)

The event |u”|; = |v”|1 = n — k therefore equals the event
|crossover(z”,y")|1 = n — k. Otherwise, in the event that
|u”|1 # |v”|1, we assume without loss of generality that

[u’]y > |[v”|1. We must then have [v"|; < n—Fk < |u"|;
because

200" < [u"[i + "1 =2(n — k) = W1 + v < 2[u”]1.
The claimed inequality (1) now follows, because

Pr(n > |crossover(z”,y" )1 > n — k)

< Pr(|crossover(z”,y")|1 > n — k)
1
= LPr(uls # 1)

1
= 5 (1= Pr(ju"|y = [v"]1))

2
1

= 5(1 — Pr(|crossover(z”,y")|1 =n —k))
1 1

<z - —.
T2 4k
We now show that condition 1 of Theorem 1 holds for
the parameter ¢ := (1 — p,)"/(4Vk) = O(1/Vk). Assume
that € A>pqj and y € A>pqj41 for j > 0. By the same
arguments as above,

27+ 1 < |z + |yl = |uly + [v]1 < 2luly

where we assume without loss of generality that |uly > |v];.
A crossover between x and y therefore produces two offspring
uw and v where |u|; > j + 1, hence

Pr(j + 1 < |crossover(z,y)|1) > 1/2 . (3)
Combining (1) and (3) now yields

Pr(crossover(z,y) € Asptjt1)
= Pr(j + 1 < |crossover(z, y)|1)

— Pr(n — k < |crossover(z,y)|1 < n)
1

> —
~ 4k

Finally, with probability (1 —p., )", none of the bits are flipped
during mutation, which implies

Pr(mutate(crossover(z,y)) € A>pqjt1) > € .

We now show that condition 2 of Theorem 1 holds. Assume
that z,y € Aj4 for j > 0. Then, following the same
arguments as above

1
Wk
The probability that the mutation operator flips at least one of
the n — j 0-bits, and no other bits, is at least (n — j)pm(1 —
Pm)" . Hence, we can use the parameter s; := (n—j)pm(1—
)"/ (4VE) = O((n - j)/ (nVk)).

We have shown that both condition 1 and condition 2 hold
during phase 2, which by Theorem 1 implies that the expected
duration of phase 2 is O gn\/E(,u log (1 + log n))

To estimate the expected duration of phase 1, we again apply
Theorem 1, but this time with respect to level A; to level Ay.
We can reuse the bounds from phase 2, except that we count
the number of 0-bits rather than the number of 1-bits, and we
do not need to account for the probability of producing gap
individuals. Hence, we obtain the same upper bound for the

Pr(crossover(z,y) € A>p4;) >
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Figure 2. Empirical investigation of diversity on the plateau.

expectation duration of phase 1 and phase 2, and the theorem
follows. O

In the following sections, we first show that once the plateau
of Jump, has been reached by the (u+1) GA with p. = 1, the
population diversity can emerge naturally from the interaction
between crossover and mutation. Based on such a result on
the population dynamics, bounds on the expected optimisation
time of the function class are then deduced for two different
settings of the algorithm: standard and high mutation rates.

IV. POPULATION DYNAMICS

Assume that the algorithm has reached a population where
all individuals are identical and on the plateau, i.e., the less
diverse setting. We refer to identical individuals as a species,
hence, in this case, there is only one species. Eventually, a
mutation will create a different search point on the plateau,
leading to the creation of a new species. Both species may
shrink or grow in size, and there is a chance that the new
species will disappear and that we return to one species only.

However, the existence of two species also serves as a
catalyst for creating further species in the following sense.
Say two parents 0001111111 and 0010111111 are recombined,
then crossover has a good chance of creating an individual with
n—k+11s,e.g.,0011111111. Then mutation has a constant
probability of flipping any of the n — k — 1 unrelated 1-bits to
0, leading to a new species, e.g., 0011111011. This may lead
to a sudden burst of diversity in the population.

To further investigate these dynamics, we set up a prelim-
inary experiment for n = 500, kK = 3, with population size
@ = 100 and mutation parameter x from [0.1,0.2,...2.0].
Since we are only interested in the dynamics on the plateau,
the optimum is always rejected and the population is initialised
with copies of a single plateau solution. 100 independent runs
are repeated for each setting, and as an indicator of diversity,
the size of the largest species is recorded for the first 10°
iterations of each run. Figure 2 illustrates the obtained result.
Clearly, we see that new species can emerge from time to time
and more importantly if the mutation rate y/n is sufficiently
large then a diverse population can be maintained (size of the
largest species remains close to 1) after some time.

The above simulation indicates that the mutation rate and
the size of the largest species are important factors for describ-

ing the population diversity. With a large enough mutation
rate, the size of the largest species can perform a random
walk biased towards a reduction of its value. Once its size has
decreased significantly from its maximum g, there is a good
chance for recombining two parents from different species.
This helps in finding the global optimum, as crossover can
increase the number of 1s in the offspring, compared to its
parents, such that fewer bits need to be flipped by mutation to
reach the optimum. This is formalised in the following lemma.

Lemma 3. The probability that the global optimum is con-
structed by a uniform crossover of two parents on the plateau
having Hamming distance 2d, followed by mutation, is

2d 92d 1 X 1\ Pkdti )
2 i ) 22dpk+d=i\" p @

=0

1 1 n—k+d
= 22dk—d 1= n ‘ ®)

Proof. For a pair of search points on the plateau with Ham-
ming distance 2d, both parents have d 1s among the 2d bits
that differ between parents, and n — k —d 1s outside this area.
Assume that crossover sets i out of these 2d bits to 1, which
happens with probability (*%) - 272¢ Then mutation needs to
flip the remaining k£ + d — 4 Os to 1. The probability that such
a pair creates the optimum is hence

2d 2 1 1 n—k—d+i
Z ( i ) 92dy k+d—i (1 o n) :

i=0
The second bound is obtained by ignoring summands 7 < 2d
for the inner sum. O

Note that even a Hamming distance of 2, ie., d = 1,
leads to a probability of Q(n~**1), provided that such parents
are selected for reproduction. The probability is by a factor
of n larger than the probability ©(n~%) of mutation without
crossover reaching the optimum from the plateau.

We will show that this effect leads to a speedup of nearly
n for the (u+1) GA, compared to the expected time of ©(n*)
for the (1+1) EA [10] and other EAs only using mutation.

The idea behind the analysis is to investigate the random
walk underlying the size of the largest species. We bound the
expected time for this size to decrease to ;/2 and then argue
that the (u+1) GA is likely to spend a good amount of time
with a population of good diversity, where the probability of
creating the optimum in every generation is 2(n~**1) due to
the chance of recombining parents of Hamming distance at
least 2.

In the following, we refer to Y (¢) as the size of the largest
species in the population at time ¢. Define

pe(y) =Pr(Y(t+1) —Y() = 1| Y(t) =) ,
p-(y) = Pr(Y(t+1) = Y(H) = =1 | Y(t) = y) .

i.e., p+(y) is the probability that the size of the largest species
increases from y to y + 1, and p_(y) is the probability that it
decreases from y to y — 1.

The following lemma gives bounds on these transition
probabilities, unless two parents of Hamming distance larger
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than 2 are selected for recombination (this case will be treated
later in Lemma 5). We formulate the lemma for arbitrary
mutation rates x/n = ©(1/n) and restrict our attention to
sizes Y (t) > /2 as we are only interested in the expected
time for the size to decrease to /2.

Lemma 4. For every population on the plateau of Jump,
for k = o(n), the following holds. Either the (u+1) GA with
mutation rate x/n = O(1/n) performs a crossover of two
parents whose Hamming distance is larger than 2, or the
size Y (t) of the largest species changes according to transition
probabilities p_ (1) = Q(k/n) and, for p/2 <y < p,

Yy —y)(u+y) X\" (n—y)*
p+(y) < W(l‘ E) +O(u2n) ’
y(n—y) (1w + xy) X\"
p-(y) > 2012(pn+ 1) (1_ﬁ) '

Proof. We call an individual belonging to the current largest
species a y individual and all the others non-y individuals. In
each generation, there is either no change, or one individual is
added to the population and one individual chosen uniformly
at random is removed from the population. In order to increase
the number of y individuals, it is necessary that a y individual
is added to the population and a non-y individual is removed
from the population. Analogously, in order to decrease the
number of y individuals, it is necessary that a non-y individual
is added to the population and a y individual is removed from
the population.

Given that Y'(t) = y, let p(y) be the probability that a y
individual is created at time ¢+ 1, and g(y) the probability that
a non-y individual is created. Since all considered individuals
are on the plateau, the individual for deletion is selected
uniformly at random. Multiplying by the survival probabilities
we have

p—(y) = aly) (y> and ©)

y+1y r=y
) s () o

We now estimate an upper bound on p(y). We may assume
that the Hamming distance between parents is at most 2 as
otherwise there is nothing to prove. A y individual can be
created in the following three ways:

e Two y individuals are selected. Crossing over two y
individuals produces another y individual, which survives
mutation if no bits are flipped, i.e., with probability
(1—x/n)"

e One y individual and one non-y individual are selected.
The crossover operator produces a y individual with prob-
ability 1/4 (as the individuals have Hamming distance 2
by assumption), and mutation does not flip any bits with
probability (1 — x/n)™ If the crossover operator does not
produce a y individual, then, to produce a y individual,
at least one specific bit-position must be mutated, which
occurs with probability O(1/n). The overall probability
is hence (1/4)(1 —x/n)" + O(1/n).

« Two non-y individuals are selected. These two individuals
are either identical or have Hamming distance 2 (i.e., by

assumption). In the first case, they both have one of the
k 0-bit positions of a y individual set to 1. In the second
case, they either both have one of the £ 0-bit positions
of a y individual set to 1, or they both have one of the
n — k 1-bit positions set to 0. In both cases, crossover
cannot change the value of such a bit. Thus, at least one
specific bit-position must be flipped, which occurs with
probability O(1/n).

Taking into account the probabilities of the three selection

events above, the probability of producing a y individual is

p(y) = <z)12(1—2):+2(z2 (1_z>. -
[0 - 252%e()
:(1 (Z() —(z)> (1Z>+ MQ[{:% ) 1)

_yle+y) o x\® p—y 1
o 2u? (1 n) +O< w n)

We then estimate a lower bound on ¢(y). In the case where
Yy = i, a non-y individual can be added to the population if
« two y individuals are selected and the mutation operator
flips one of the & 0-bits and one of the n — k 1-bits. This
event occurs with probability

aw=kn-H(X) (-5 @

2
o35 -o(l). o
n n n

where we used that £ = o(n) in the last equality.

In the other case, where y < i, a non-y individual can be

added to the population in the following two ways:

e A y individual and a non-y individual are selected.
Crossover produces a copy of the non-y individual with
probability 1/4, which is unchanged by mutation with
probability (1 — x/n)™ Secondly, with probability 1/4,
crossover produces an individual with k& — 1 O-bits.
Mutation then creates a non-y individual by flipping a
single of the n — k 1-bit positions that do not lead to re-
creating y. Thirdly, again with probability 1/4, crossover
produces an individual with k£ + 1 0-bits and mutation
then creates a non-y individual by flipping a single of
k 1-bits that do not lead back to y. The above three
events, conditional on selecting a y individual and a non-
y individual, lead to a total probability of

Y feon 30D

4 n n
1 - n—1
+,.k.5(1f5>
4 n n
>X7+1.(1_&)",
- 4 n

« Two non-y individuals are selected. In the worst case,
the selected individuals are different, hence, crossover
produces an individual on the plateau with probability
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at least 1/2, which mutation does not destroy with
probability (1 — x/n)™

Assuming that /2 < y < p and n is sufficiently large, the
probability of adding a non-y individual is

Y y\ x+t1 X\"
i >2(7) (1-7) 25 (1)
10,y ’ - X\"
- 2( - ﬂ) (t=3)
(b —y) (e +xy) X\"

242 (1 B E) ’
Plugging p(y) and ¢(y) into equations (6) and (7), we get
0-31G)

n w1
X n
(1-2)

po(y) > [W
_ =)+ xy)y
212 (p+ 1)

And we also have

pel) = L (1 Xy o(or. L) (1)

2,2 2
_ (w y)y(1x>"+o<(uy)>' 0

2u2(p+1) n un

Steps where crossover recombines two parents with larger
Hamming distance were excluded from Lemma 4 as they
require different arguments. The following lemma shows that
conditional transition probabilities in this case are favourable
in that the size of the largest species is more likely to decrease
than to increase.

Lemma 5. Assume that y > u/2 and that the (u+1) GA on
Jump,, with k = o(n) and mutation rate x/n = ©(1/n)
selects two individuals on the plateau with Hamming distance
larger than 2, then for conditional transition probabilities
p* (y) and p? (y) for decreasing or increasing the size of the
largest species, p* (y) > 2p7 (y).

Proof. Assume that the population contains two individuals x
and z with Hamming distance 2¢ < 2k, where ¢ > 2. Without
loss of generality, let us assume that they differ in the first 2/
bit positions.

First assume that the individual y representing the largest
species has ¢ 0-bits in the first 2/ positions. Then a y individual
may be produced by creating the ¢ 0-bits and ¢ 1-bits in
the exact positions by crossover and no followed mutation.
Alternatively, at least 1 exact bit has to be flipped by mutation.
Then the probability of producing a y individual from z and
z and replacing a non-y individual with y is less than

o< [(6) 037 o(3)) ()
(B (-3e):

<

On the other hand, the probability of producing an individual
on the plateau different from y and replacing a y individual is
at least

. 2¢ 1\ * X\" (Y

ro=((2)1)(z) 0-2)C)

1) 26+ n
> 3(2) (1-%) =2
for sufficiently large n.

In the other case, assume that the individual y does not
have ¢ 0-bits in the first 2¢ bit-positions. Then the mutation
operator must flip at least one specific bit among the last n—2/
positions to produce y, which occurs with probability O(1/n).
The probability to produce a non-y individual on the plateau is
lower bounded by the probability of the event that recombining
x and z produces a bitstring with exactly k£ O-bits in the first

2{ bit-positions, none of the bits are mutated, and a majority
individual is replaced, i.e.,

o= (- ()

22](571

sz%(l - %)” (Z) = 01/Vk).

where the inequality follows by Stirling’s inequality. Taking
into account the assumption k = o(n), it holds for sufficiently
large n that p* (y) > 2p% (y). O

>

V. STANDARD MUTATION RATE

We first analyse the (u+1) GA with the standard mutation
rate of 1/n, i.e., x = 1. We show that the diversity emerging in
the (u+1) GA leads to a speedup of nearly n for the (u+1) GA,
compared to the expected time of ©(n*) for the (1+1) EA [10]
and other EAs only using mutation.

Theorem 6. The expected optimisation time of the (u+1) GA
with p. = 1 and p < kn, for some constant k > 0, on Jumpy,,
k =o(n), is

0) (/m\/%log(u) + 0P/ 40Pt 10g(u)) .

For k > 3, the best speedup is of order {2(n/logn) for
= kn. For k = 2, the best speedup is of order 2(1/n/logn)
for u = ©(y/n/logn).

Note that for mutation rate 1/n, the dominant terms in
Lemma 4 are equal, hence the size of the largest species
performs a fair random walk up to a bias resulting from
small-order terms. This confirms our intuition from observing
simulations. The following lemma formalises this fact: in steps
where the size Y (¢) of the largest species changes, an almost
fair random walk is performed.

Lemma 7. For the random walk induced by the size of the
largest species, conditional on the current size y changing,
Jor n/2 < y < u, the probability of increasing y is at most
1/24 O(1/n), and the probability of decreasing it is at least
1/2 —0(1/n).

Proof. We only have to estimate the conditional probability
of increasing y as the two probabilities sum up to 1. The
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sought probability is given by p+(y)/(p+(y) +p—(y)), which
is strictly increasing in p4 (y). Lemma 5 states that whenever
the (u+1) GA recombines two parents of Hamming distance
larger than 2, the claim on conditional probabilities clearly
follows. Hence we assume in the following that this does not
happen.

Using the lower bound for py(y) and the upper bound
for p_(y) from Lemma 4, with implicit constant ¢, in the
asymptotic term for p;, we get

y(pty) (p—y) (1 _ ;)" + cy (n—y)°

p+(y) 2p2 (p+1) uin
- yuty)(e—y) 1\ | cr(p—y)?
p+(y) +p-(y) — detnlen) (1 - 1)" o el
cy (p—y)*
== 4 2u2n
T2yt (p—y) (1 _ 1\ cr(p—y)?
2 (p+1) (]' n) + +,u2n
et (p—y)
_ 1 + 2pun
o y(pty) 1\" | ci(p—y) ’
2 p(p+D) (1 - 5) + +;m

where in the last step we multiplied the last fraction by
1/ (p—y). Now the numerator is O(1/n). Since /2 < y < p,
we have ZEZT{; = O(1). Along with (1 —1)" = ©(1) and
W = O(1/n), the denominator simplifies to ©(1) +
O(1/n) = ©(1). Hence the last fraction is O(1/n), proving
the claim. O

We use these transition probabilities to bound the expected
time for the random walk to hit p/2.

Lemma 8. Consider the random walk of Y (t), starting in
state Xo > p/2. Let T be the first hitting time of state /2.
If p=0(n), then E(T | Xo) = O(un + p?log p) regardless
Of Xo.

Proof. Let E; abbreviate E(T' | Xo = i), then E, /5 = 0.
Since p_(p) = Q(1/n) by Lemma 4, the expected time to
leave state i towards state ;1 — 1 is 1/p_(u) = O(n) and the
remaining time will be £,_1, thus £, = O(n) + E,_.

For u/2 < y < pu, the probability of leaving state y is
always (regardless of Hamming distances between species)
bounded from below by the probability of selecting two y
individuals as parents, not flipping any bits during mutation,
and choosing a non-y individual for replacement:

MY S RTY
nw+1 = 24p

)

p+(y) +p—(v) ZZZ' (1_71l>n

asy > /2, p+1 < 3u/2 (since pp > 2),and (1-1/n)™ > 1/4
for n > 2. Hence the expected time for leaving state ¢ towards
either state 7 + 1 or state ¢ — 1 is at most 244/(u — ). Using
conditional transition probabilities 1/2 £ § for § = O(1/n)
according to Lemma 7, E; is bounded as

24 1 1
E; < ——0|E;_ —+6|FEiy1 -
_M—i+(2 ) 1+(2+> +1

This is equivalent to

1 24u 1
- _ (E, — E,_,) < =22 -
<2 6) ( 7 zl)_‘uz‘i'(?

+ 5) (Eiy1 — E;) .

Introducing D; := E; — E;_1, this is

<1§> -D; < 24u,+<1+5>~D¢+1
2 n—1 2

and equivalently

24p 1
L+ (3+9) D
D, < £ (f ) Dita < 50M.+04~Di+1
50 w—1
for o := }f—gg = 1+ O(1/n), assuming n is large enough.

From E, = O(n) + E,_1, we get D, = O(n), hence an
induction yields

D. <§m—“-aj—i+a“—i-0(n).
el

Combining & = 14+ O(1/n) and 1 + z < €” for all z € R,
we have o/ < 9/ < ¢O1) = O(1). Bounding both o/ ~!
and o*~% in this way, we get

p—1
1
D; <0(n) +O(p) - Z e O(n + plogp) ,

as the sum is equal to >>%"11/j = O(log ).

Now,

Dyjay1+Dyjpya+---+D;
= (Euje+1 — Euj2) + (Eujore — Epjogr) + ...
+ (FE; — Ei—1)
:Ez_Ey,/ZZE’L .

Hence, we get F; = ZZ:#/QH Dy < O(;m + u?log u). O

Now we show that when the largest species has decreased
its size to u/2 there is a good chance that the optimum will
be found within the following © (%) generations.

Lemma 9. Consider the (u+1) GA with p. = 1 on Jump;,.
If the largest species has size at most /2 and | < kn for
a small enough constant k > 0, the probability that during
the next cu® generations, for some constant ¢ > 0, the global

. . . 1
optimum is found is €1 TEnri-1/,2 )

Proof. We show that during the cu? generations the size of the
largest species never rises above (3/4)u with at least constant
probability. Then we calculate the probability of jumping to
the optimum during the phase given that this happens.

Let X;, 1 < i < cu? be random variables indicating the
change in the number of individuals of the largest species at
generation ¢. We pessimistically ignore self-loops and assume
that the size of the species either increases or decreases in
each generation, thus X; € {—1,+1}. Using the conditional
probabilities from Lemma 7, we get that the expected increase
in each step is

1-(1/2+0(1/n)) —1-(1/2 — O(1/n)) = O(1/n) .

Then the expected increase in size of the largest species at the
end of the phase is

B(X) = Y X, = Y 0(1/n) = (¢2)/n < c'rpp < /8,
=1 i=1
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where we use that ;1 < xkn and « is chosen small enough.

Using a Hoeffding bound, we get Pr(X > E(X) 4+ )\) <
exp(fQ)\z/fo1 c?). We then use that A = p/8 and ¢; = 2
(i.e. the length of the interval in which X, lives), which
gives Pr(X > (2/8)u) < exp(—¢) = 1 — Q(1) for some
constant ¢’ > 0. We remark that the bounds also hold for any
partial sum of the sequence X1, ..., X2 ([1], Chapter 1, The-
orem 1.13), i.e., with probability §2(1) the size never exceeds
(3/4)p in the considered phase of length cu? generations.

While the size does not exceed (3/4)u, in every step there
is a probability of at least 1/4-3/4 = Q(1) of selecting parents
from two different species. As these have Hamming distance
2d for some d > 1, by Lemma 3, the probability of creating the
optimum is at least 272dn=F+d(1 — 1 /n)"—F+d > Q(n=F+1)
for any d > 1.

Finally, the probability that at least one successful gener-
ation occurs in a phase of cu? is, using 1 — (1 — p) >
(Ap/(1+ Ap)) for A € IN, p € [0,1] [2, Lemma 10], the
probability that the optimum is found in one of these steps is

p2 - nokH

1 e’
(11— ) oA ).
(1) 20

Finally, we assemble all lemmas to prove our main theorem
of this section.

Proof of Theorem 6. The expected time for the whole popu-
lation to reach the plateau is O(un\/Elog(u) + nvklog n)
by Lemma 2.

Once the population is on the plateau, we wait till the largest
species has decreased its size to at most p/2. According to
Lemma 8, the time for the largest species to reach size /2
is O(un + p?log ). By Lemma 9, the probability that in the

m) If not,
we repeat the argument. The expected number of such trials
is O(1+n*"1/u?), and the expected length of one trial is
O(un + p2log p) + cu? = O(pun + p?log p). The expected
time for reaching the optimum from the plateau is hence at
most O (un + p?log(p) + n*/p+ n*~log(n)).

Adding up all times and subsuming terms pu?log(u) =
O(/m\/Elogu) and nvklogn = O(n*/u+nFtlogyp),
noting that & = o(n) completes the proof. O

next cu? steps the optimum is found is Q(

VI. HIGH MUTATION RATES

We now consider the run time of (u+1) GA with mutation
rate x/n = (1 + ¢)/n for an arbitrary constant 6 > 0. The
following theorem states that in this setting the algorithm has
at least a linear speedup compared to the (u+1) EA without
crossover [34]. By assuming a slightly higher mutation rate,
we not only obtain a bound which is by a log-factor better
than Theorem 6, but the analysis is also significantly simpler.

Theorem 10. The (u+1) GA with mutation rate (1 + §)/n,
for a constant 6 > 0, and population size p > ckln(n) for a
sufficiently large constant ¢ > 0, has for k = o(n) expected

optimisation time O(n\/Eu log(p) + p? + nk_l) on Jumpy,.

We again study the random walk corresponding to the size
of the largest species on the plateau. For mutation rate 1/n,

this is almost an unbiased random walk. For slightly higher
mutation rates, we will see that the random walk changes to
an unfair random walk where the size of the largest species
decreases by (1/u) in expectation. Formally, our analysis
assumes the following condition.

Condition 11. For a constant § > 0 and all y, /2 <y < pu,

Q(1/n) ify=u,
p-(y) = ¢ Q1/p) ifp/2<y<p, and  (10)
14+0ps(y)  ifu/2<y<p.

The following lemma states that it is sufficient to increase
the mutation rate slightly above 1/n to satisfy the diversity
condition.

Lemma 12. If x/n > (14 0)/n for any constant 6 > 0, then
Condition 11 holds.

Proof. The first two inequalities follow directly from Lemma 4
and Lemma 5. For any constant € > 0, Lemma 4 implies that

yp—y)p+y)(l+e X\
p(y) < (u )gu )( )(177> and
2p2(p+1) n
y(u—y)(p+xy)(1 —¢° X\"
b > DW= (X
2p2(n+ 1) n
Thus, given that ;/2 <y < p and x > 1+ 4,
p-(y) > (u+xy>(1_€) S 146
P+(y) p+ty
for some constant ¢’ > 0 when ¢ is sufficiently small. O

Given Condition 11, the additive drift theorem [16] implies
that the largest species quickly decreases to half the population
size.

Lemma 13. [f Condition 11 holds, then the expected time until
the largest species has size at most j1/2 is O(u2 + n)

Proof. Let Y (t) denote the size of the largest species at time
t. We consider the drift with respect to the distance function

h(y) = f(y) +9(y)

which has the two terms

£(w) =y and
9(9) 1= (n/p)e”"~

with £ := In(1 + §) over the interval y € [/2, u]. Due to
linearity of expectation, we can consider the drift of the two
terms f(y) and g(y) separately. The second term g(y) is intro-
duced to handle the case y = p and is defined exponentially
decreasing in p1—y to avoid negative drift in the case y = p—1.
The total distance is 1 (p) —h(p/2) = O(p + n/u), hence, we
need to prove that the drift of the process h(Y (t)) is Q(1/p).

We first consider the drift with respect to the first term
fy)=y.

Case 1: Y(t) = p. Since Y (¢t + 1) < u for all ¢, the drift
in this case is

E(f(Y(#) = f(Y(t+1)) [Y(t) =p)
=E(pu-Y({t+1)|Y(t)=p) >0.
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Case 2: 1/2 < Y (t) < p. By (10), the drift in this case is

E(fY(®) - fY(E+1)|Y(®#) =y, pn/2<y<p)
=p-(y)(y—(y—1) +ps+(W)(y—(y+1))
=p-(y) — ps(y) > dp—(y) = Q1 /p) .

We then consider the drift with respect to the second term

9(y) = (n/p)e="0
Case 1: Y(t) = p. By (10),

E(g(Y(?) —g(Y(t+1)) | Yi(t) = )
=Q(1/n)(n/p)(1 —e ") =Q1/p) .

Case 2: p/2 < Y(t) < p. By (10), p4+(y)e™ < p_(y). The
drift with respect to g is therefore

E(g(Y(#) —g(Y(t+1)) [ p/2 <Y (t) < p)
=p+(W)(g(y) —g(y+1)) +p-(y)(9(y) —g9(y — 1))
= (n/p)e "I (" — 1) (p_(y) — p+(y)e®) > 0.

To complete the proof, we now consider the drift of the overall
distance function h. In both Case 1 and Case 2, it holds that

E(h(Y(t)) —h(Y(t+1)) | Yi(t)) =
E(f(Y(t)) = f(Y(t+1)) | V(1))
+E(@g(Y (1) —g(Y(t+1)) | Y2(t)) = Q(1/p),
and the theorem follows. O

After the population diversity has increased sufficiently on
the plateau, an optimal solution can be produced with the right
combination of crossover and mutation. This is captured by the
following lemma.

Lemma 14. Consider a population P on the Jump,, plateau
(f(x) = n—Fk for all x € P). We partition P into species. For
any constant 0 < ¢ < 1, if the largest species has size at most
cp, then the optimal solution is created by uniform crossover
followed by mutation with probability Q((x/n)*~1!) assuming
the mutation rate is x/n = ©(1/n).

Proof. Since the size of the largest species is no larger than
cii, the probability that two distinct parents are selected for
crossover is €2(1). For the remainder of the proof, we assume
that two parents = and y are selected with x # y.

Let 2d > 0 denote the Hamming distance between x and
y. Then = and y have d 1s among the 2d bits that differ
between parents and n — k — d 1s outside this area. Assume
that crossover sets exactly ¢ out of these 2d bits to 1, which
happens with probability (*')272% Then mutation needs to
flip the remaining k + d — ¢ Os to 1. The probability of this
occurring is

2d

2d\ 1 [y k+d—i X\ k—dti X\ A1
X)) -0 =alG) )
, i) 2%2d\n n n
=0
where we bound the sum by dropping all but the last term

(i = 2d) and use 4~¢ > i(%)d_l, since d > 0 and we take n
to be large enough. O

We are now in a position to complete the run time analysis
of the algorithm. By Lemma 2 and Lemma 13, we quickly

reach a diverse population on the plateau. From this configu-
ration, there is a sufficiently high probability that before the
diversity is lost the algorithm has crossed over an appropriate
pair of individuals and jumped to the optimum. If the diversity
is lost, we can repeat the argument.

Proof of Theorem 10. By Lemma 2, the expected time for the
entire population to reach the plateau is O ( nv/ku log ,u), and
by Lemma 12, Condition 11 is satisfied.

Assume ¢ is sufficiently large so that p > (c'k/d)In(n)
implies (1 + 6)*/* > 4enF=' + 1 for a constant ¢ that will
be determined. We consider a phase of length c(u? + 2n*F~1)
iterations and define the following three failure events.

The first failure occurs if within the first c(u? + n) iter-
ations the largest species has not become smaller than /2
individuals. By Lemma 13, the expected time until less than
(/2 individuals belong to the largest species is O(u? + n).
Hence, by Markov’s inequality, the probability of this failure
is less than 1/4 when c is sufficiently large.

The second failure occurs if within the next cn*~1 iterations
there exists a sub-phase which starts with ©/2+ 1 individuals
in the largest species and ends with the largest species larger
than (3/4)p without first reducing to ;/2. We call such a
sub-phase a failure. We model the number of individuals in
the largest species by a Gambler’s ruin argument [12], where,
by (10), the probability of losing an individual in the largest
species is at least a (1 + 0)-factor larger than the probability
of winning such an individual. From standard results about
the Gambler’s ruin process [12], the probability that a sub-
phase is a failure is 6/((1 4+ 6)*/* — 1). By a union bound,
the probability that any of the at most cn*~! sub-phases is a
failure is no more than cn=1/((1 4+ §)*/* —1) < 1/4.

The third failure occurs if the optimum is not found
during a sub-phase of length cn*~! iterations where the
largest species is always smaller than (3/4)u individuals. In
this configuration, two individuals with Hamming distance at
least 2 are selected with probability at least (3/4)(1/4). By
Lemma 14, the probability of obtaining the optimum from two
such individuals is (1/n*~1). Hence, the probability of not
obtaining the optimum during the sub-phase of length cn®—!
is (1 —Q(1/nk=1))en" ™" < 1/4 for sufficiently large c.

By a union bound, given a sufficiently large constant ¢ > 0,
the probability that none of the failures occur and the optimum
is found within a phase of length c(u? + 2nF~1) iterations is
at least 1/4. Therefore, the expected number of phases until
the optimum is found is no more than 4. O

VII. EXPERIMENTS

Since the theoretical results presented in the previous section
are asymptotic and they only provide upper bounds on the run
time of the algorithms, we also implemented the (u+1) GA
and conducted experiments on Jump, for various values of
k, n, and py,.

In each tested setting of the algorithm and the function, the
run is replicated 100 times with different random seeds. The
number of function evaluations, denoted as ‘# evaluations’, is
reported as the run time. The population size is set to u =
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Figure 3. The impact of enabling crossover.

4elnn so that a realistic population of at least 40 individuals
is always assumed (e.g., even for n = 50 in Figure 3).

A. Impact of crossover and mutation rates

Figure 3 (a) and (b) depict the performance of the GA (p. =
1.0) compared to the algorithm using only mutation (p. = 0.0)
under the same setting (pr, = 1/n). The range of n in this
experiment is set to n = [50...300] with a step size of 10,
and k is in {2, 3}. Even with these small values of k and n, a
strong reduction of the average run time can be observed, up
to a multiplicative factor of 10%

The impact of the jump length & on the run time is illustrated
in Figure 4 (a). The experiment was set with n in [100 . . . 5000]
(with a step size of 100) and k is in {3,4,5}. We notice
that the increase of k& does not imply a large change in the
average run time. The average run time seems to still scale
linearly with n in this setting even for k = 4. By fixing
k = 3, we also experimented with different mutation rates,
i.e., pm in {0.9/n,1/n,1.1/n,2/n}. The results are displayed
in Figure 4 (b). We notice that the mutation rates above 1/n
reduce the average run time while a slightly lower mutation
rate increases it considerably. With mutation rate 2/n, the
average run time and the stability of the runs are distinctively
improved.

On the other hand, an excessive increase of the mutation rate
may deteriorate the average run time because of the likelihood
of multiple bit flips which imply harmful mutations. This can
be observed in the experiment depicted in Figure 5 (in log-
scale) for n = 500. In this experiment, k is in {2, 3,4}, and the
range of x = py,-n is set to [0.6. .. 8] (with a step size of 0.1).
We note that the more k is increased, the stronger the negative
effect of high mutation rates can be noticed. Moreover, too low
mutation rates are also bad for the run time. This can be related
to our theoretical analysis, in which a low mutation rate could
have made the random walk associated with the size of the
largest species biased toward the wrong direction. This may

mean (# evaluations)
w =
T

&
T

. . J 0 . J
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
n n

Figure 4. Run time for different jump lengths k and different mutation rates
Ppm With crossover.

lead to the reduction of the population diversity and the loss
of benefit from crossover.

B. Comparison with the use of diversity mechanisms

In a previous study [7], we have shown that many common
mechanisms to preserve population diversity can speed up
significantly the expected optimisation time of (u+1) GA (with
standard mutation rate) on Jump,, when crossover is enabled.
The aim of this section is to compare by experiments the
setting of high mutation rate with the results taken directly
from [7] for six! mechanisms: duplicate minimisation and
elimination, deterministic crowding, convex hull maximisa-
tion, fitness sharing and island model.

Again full crossover is enabled (p. = 1.0), but the problem
size n is varied in [100,1000] (with a step size of 25). The
result for k£ = 4 is shown in Figure 6 which also includes the
setting of (u+1) GA with standard mutation rate and without
any diversity mechanism as a reference. Here the high muta-
tion rate is set with p,, = 2.6/n (the best choice for n = 500
and k = 4, previously suggested by Figure 5). An interesting
observation from the experimental results is that it appears
the setting of high mutation rate can be as efficient as the
implementation of specific diversity mechanisms. Specifically,
in Figure 6 the setting of high mutation rate is only worse
than convex hull maximisation and fitness sharing.

VIII. CONCLUSION

A rigorous analysis of the (u+1) GA has been presented
showing how combining the use of crossover with that of
mutation considerably speeds up the run time for Jump,
compared to algorithms using mutation only.

It is traditionally believed that crossover is useful only in
the presence of sufficient diversity, and the emergence of this

IThe maximisation of Hamming distance was also counted as a diversity
mechanism in [7]. However, in that paper we have proved that under some
conditions the mechanism is equivalent to fitness sharing.
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diversity is typically attributed to the mutation operator [11],
[15], [35]. In general, the dynamics of mutation and crossover
are vastly complex, and the question of how the two operators
interact to balance exploration and exploitation has been open
for decades [30]. Nevertheless, previous theoretical results on
the benefit of crossover have relied solely on mutation for
establishing the diversity necessary for recombination. For
example, on the Jump,, function (with the exception of our
own work in [7]), proofs have required an unrealistically small
crossover probability in order to force long phases during
which mutation alone builds up enough diversity before a
useful crossover operation can be applied.

Diversity can also be enforced using artificial mechanisms,
and such techniques lead to more efficient evolutionary algo-
rithms both empirically [4], [32] and theoretically [13], [28].
Artificially enforced diversity can also be used in proofs that
crossover is beneficial without having to rely on mutation
alone to create sufficient variation [7].

The question to what degree the interplay between both
crossover and mutation promotes the natural emergence of
diversity in the population has been so far open. Our analysis
shows that this interplay on the plateau of local optima of the
Jump,, function quickly leads to a burst of diversity that is
then exploited by both operators to reach the global optimum.

The balance between the amount of mutation and crossover
impacts the run time considerably. While mutation rates lower
than the standard 1/n rate considerably increase the expected
run time, rates that are slightly higher than 1/n lead to im-
proved performance. These rates also depend on the presence
of crossover. For instance, for £k = 4, the best rate for a
mutation-only algorithm is 4/n while the best rate for the
(u+1) GA with p. = 1 is considerably lower than 4/n and
higher than 1/n.

It is an open problem for future work whether crossover
can lead to more than linear speedups on Jump, for realistic
crossover probabilities. Our analysis could be improved by
taking into account crossover between plateau individuals with
Hamming distance larger than 2. For large k, this could lead
to super-linear speedups. In fact, our experiments reveal that
the average run time of the (u+1) GA does not increase
considerably when k is increased from 2 to 4. However,
completely new techniques may be required to improve our
analysis. Finally, future work should address the interplay
between mutation and crossover on fitness landscapes with
different characteristics than the Jump, function, such as
those featuring neutral networks.
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