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Recent progress in many-body localization

Dmitry A. Abanin
Department of Theoretical Physics, University of Geneva, Geneva 1211 Switzerland

Zlatko Papić
School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom

(Dated: June 7, 2017)

This article is a brief introduction to the rapidly evolving field of many-body localization. Rather
than giving an in-depth review of the subject, our aspiration here is simply to introduce the problem
and its general context, outlining a few directions where notable progress has been achieved in recent
years. We hope that this will prepare the readers for the more specialized articles appearing in this
dedicated Volume of Annalen der Physik, where these developments are discussed in more detail.

I. INTRODUCTION

The research into many-body localization (MBL) is
driven by the desire to understand the effects of inter-
actions between particles on the stability of the Ander-
son insulator, a phase characterised by the absence of
diffusion in low dimensional disordered systems.1–4 On a
broader level, the study of MBL is part of a more gen-
eral quest to understand possible outcomes of the quan-
tum evolution of generic many-body systems, i.e., those
which contain interactions between particles as well as
quenched randomness. (Most systems in nature indeed
possess both of these features.) In the simplest instance,
a many-body system can be assumed to be isolated from
any thermal bath, therefore it evolves in time according
to the well-known unitary evolution. The problem then
reduces to understanding the general outcomes of this
evolution and consequently the fate of such systems at
long times.

The motivation to study isolated quantum many-body
systems is not purely academic. Experimental advances
of the past two decades have led to the realization of
synthetic quantum systems, characterized by an unprece-
dented degree of quantum control and tunability. A
prominent class of such systems are ultracold atomic
gases in optical lattices, which serve as a versatile plat-
form for studying various aspects of many-body physics
in a controlled setting (see Ref. 5). Unlike conventional
solids, the systems of ultracold atoms are well-isolated
from the environment and display a high degree of quan-
tum coherence. This, along with their long intrinsic time
scales and a remarkable set of available experimental
tools, makes ultracold atomic systems an attractive labo-
ratory for studying non-equilibrium quantum many-body
phenomena. These experimental developments continue
to stimulate a strong theoretical interest in the quantum
dynamics of isolated many-body systems.

In order to describe quantum dynamics, throughout
this article we will refer to the quantum quench – a sim-
ple, yet general, probe that can be directly implemented
in experiments with synthetic systems.6 The system, pre-
pared in an initial state |ψ0〉 at time t = 0, undergoes
unitary evolution with its Hamiltonian H. The initial

state |ψ0〉 is typically a relatively simple (for example,
non-entangled) state which can be easily prepared in ex-
periment;7 from the point of view of generic Hamiltoni-
ans, such states typically have high energy density and
therefore can be considered to be far from equilibrium.
One would like to understand whether unitary evolution
results in equilibration and brings the system into an ef-
fectively steady state at sufficiently long times. What
is the nature of this steady state in different systems?
How is it approached? Thus, a fundamental challenge
that emerges is to classify many-body systems according
to their non-equilibrium properties, such as, e.g., their
behavior under a quench.

A well-known possible outcome of unitary evolution of
an isolated quantum system is thermalization: at long
times every sufficiently small subsystem reaches an effec-
tively thermal Gibbs state.8–10 Thermal states are largely
featureless, meaning they can be completely specified by
the values of several global conserved quantities, such as
the total energy of the system and the total particle num-
ber. Thermalization therefore erases the memory of the
initial state |ψ0〉. Intuitively, this will occur if the system
can act as a heat bath for its (sufficiently small) subsys-
tems. Thermalization requires that different parts of the
system exchange energy efficiently, such that states with
spatially non-uniform energy density can relax to ther-
mal states. Thus, energy transport is necessary and ther-
malizing systems are expected to be conducting. Often,
thermalizing quantum systems are referred to as ergodic,
because during their evolution they explore all config-
urations allowed by the global conservation laws. The
properties of states of ergodic systems and the meaning
of thermalization in this context are discussed in Section
II below (see also the Review 11 in this Volume).

In contrast to thermalizing systems, recent work3,4 has
established MBL as a general mechanism by which quan-
tum systems can avoid thermalization. The localization
and the breakdown of ergodicity in MBL systems oc-
cur because strong quenched disorder effectively makes
energy exchange processes between different degrees of
freedom “off-resonant”.3,4 As a result, under quantum
evolution, an MBL system retains the memory of the lo-
cal structure of its initial state |ψ0〉. Due to their lack
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of ergodicity, MBL phases cannot be described by the
conventional statistical mechanics, and this has brought
them into the focus of recent theoretical interest.

As we explain in Sections III – VI, significant progress
in describing the properties of MBL phases has been
achieved, in particular by applying concepts borrowed
from integrable systems and quantum information the-
ory. Most importantly, it has been realized that the er-
godicity breakdown in MBL systems is the result of a
new kind of integrability: the MBL phase is character-
ized by a complete set of emergent quasi-local integrals of
motion (“LIOMs” or “l-bits”).12,13 The existence of LI-
OMs leads to a simple and universal description of MBL
phases (see Section IV), which accounts for their lack of
thermalization and several distinct dynamical properties.
A more detailed overview of the LIOM picture of MBL
phases can be found in articles14,15 in this Volume.

Somewhat surprisingly, despite the absence of energy
transport, quantum entanglement does spread in the
MBL phase,16,17 and even the remote degrees of free-
dom become entangled under quantum evolution. In a
quantum quench setup described above, this leads to the
equilibration of a system to a highly non-thermal state.
The entanglement properties of MBL eigenstates as well
as the spreading of entanglement can both be explained
in the LIOM picture, as we discuss in Sections V and
VI. The connections between dynamical properties and
transport is reviewed in article18 of this Volume, while
articles19–21 investigate the dynamical signatures of MBL
phases from the recent point of view of “out-of-time order
correlators”.

The stability of MBL phases and the existence of a
complete set of LIOMs at strong disorder has been the-
oretically established in a few simple one-dimensional
models22–26 (in one of them, even at the level of math-
ematical rigour27). More recent theoretical efforts have
focused on understanding the breakdown of the LIOM
picture, as we discuss in Sections VII and VIII. A nat-
ural setting to explore the breakdown of LIOMs is the
transition between the MBL and ergodic phase. While
the complete theory of this transition is currently lacking,
important steps towards such a theory have been made by
the recent real-space renormalisation group studies.28,29

Of particular importance is the understanding of the so-
called rare region effects, which determine the physical
properties of the system on either side of the transition.
The results of these studies are reviewed in articles30–33

of the present Volume.

Alternatively, the character and existence of LIOMs
can be strongly affected by the presence of symmetries in
the model. It has been understood that symmetries place
stringent constraints on whether MBL can occur.34 On
the other hand, if the symmetry admits an MBL phase,
the two can combine to stabilize certain kinds of topo-
logical order at finite energy density.35,36 More generally,
quantum information, usually encoded in the low-energy
properties of a system, could then remain “protected” at
much higher temperatures, motivating the use of MBL

to enhance robustness of quantum information process-
ing schemes.37

In Section IX we address the experimental status of
MBL. Recently, several experimental systems have pro-
vided complementary insights into MBL. For example,
signatures of MBL have been observed in systems of ul-
tracold atomic gases (in both one38 and two39 spatial di-
mensions) and trapped ions.40 Furthermore, experiments
studying the dynamics of thermalization of spins on NV-
centers in diamonds have appeared.41 Our review of MBL
experiments will be brief and we refer the interested read-
ers to the original articles.

Finally, in Section X, we conclude by discussing sev-
eral open questions and mention some directions that
are not covered in depth by this article, such as the sta-
bility of MBL in the presence of dissipation (see the
article42 in this Volume), novel types of non-ergodic
states (including possible MBL-like states in systems
without quenched disorder), and new phases of matter
in Floquet systems.43–47

II. EIGENSTATE THERMALIZATION

HYPOTHESIS AND THE STRUCTURE OF

ERGODIC EIGENSTATES

Non-equilibrium properties of a many-body system are
intimately related to the structure of its highly excited
eigenstates. In principle, if the properties of the eigen-
states and their corresponding energies are known, time
evolution of an arbitrary initial state can be described.
For example, in the quantum quench experiment, the
initial state |ψ0〉 can be expanded in the system’s eigen-
states, and the time evolution is determined by the coef-
ficients in this expansion, weighted by the phase factors
corresponding to the system’s eigenenergies. However,
this in itself does not explain in a transparent way why
thermalization happens. Indeed, since the time evolution
is unitary, any information present in the system’s initial
state remains preserved as time goes on. This naive point
of view appears at conflict with one’s intuition and ex-
perimental findings that many quantum systems indeed
reach thermal equilibrium after sufficiently long time and
appear to lose memory of their initial configuration.

Thermalization in ergodic systems is explained by a
powerful conjecture regarding the nature of eigenstates
– the eigenstate thermalization hypothesis (ETH).8–10

The ETH states that in ergodic systems, the individ-
ual excited eigenstates have thermal expectation values
of physical observables, which are identical to those ob-
tained using the microcanonical and Gibbs ensembles.
The expectation value of a physical observable associ-
ated with an operator Ô is given by the diagonal matrix
element Oαα = 〈α|Ô|α〉, where |α〉 is an eigenstate of
H, H|α〉 = Eα|α〉. Further, to describe how the system
approaches the thermal state, Srednicki introduced an
ansatz for the matrix elements of physical operators in
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the basis of system’s eigenstates:48,49

Oαβ = O(E)δαβ + e−S(E)/2f(E,ω)Rαβ . (1)

The first term describes the diagonal part of the operator
in the eigenstate basis, and O(E) is a smooth function of
the energy. The second term describes off-diagonal ma-
trix elements, and S(E) is the thermodynamic entropy at
the average energy E = (Eα+Eβ)/2, f(E,ω) is a smooth
function of E and the energy difference ω = Eα−Eβ . Fi-
nally, Rαβ is a random number, which has zero mean and
unit variance. As we discuss below, the function f(E,ω)

determines the relaxation of the physical observable Ô,
and is different for different systems and observables. We
note that the ETH ansatz (1) for the matrix elements has
been verified in several low-dimensional models.50–53

The ansatz (1) reflects the fact that, in some ways,
highly excited states of ergodic systems can be viewed
as random vectors in the Hilbert space. Moreover, it
predicts the behavior of temporal fluctuations of local
observables Ot ≡ 〈ψ(t)|Ô|ψ(t)〉. By denoting the infinite
time average as

Ō = lim
t→∞

1

t

∫ t

0

dτ Oτ , (2)

it directly follows that (Ot − Ō)2 = O(e−S). Thus, inde-
pendent of the initial state |ψ0〉, Ot eventually approaches
its equilibrium value Ō, and then remains near that value
most of the time. In order to find out how the system
approaches the equilibrium value, one can calculate the
conditional probability to measure Ot given the initial
value O0. This probability

49 is the Gaussian function of
Ot−C(t)O0, with a small variance O(e−S). Here C(t) is
determined by the function f in Eq. (1) and in particu-
lar does not depend on the quantum state of the system.
Thus, the behavior of Ot is nearly deterministic and its
approach to equilibrium is is controlled by the frequency
dependence of the smooth function f in Eq.(1).

Apart from explaining thermalization in isolated sys-
tems, the ETH provides information about quantum en-
tanglement in the eigenstates of ergodic systems. Let us
consider an eigenstate |α〉 with energy Eα. We partition
the system into two subsystems, A and B, and ask how
strongly A is entangled with B in the state |α〉. Pro-
vided A is sufficiently small, such that B can act as an
efficient thermal bath, all observables acting on the de-
grees of freedom in A have thermal expectation values,
with the effective temperature T determined by the en-
ergy of the eigenstate |α〉: Eα = 〈H〉T . This implies that
the reduced density matrix of A,

ραA = trB |α〉〈α|, (3)

is equal to the thermal density matrix at temperature T :

ραA = ρA(T ) =
1

Z
e
− H

kBT . (4)

The amount of entanglement between A and B in the
state |α〉 can be quantified, e.g., using the entanglement

entropy, which is the von Neumann entropy of ραA:

Sα
ent(A) = −trA (ραA ln ραA) . (5)

The relation (4) then implies that the entanglement en-
tropy, which depends on microscopic details of a quan-
tum state, is equal to the thermodynamic entropy of A,
which is determined by the counting of states at temper-
ature T . Generally, the latter scales proportionally to the
volume of region A, and therefore we conclude that the
entanglement entropy of a system obeying the ETH also
scales with the volume. This reflects the fact that ergodic
eigenstates are highly entangled, and agrees with the in-
tuition that the ETH eigenstates are similar to random
vectors. As we will see below, non-thermalizing systems
such as MBL systems have much lower entanglement in
their eigenstates.

III. FROM SINGLE-PARTICLE TO

MANY-BODY LOCALIZATION

The study of localization began when Anderson intro-
duced the problem of a single quantum particle moving
in a disordered crystal in d spatial dimensions.1 A basic
model which exhibits Anderson localization is the tight-
binding model with the random chemical potential on
each site:

H0 = J
∑

〈ij〉

c†i cj +
∑

i

µic
†
i ci, (6)

where c†, c are the creation/annihilation operators, J is
the amplitude to hop between nearest neighbor sites i
and j, and µi are independent random numbers with zero
mean and varianceW 2, such that the typical value of |µi|
is of the order W .
The essence of Anderson localization is that at suffi-

ciently strong disorder, the character of the eigenstates
changes: instead of extended Bloch waves in a clean crys-
tal (W = 0), wave functions become exponentially lo-
calized around some site Rα in the lattice: |ψα(r)|

2 ∝

e−|~r−~Rα|/ξ0 , where ξ0 is the localization length. Such a
change of the wave functions leads to the disappearance
of diffusion, and the system becomes the Anderson insu-
lator.

Intuitively, in the limit of very strong disorder,W ≫ J ,
Anderson localization occurs because hopping processes
between nearby sites are typically off-resonant, which
prevents hybridization of the wave functions on neigh-
boring sites. Further, hopping processes between more
remote sites, which arise at higher orders in perturba-
tion theory in J/W , are also off-resonant (proving this
is a difficult task), and a particle remains localized in
some region of space. It turns out, however, that in
low-dimensional systems, d = 1, 2, all states are local-
ized even when disorder is weak, W ≪ J . In d = 3,
all states of the model (6) are localized when disorder
is sufficiently strong, (W/J) ≥ wc. At weaker disorder,
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there is a mobility edge: states near the band edges are
localized, while states around the middle of the band are
extended.
Many theory works over the few decades following

Anderson’s paper focused on understanding various as-
pects of single-particle localization. One fundamental
challenge that stood out was to understand the effects
of interactions on a system in which the single-particle
states are localized. In particular, does localization sur-
vive when a generic two-body interaction is introduced,
and a finite density of particles is considered? This has
been a long-standing open question in the field, which
was posed already in the original Anderson’s paper in
19581 and later considered by Fleishman and Anderson in
1980.2 Recent theory works3,4 have established a positive
answer to this question: localization is indeed stable with
respect to short-range and sufficiently weak interactions.
Such a non-thermalizing phase is called the “many-body
localized” (MBL) phase. In contrast to the Anderson
insulator, which is realized in the special case when par-
ticles do not interact with each other, the MBL phase can
indeed be viewed as a phase of matter, i.e., it is robust
under sufficiently weak but generic perturbations. The
following Sections will highlight some further differences
between the MBL phase and the Anderson insulator.
In addition to the arguments based on perturbation

theory, the existence of the MBL phase has been fur-
ther supported by extensive numerical simulations of one-
dimensional spin and fermionic models.54,55 Most of these
studies have focused on a one-dimensional spin-1/2 XXZ
model with a random field along the z direction:

H = J

N−1
∑

i=1

(

Sx
i S

x
i+1 + Sy

i S
y
i+1

)

+V

N−1
∑

i=1

Sz
i S

z
i+1+

N
∑

i=1

hiS
z
i .

(7)
Here Sα

i = σα
i /2 is the Pauli operator acting on site i (~ =

1), J is the hopping amplitude, and V is the interaction
strength (see Fig. 1(a)). The magnitude of the random
field is usually chosen to be uniformly distributed hi ∈
[−W,W ]. We have assumed an open chain with N spins.

The above spin system is equivalent to a model of
interacting spinless fermions in a disordered 1d crystal
(the mapping between two models is obtained using the
Jordan-Wigner transform):

H = J
N−1
∑

i=1

c†i ci+1 + h.c.+ V
N−1
∑

i=1

ρiρi+1 +
N
∑

i=1

µiρi, (8)

where we introduced the density operator ρi = c†i ci −
1
2 .

The random field hi translates into the random chem-
ical potential µi for fermions, and the conserved total
magnetization in the spin model corresponds to a fixed
fermionic filling (e.g., total Sz = 0 corresponds to half
filling). Compared to the Anderson model (6), here
the nearest-neighbor density-density interaction is intro-
duced. We note that several other models have also

FIG. 1. (a) A popular model for MBL: a closed, one-
dimensional spin 1

2
XXZ chain, with nearest neighbor hop-

ping (J) and interactions (V ), and a uniform random field
hi pointing along the z-axis. (b) In one dimension, the XXZ
model (a) is equivalent to a model of spinless fermions on a
lattice interacting via nearest neighbor density-density inter-
actions, in the presence of a random on-site chemical potential
µi.

been considered in the literature, e.g., models with bond
disorder,34 disordered quantum Ising model,56 etc.
One important feature of finite lattice models like (7)

or (8) is that their spectra are bounded. (For a discus-
sion of MBL in systems with unbounded spectra, see the
article57 in this Volume.) This facilitated the microscopic
investigations of MBL phases, in particular via numeri-
cal diagonalization of small 1d systems. Numerical works
have established that all states of the model (7) are in-
deed many-body localized when disorder is sufficiently
strong, W > Wc. For J = V (Heisenberg model), crit-
ical disorder strength was found to be Wc ≈ 3.5.55 In
most theory work preceding these numerical investiga-
tions, the focus was on direct evaluation of the conduc-
tivity in the MBL phase, with the goal of demonstrat-
ing the absence of transport. Numerical simulations of
lattice models have instead probed the existence of the
MBL phase by examining the properties of individual
many-body eigenstates. This approach was particularly
useful in understanding the universal properties of MBL
phases, as we review in the following Section.

IV. MANY-BODY LOCALIZATION: LOCAL

INTEGRALS OF MOTION

A powerful insight into the physics of the MBL phase,
brought about by the microscopic analysis of its eigen-
states, has been the theory of “local integrals of motion”
(LIOMs).12,13 We now outline the main steps leading to
this phenomenological description of MBL states. We as-
sume strong disorder such that all of the MBL eigenstates
are localized. For concreteness, let us consider model (7)
with N ≫ 1 spins, although the arguments are applicable
to a variety of models. In the classical limit J = 0, the
system is trivially localized because the eigenstates are
simply product states, with each spin pointing either up
or down, i.e., |α0〉 = |{σz

i }〉 = |σz
1σ

z
2 ...σ

z
N 〉, σz

i =↑, ↓. The
Hamiltonian commutes with the z-projection of spin at
every site: [σz

i , H] = 0, and therefore there exists a com-
plete set of mutually commuting, strictly local integrals
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FIG. 2. In the MBL phase at sufficiently strong disor-
der, there emerges an extensive number of LIOMs, τz

i . Each
τz

i is a Pauli operator unitarily related to the original spins,
τz

i = Uσz

i U
†, with support decaying exponentially away from

the site i. Different τz

i commute with each other, as well as
with the Hamiltonian H. Each eigenstate of the system is
completely specified by the simultaneous quantum numbers
of all {τz

i }.

of motion σz
i with eigenvalues ±1.

Next, let us turn on the coupling J > 0, which leads
to spin-flip processes, while keeping disorder sufficiently
strong, W > Wc(J), such that all states remain MBL.
Intuitively, it is expected that MBL eigenstates |α〉 at
J > 0 remain, in some sense, close to the product states
|α0〉 at J = 0. More precisely, an eigenstate |α〉 is re-
lated to |α0〉 by a quasi-local unitary transformation U
which creates spin flips only between nearby degrees of
freedom (the long-distance flips are exponentially sup-
pressed). The quasi-local unitary transformation U di-
agonalizes the Hamiltonian:

U †HU = Hdiag, (9)

where Hdiag is diagonal in the up-down basis |{σz
i }〉. The

transformation U can be constructed perturbatively in
the small parameter λ = J/W ≪ 1.
Observing that Hdiag commutes with every σz

i opera-
tor, we can now introduce a set of integrals of motion for
H:

τzi = Uσz
i U

†. (10)

It is easy to see from (9) that τzi operators commute with
the Hamiltonian and with each other:

[τzi , H] = [τzi , τ
z
j ] = 0. (11)

Formally, such operators can be defined for any quantum
system. However, the crucial property of the MBL phase
is the quasi-locality of the transformation U , which makes
τzi quasi-local operators – that is, their support is mostly
concentrated around one site and decays exponentially
away from it, see Fig. 2. For example, in the model of
Eq. (7), the explicit form of τzi is

τzi ≈ σz
i +

∑

j,k

∑

a,b=x,y,z

fabi;jkσ
a
j σ

b
k + . . . , (12)

where the weights decay exponentially with distance,

fabi;jk ∝ exp(−max{|i− j|, |i− k|}/ξ), (13)

and the dots . . . denote higher order (N ≥ 3) spin terms.
Observe that certain terms in the expansion (12) may
vanish for symmetry reasons (e.g., there is no σy

i term,
etc.).
The spatial decay of τzi away from site i can be used

to define a “many-body localization length”, which we
denoted by ξ above. Unlike the Anderson case, in MBL
systems there could be several characteristic length scales
that determine various properties of the MBL phase
(moreover, these length scales will fluctuate depending
on the eigenstate). For example, in Section VI we will

encounter another length scale, ξ̃, which is in principle
different from ξ, and controls the dephasing dynamics in
the MBL phase. These various length scales may also
behave differently as the MBL phase is driven towards
the transition to the thermal phase. In particular, some
of the lengthscales, like ξ, might be expected to diverge
at the transition point, while others (e.g., ξ̃) could re-
main finite (see Ref. 13 for more details). Finally, in the
thermal phase, U is highly non-local, there is no expo-
nential hierarchy in the f coefficients in Eq. (12), and
consequently τzi are not very useful.
The operators τzi are usually referred to as LIOMs12

or l-bits.13 They are Pauli operators with eigenvalues ±1,
and form a complete set: specifying the values of τzi = ±1
for all i uniquely specifies an eigenstate |α〉 = |{τzi }〉. The
emergence of such quasi-local conservation laws provides
an intuitive explanation for the ergodicity breaking in the
MBL phase: indeed, under unitary evolution the expec-
tation value of each τzi is conserved, and therefore the
system retains the local memory of the initial state at
arbitrarily long times.
The relation (10) defines the operators τzi in terms of

the physical spin operators σα
i , α = x, y, z. In order to

express an arbitrary physical operator in terms of τ -spins,

we introduce the operators τ
x(y)
i as σ

x(y)
i dressed by the

transformation U :

τ
x(y)
i = Uσ

x(y)
i U†. (14)

Operators ταi , α = x, y, z and their products form a ba-
sis in the operator space, and any physical operator can
be expanded in this basis. It is worth noting that the
relation between physical operators and ταi operators is
quasi-local. By analogy, one can further define τ±i , the
raising/lowering operators for the effective spin i.
The above picture of the MBL eigenstates has been

supported by various studies which constructed LIOMs
explicitly.22–24,26,58,59 Ref. 25 established the existence of
LIOMs using the perturbative techniques of Ref. 3. Fi-
nally, Ref. 27 provides a mathematical proof of the quasi-
locality of the unitary U in a certain 1d MBL system,
under some natural assumptions regarding the spectral
properties (the absence of level attraction). As we discuss
in the following Sections, the theory based on LIOMs al-
lows one to understand the entanglement properties and
dynamics in the MBL phase, in particular the spreading
of entanglement in the quantum quench setup, which was
first observed in numerical simulations.16,17
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The local integrals of motion in the MBL phase are
discussed in depth in reviews14,15 in this Volume.

V. ENTANGLEMENT AND CLASSICAL

SIMULATIONS OF MANY-BODY LOCALIZED

STATES

At strong disorder, all eigenstates in the MBL phase
are product states of LIOMs {τzi }. Each LIOM τzi is
related to the physical spin at the site i, up to spin-flip
corrections which are exponentially suppressed in the dis-
tance from i, see Eq. (12). In this Section, we explain
that such a form of the eigenstates leads to strong con-
straints on their entanglement properties, which in turn
has implications for their simulations on classical com-
puters.
Assuming the existence of LIOMs, it is intuitively clear

that in a 1d MBL system, the entanglement entropy Sent

of the eigenstates is bounded by a constant. Consider
a finite chain of length L bipartitioned in the middle.
The only contributions to the entanglement entropy come
from the terms in the expansion of τzi , see Fig. 2 and Eq.
(12), located near the bipartition, i.e., within the length
ξ introduced in Eq.(13). As we increase L to the ther-
modynamic limit, we expect the entropy to saturate to
a constant Sent(A) ≈ C when L & ξ. This was veri-
fied in numerical simulations of several 1d models.12,36,56

In higher dimensions, the entropy of the subsystem A is
proportional to the number of degrees of freedom at the
boundary of the region, ∂A. Thus, MBL eigenstates gen-
erally obey a very low, boundary-law scaling of entangle-
ment entropy.60 The boundary-law should be contrasted
with that of the (excited) eigenstates of ergodic systems,
which exhibit a much larger, volume-law entanglement,
as we saw in Section II.
The boundary-law entanglement of (excited) MBL

eigenstates makes them similar to the ground states of
1d gapped systems. In the latter case, the spectral gap is
responsible for the exponential decay of correlations.61–63

By contrast, in MBL systems the boundary-law for en-
tropy is a consequence of the existence of LIOMs. This
guarantees the boundary law scaling in arbitrarily high
excited eigenstates, despite the fact that the splitting
between the many-body energy levels vanishes exponen-
tially (∼WL/2L in the spin-1/2 example).
Due to the boundary law, MBL states should be

amenable to efficient classical numerical simulation. In-
deed, it is known that states with such low entanglement
can be represented in a compact way, using the number
of parameters which scales polynomially with the num-
ber of degrees of freedom (for a review, see, e.g., Ref. 60).
This implies that MBL eigenstates can be efficiently sim-
ulated classically using tensor network formalism.64 This
observation has opened the door to studying MBL nu-
merically in large systems.
Recent works65–69 developed extensions of the density

matrix-renormalization group (DMRG) algorithm,70 typ-

ically used for ground states of 1d quantum systems,
which allow one to obtain individual, highly excited MBL
eigenstates. Further, it was argued that the existence
of a complete set of LIOMs implies an efficient repre-
sentation of all eigenstates with a single spectral tensor
network.71 Variational algorithms for diagonalizing MBL
Hamiltonians using tensor networks have been recently
developed.72,73

In addition to the entanglement entropy, some recent
works have explored the structure of the entanglement

spectrum74 in MBL69,75,76 and ergodic systems.77 The
entanglement spectrum, i.e., the eigenvalue spectrum of
the reduced density matrix, reveals further information
about the system which may not be directly accessible in
the entanglement entropy. While the entanglement spec-
trum of ergodic states was found to obey the Marchenko-
Pastur distribution77,78 (in agreement with random ma-
trix theory), in MBL states the entanglement spectrum
obeys a power-law distribution with an exponent deter-
mined by the localization length ξ.69 Thus, the entangle-
ment spectrum reveals a difference between MBL states
and ground states of various integrable (or even non-
integrable) models,79 where the entanglement spectrum
decays faster than a power law, even though the entropy
in both cases may obey the boundary-law scaling.

VI. DYNAMICS IN MANY-BODY LOCALIZED

PHASES

The existence of LIOMs underpins the non-trivial dy-
namical properties of MBL phases. Here we review
these properties, focusing mostly on the quantum quench
setup. To understand the mechanism of the dynamics,
we first note that the Hamiltonian takes a very simple
form in terms of τ -operators: since H commutes with
every τzi , it can only involve τzi operators and their prod-
ucts,12,13,80

H =
∑

i

h̃iτ
z
i +

∑

ij

Jijτ
z
i τ

z
j +

∑

ijk

Jijkτ
z
i τ

z
j τ

z
k + . . . (15)

The couplings between remote LIOMs decay exponen-
tially with the distance between them, e.g.,

Jij ∝ J0 exp(−|i− j|/ξ̃), (16)

where ξ̃ is a characteristic length scale that controls the
dephasing dynamics, as we will see below. The exponen-
tial decay of the interactions stems from the fact that
in the physical basis, H is a sum of local terms, and σα

i

operators are quasi-local in terms of τ -operators.
The Hamiltonian (15) describes simple dynamics of τ -

spins: each effective spin is precessing in the magnetic
field hi,eff directed along the z axis, created by other
spins. The τzi component of the spin i is conserved dur-
ing the evolution. Importantly, the magnetic field hi,eff
experienced by the spin i, depends on the direction of
other spins j 6= i. Therefore the angle of rotation of
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the ith spin depends on the state of all other spins. If
the system was prepared in a superposition of sufficiently
many eigenstates (which is true for a generic initial state),
this would generate entanglement between remote effec-
tive spins. Two spins situated at a distance r from each
other become entangled over a time which is inversely
proportional to the interaction coupling them:

τent(r) ∼
~

J0e−r/ξ̃
=

~

J0
er/ξ̃. (17)

Therefore, quantum correlations propagate logarithmi-
cally in time, r(t) ∝ ln(J0t/~). This should be contrasted
with ergodic systems, where quantum correlations prop-
agate linearly in time.81,82

In a quantum quench setup, the slow dephasing results
in a logarithmic spreading of entanglement: if the system
is prepared in an arbitrary non-entangled product state
|ψ0〉, the (disorder-averaged) entanglement entropy of a
subsystem A evolves as:13,16,17,80

Sent(t) ∝ ξ̃ ln(J0t/~). (18)

This law of entanglement spreading is often viewed as one
of the main characteristics of the MBL phase. At long
times, Sent saturates to a value Sent(∞), which is propor-
tional to the volume of the subsystem A. Thus, at infi-
nite time, the entanglement of an MBL system would be
extensive, but typically smaller by some constant factor
from the full thermal entropy of region A (which would
be reached in an ergodic system).
Further, the random phases generated during the evo-

lution lead to the equilibration of all local observables: at
t→ ∞, 〈ψ(t)|Ô|ψ(t)〉 → O∞. It has been shown that the
approach of local observables to their equilibrium values
occurs in a power-law fashion, with an exponent set by
the parameter ξ̃.83 This provides an unambiguous signa-
ture of the dephasing physics in the MBL phase. Thus,
despite the absence of energy transport, MBL systems
generally equilibrate, but to a highly non-thermal state,
which has the memory of the initial conditions. It should
be noted that the dephasing mechanism described above
distinguishes the MBL phase from the non-interacting
Anderson insulator, where no equilibration in the quan-
tum quench setup occurs. We note that other ways of
observing the logarithmic spreading of correlations have
been proposed, including revivals of local observables,84

and modified spin-echo experiments.85

VII. MANY-BODY LOCALIZATION

TRANSITION AND GRIFFITHS EFFECTS

Thus far we have discussed the properties of eigen-
states and the dynamics in the MBL phase at strong
disorder. How does the transition from the MBL to the
ergodic phase occur, when disorder strength is reduced?
The MBL transition is an unusual kind of a dynamical
phase transition, across which the nature of eigenstates

changes dramatically: for example, the entanglement en-
tropy of individual eigenstates changes its scaling from
the boundary-law to the volume-law. In the vicinity of
the transition, depending on the disorder realization, the
system will be a mixture of localized and thermalizing
subsystems. Thermalizing regions have the ability to
thermalize the localized regions, which is, however, lim-
ited due to their finite size.

The successful scaling theory of localization transitions
in single-particle systems86 is based on a single parame-
ter, the Thouless conductance,87 which characterizes the
response of eigenstates to the change in the boundary
conditions. A natural possibility is that the MBL transi-
tion, similarly, is a one-parameter scaling theory. Ref. 88
introduced a possible many-body extension of the Thou-
less conductance, which characterizes how the many-
body eigenstates in the vicinity of the MBL transition
respond to a local perturbation of the Hamiltonian. Nu-
merical analysis88 shows that such a many-body Thou-
less conductance, defined in terms of matrix elements of
local operators, provides a good diagnostic of the MBL
transition. In particular, it allows one to map out the
position of the many-body mobility edge (the position of
the MBL transition depends on the energy density), in
agreement with numerical simulations.89 Related studies
of the mobility edge are reported in articles90,91 of the
present Volume. An open question is whether the MBL
transition is indeed described by a single-parameter scal-
ing, and further investigations are needed.

A microscopic theory of the MBL transition is cur-
rently lacking, thus our discussion on this subject will be
brief. An important step was taken in Refs.,28,29 which
developed a phenomenological real-space renormalization
group (RG) description of the MBL transition in one-
dimensional systems. These RG procedures involve a set
of heuristic rules for merging thermal and MBL subsys-
tems, which capture the competition between thermal-
ization and localization. Interestingly, on either side of
the transition, rare-region (Griffiths) effects become im-
portant and determine various physical properties. On
the thermal side of the transition, rare MBL regions lead
to the sub-diffusive particle number transport, and sub-
ballistic entanglement spreading in the quantum quench
experiment.28,29,92–94 The anomalous diffusion exponent
vanishes continuously at the transition. At the critical
point, both particle number and entanglement spread
logarithmically in time. The Griffiths effects on trans-
port are expected to be most pronounced in 1d systems,
where inclusions of the MBL phase act as bottlenecks for
transport. These, and other related recent developments
are reviewed in detail in articles31–33 of the present Vol-
ume.
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VIII. SYMMETRIES AND

LOCALIZATION-PROTECTED QUANTUM

ORDER

In the preceding discussion, symmetry has not played a
crucial role for the phenomenology or the existence of the
MBL phase. (Models like XXZ do have the conservation
of energy and total magnetization, but those can be bro-
ken without destroying MBL.) We now consider the cases
where symmetry has an impact on MBL and thermal-
ization, and discuss the notion of localization-protected
quantum order.

In ergodic systems, the individual eigenstates are effec-
tively thermal, and therefore they exhibit ordering (e.g.,
break a symmetry of the Hamiltonian) only if ordering
exists in the thermodynamic equilibrium. Since MBL
eigenstates are not thermal, they can be ordered even
if in the thermodynamic equilibrium the system is not
ordered. This leads to an exciting possibility of using
MBL to protect various kinds of quantum order, includ-
ing symmetry-breaking and topological order at finite
energy density.35,36 This phenomenon was discussed in
Refs. 35, 95, and 96 which considered MBL in random
transverse-field Ising spin chains. Such systems are char-
acterized by a global Z2 symmetry. Depending on the
system’s parameters, two MBL phases can emerge: a
spin-glass-like phase, in which the eigenstates break the
Z2 symmetry, and a paramagnetic phase, in which the
eigenstates respect the symmetry. It was argued that
the transition between the two distinct MBL phases in
this model is described by the infinite randomness fixed
point, similar to the ground state phase transition.95,96

Even more interestingly, MBL can protect certain kinds
of topological35,36 and symmetry-protected topological
order97 at finite energy density.

The character of MBL eigenstates, and the very ex-
istence of the MBL phase, strongly depend on the kind
of symmetries present in the system. Either symmet-
ric or symmetry-breaking MBL phases are possible for
the case when the symmetry group is Abelian (e.g., Z2).
The case when the symmetry group of the Hamiltonian is
non-Abelian is qualitatively different. For discrete non-
Abelian symmetries (such as the permutation group Sn),
MBL is possible, however the eigenstates must sponta-
neously break the symmetry.34 Continuous non-Abelian
symmetries appear to prohibit MBL altogether, as shown
in recent works.98,99 Such systems are always thermaliz-
ing, even though thermalization processes can be non-
trivial and parametrically slow. Intuitively, non-Abelian
symmetries are unfavorable for localization because the
eigenstates come in degenerate multiplets; such degen-
eracies lead to resonances and dictate that boundary-law
entanglement scaling is violated.

IX. EXPERIMENTAL DEVELOPMENTS

On the experimental side, synthetic quantum systems,
being isolated from environment, are ideally suited for
probing the dynamics of isolated many-body systems,
and investigating quantum thermalization and MBL. Re-
cently, signatures of MBL have been observed in one-
and two-dimensional systems of ultracold atoms in dis-
ordered optical lattices,38,39 and also in small systems
of trapped ions.40 These experiments, in essence, imple-
ment a quantum quench setup, where the initial state is
a charge-density-wave,38 with occupation numbers alter-
nating between 0 and 1 at odd or even lattice sites. The
evolution of this state was monitored, and the memory
of the initial density modulation at long times was inter-
preted as indication of MBL. Another promising system
for studying quantum many-body dynamics include spins
in the NV-centers in diamond, where critical thermaliza-
tion arising from long-range interactions in this system
has been observed.41 Further, a recent experiment100 re-
ported signatures of MBL and logarithmic spreading of
correlations in a system of nuclear spins.
One of the main challenges for the experiments de-

scribed above is that synthetic systems are not fully iso-
lated from the environment, and there are slow extrinsic
processes which affect the state of the system and typ-
ically destroy MBL. Thus, such experiments cannot ac-
cess intrinsic processes which are extremely slow. Despite
this limitation, in the systems of ultracold atoms38,39 the
extrinsic processes are sufficiently slow such that clear
signatures of MBL could be observed. The tunability of
these systems can be utilized to study interesting aspects
of quantum dynamics, including logarithmic spreading
of entanglement and equilibration of local observables in
the MBL phase, as well as the effects of symmetries and
symmetry-protected order, in a controlled setting. These
experiments have already entered a stage where the cor-
responding model systems cannot be treated numerically
using exact diagonalization, and they are expected to
bring further interesting discoveries in the near future.

X. OUTLOOK AND SOME OPEN QUESTIONS

As we discussed above, a rather complete picture of
the MBL phase has emerged in recent years, supported
by both analytic and numerical results at sufficiently
strong disorder. Key properties of MBL phases, which
physically distinguish them from Anderson insulators as
well as thermal phases, have been identified on the level
of individual eigenstates or as a response to dynamical
probes. However, despite rapid progress, several funda-
mental questions remain open.
An important goal is to develop a more complete the-

ory of the MBL-thermal transition. Currently, the es-
sential roadblock seems to be the lack of a microscopic
theory describing the effect of a finite thermalizing sub-
system on an adjacent MBL subsystem. The progress
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on this question will likely feed into better understand-
ing of the stability of MBL phases in higher dimensions,
particularly in 2d. Experiments in cold atoms39 are al-
ready probing this question, but limitations to short time
scales make it difficult to draw conclusions about the ex-
istence of MBL in 2d. Similarly, in order to interpret
experiments on NV centers, a better theoretical under-
standing of the stability of MBL in the presence of long
range (dipolar) interactions101,102 is needed. Another set
of questions of immediate experimental relevance con-
cerns the stability of MBL phases in the presence of a
bath.103–107

Going beyond the conventional MBL is the question on
the possible existence of other non-thermalizing phases of
matter. Is MBL the only mechanism to break ergodic-
ity? Do eigenstates of non-ergodic systems necessarily
have boundary-law entanglement? One possible route
to making progress in this direction was suggested re-
cently in Ref. 99. The basic idea is to consider different
entanglement patterns of eigenstates, which emerge for
(fine-tuned) “fixed-point” Hamiltonians, and then study
their stability with respect to local perturbations. Such
systems, if found, may exhibit a partial, rather than com-
plete (as in MBL) set of quasi-local integrals of motion.
In a different direction, Ref. 108 argues the existence of
an intermediate, delocalized, but non-ergodic phase, in
a (single-particle) hopping problem on a random regular
graph (RRG). A different study,109 on the other hand,
argues that the delocalized states in this model are er-
godic. We also note that while the hopping problem on
RRG has certain similarities with the problem MBL, it
is non-local, and locality appears to be a crucial aspect
of MBL.
Understanding whether quenched disorder is a nec-

essary ingredient for ergodicity breaking is another
open problem. Recent works110,111 introduced several
translation-invariant models which are expected to show
some form of non-ergodicity, or at least slow thermal-
ization. These models are constructed in such a way
that most of the transitions/hopping processes which the
particles can make, are off-resonant. Thus, the basic
physical mechanism is quite similar to MBL. However,
it was later argued that the translation invariance may
inevitably lead to delocalization and thermalization, me-
diated by rare resonant “bubbles” which are mobile.112

Studying such models numerically has proved to be chal-
lenging113–115 because of severe finite-size effects, as dis-
cussed in Ref. 116. More recently, a non-generic class
of models are being investigated,117 following the idea of
mapping disorder to an ancillary degree of freedom.118,119

Even if it turns out that in generic models translation in-
variance always leads to thermalization, it is clear that
such models would provide interesting examples of slow
thermalizing dynamics. Moreover, similar kinds of mod-
els might realize a new kind of matter called “quantum
disentangled liquids”.120–122 Such phases might occur in
a system of two or more species of particles, where each
species thermalizes, thus the system is not MBL, but
there remain subthermal interspecies correlations in ar-
bitrarily high energy densities.
Finally, we briefly mention another set of very recent

developments, related to MBL and new phases of matter
in the so-called Floquet systems, in which the Hamil-
tonian is periodically varying in time. Such systems are
naturally realized in experiments with synthetic systems;
in particular, in recent years periodic driving has emerged
as a useful tool for engineering interesting (e.g., topo-
logical) band structures for ultracold atoms in optical
lattices.123 Energy conservation is broken in Floquet sys-
tems, and generally they are expected heat up, absorb-
ing energy from the drive and heating up to a featureless
infinite-temperature state.124–126 If this were always the
case, no distinct “Floquet phases of matter” would ex-
ist. However, it has been shown that MBL is possible
in disordered Floquet systems, giving rise to a Floquet-
MBL phase.127–129 In such a phase, the system fails to
thermalize indefinitely: instead, it exhibits phenomenol-
ogy similar to static MBL systems, including a complete
set of LIOMs and slow spreading of entanglement. In a
set of recent exciting developments, it was demonstrated
that Floquet-MBL systems come in many flavors;43 in
particular, a “Floquet time crystal” phase has been in-
troduced.43–45 The signatures of this phase have been
observed in recent experiments with NV-centers in di-
amond46 and trapped ions.47 These developments have
been recently reviewed in more detail in Ref. 130.
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