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A B S T R A C T

Objectives: We introduce a novel quantitative approach for evaluating the order of roll-out during phased in-
troduction of clinical information systems. Such roll-outs are associated with unavoidable risk due to patients
transferring between clinical areas using both the old and new systems.
Methods: We proposed a simple graphical model of patient flow through a hospital. Using a simple instance of
the model, we showed how a roll-out order can be generated by minimising the flow of patients from the new
system to the old system.
Results: The model was applied to admission and discharge data acquired from 37,080 patient journeys at the
Churchill Hospital, Oxford between April 2013 and April 2014. The resulting order was evaluated empirically
and produced acceptable orders.
Discussion: The development of data-driven approaches to clinical Information system roll-out provides insights
that may not necessarily be ascertained through clinical judgment alone. Such methods could make a significant
contribution to the smooth running of an organisation during the roll-out of a potentially disruptive technology.
Conclusion: Unlike previous approaches, which are based on clinical opinion, the approach described here
quantitatively assesses the appropriateness of competing roll-out strategies. The data-driven approach was
shown to produce strategies that matched clinical intuition and provides a flexible framework that may be used
to plan and monitor Clinical Information System roll-out

1. Introduction

The implementation of hospital Clinical Information Systems (CISs)
is known to be complex. Poor implementation has previously led to
delays in full functionality, and in the worst cases, systems remaining
partially deployed for long periods [1–3]. In many instances, poor
performance following the introduction of a CIS may be attributed to
the system not functioning as intended. For instance, Darbyshire re-
ported how one such CIS was considered unsuitable by clinical end
users [4]. In contrast, Huerta et al. showed that the effect of a CIS on
hospital productivity depended on the rollout strategy, which suggests
an effect due to the implementation process itself [5].

One key decision during CIS implementation is the roll-out strategy
used to determine how the system is introduced into each clinical area.
CISs can be rolled-out according to one of two broad approaches. In a
big-bang approach, the whole system is adopted over a very short
period of time for a whole hospital site. Alternatively, in a phased ap-
proach, subsections of the hospital are moved to the new system over an

extended period of time. The phased approach may also refer to the
gradual release of system functionality, such that users are not im-
mediately exposed to a system's full capabilities.

Big-bang implementations have previously been recommended for
stable systems that do not contain critical functionality [6]. In practice,
technical constraints mean that a big-bang approach is often appealing
[7]. For instance, in the case of Computerised Physician Order Entry (or
e-Prescribing) systems, simultaneous deployment in clinical areas and
pharmacy, is necessary to ensure that drug orders can be completed
using the new system [8]. Other practical considerations such as fi-
nancial and time constraints may also influence the implementation
approach (for example, if required human resource is only available for
a short duration). The drawback of the big-bang is that it exposes an
organisation to a large degree of short-term risk. A successful big-bang
must ensure that all IT infrastructure and organisational processes, in-
cluding staff training and down-time procedures, are in place ahead of
roll-out [9]. Phased roll-out limits risks by confining initial deployment
to a small area. This allows early validation of the system and also
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reduces the initial resource required [9,10]. After the initial validation,
the phased approach allows for mid-course corrections that are not
possible in a big-bang methodology [11]. Furthermore, a phased roll-
out offers opportunities to study the effect of a new system using a
stepped-wedge approach [12,13]. This methodology monitors an in-
tervention over time, allowing the effect of temporal confounders to be
identified.

Phased roll-outs introduce their own problems, including an ex-
tended transition period between the existing and new system. During
this transition phase, uncertainty in clinical process may lead to du-
plication of documentation on both the old and new systems, or worse,
omission of data from either system [14,15]. For this reason, current UK
guidelines on the implementation of e-Prescribing systems recommend
rapid phased rollouts, colloquially described as ‘rolling thunder’ [16].

The order in which clinical areas, or groups of areas, are introduced
to the new system is a key design decision for phased roll-out. The order
of the roll-out is determined by multiple factors. Technical factors in-
clude the system's usability which may be influenced by more wide-
spread IT infrastructure failings such as poor Wi-Fi coverage, as well as
system performance and financial cost. Social considerations include
how well staff engage with a new system. For example, the reticence of
clinical staff to engage with new systems has been well-documented as
a key problem [17,18].

Organisational factors include effective change management, pro-
vision of clear leadership (clinical champions), and successful evalua-
tion of the system [19,20]. Finally, patient safety must be considered.
One possible approach is to minimise the number of patient episodes
documented using both old and new systems.

In practice, the order of clinical areas in a phased roll-out is usually
chosen in an ad-hoc manner. In the best cases, CIS roll-out strategy is
informed by qualitative information such as on-site interviews to assess
human resources, emotional ability to support an CIS, and office dy-
namics [16,21], whereas often there is no documented strategy.

We address the issue of roll-out order in phased implementation
using a graphical framework. The framework explicitly models patient
transit between clinical areas using the old and new systems. In doing
so, it directly quantifies factors related to both patient safety and
clinical workflow. Whilst consideration of patient transits does not ac-
count for Organizational or Technical factors, the proposed framework
may be adapted to include such factors. We show a simple example of
this framework applied to the rollout of an electronic vital sign ob-
servation system. The example shows how different ordering strategies
can be compared to identify areas at greater risk of patient information
being stored on multiple systems, which may complicate clinical care.

2. Methods

2.1. Model

We model a hospital as a directed graph in which clinical areas are
nodes. Each area, w, has a state, s, indicating whether it is on the old
(s= 0) or new (s= 1) system. Clinical factors that may impact the
effectiveness of a CIS rollout are modelled in two ways. First, the net
number of patients transferring between two areas per unit time are
modelled as weighted edges. The set of transfers into area w is denoted
by Iw, and the set of transfers out are denoted Ow. Other clinical factors
associated with area w are represented by a feature vector, Vw. In
practice, elements of Vw might include ward acuity (on a scale of 0–3)
[22], staff to patient ratio. The general model is depicted in Fig. 1.

The impact of an area changing state from 0 to 1 is evaluated
through a cost function, = I O Vδ w δ( ) ( , , )w w w . The form of the function
is set on a case-by-case basis and determined by the relative importance
of each factor. The need to explicitly choose a function, a priori, is
comparable to other modelling techniques such as Gaussian Process
regression [23].

Having developed a model and cost function, a greedy algorithm

(Algorithm 1) can be used to determine a roll-out order [24]. In a
greedy algorithm, the ordering is constructed one area at a time. Each
area is chosen by selecting the one that minimises the cost function
given the order that has been constructed so far. The chosen area is then
appended to the current order.

Algorithm 1. Clincal area order algorithm

2.2. Model instance

One instantiation of the model is now described for the problem of
phased roll-out between paper and electronic (e-Obs) systems for re-
cording vital signs. Fig. 2 shows a simple model of a hospital containing
6 clinical areas, labelled A to F. Patients arrive at the hospital from the
pre-hospital population, σ, and leave to the post-hospital population, τ.
The number of patients transferring between wards per unit time are
denoted by the edge weights − for example, 3 patients/time transfer
between A and C.

To generate a rollout order, the cost function, δ w( ), must first be
defined. To define the cost function we consider that, during a phased
rollout, patients may transit between the two systems in the following
ways:

1. paper → paper
2. paper → e-Obs
3. e-Obs → paper
4. e-Obs → e-Obs
Transition 1 represents current practice where a paper based system

is ubiquitous and is considered to be of acceptable clinical risk.
Transition 4 represents patient movements in which the receiving and
sending areas are using e-Obs. We consider this to be of acceptable
clinical risk, since this is the desired transition after roll-out. Transitions
2 and 3 pose greater clinical risk, since these only occur during the
phased roll-out. In both of these situations, data must be stored on two
separate systems. This may result in situations where clinical staff are
unable to quickly synthesize the full patient record. However, transition
2, from paper to e-Obs, is unavoidable in a phased roll-out.

Therefore, the simplest usable cost function considers only the
number of patients with an electronic → paper transition. No other
features are included, so Vw is not used in this instance. The number of
e-Obs → paper transitions is simply the sum of the subset of O for which
adjoined areas have a state s= 0:

∑= ×
∈

δ w o s( )
i W

i i

In the event that two or more areas have the same value of δ w( ), we
may consider the net number of paper→ e-Obs transition as a tie-
breaker.

A rollout order can now be generated by applying Algorithm 1 using
this cost function. The result of two steps of the algorithm is presented
pictorially in Fig. 2. In the first step, all clinical areas are considered and
their cost functions are calculated. The cost and tiebreaker are shown as
the pair δ w tiebreak w( ( ), ( )) in the first column of Table 1. Initially, area
E is activated, since =δ E( ) 0 and the tie break is smaller than that of
area F (for which =δ F( ) 0). In the second step, δ E( ) is no longer
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considered, since E has been deleted from the remaining areas, W. The
order selected by the algorithm is: E→ F→ C → D → B→ A. In this
simple example, the algorithm produces a roll-out order in which no
patients ever switch from e-Obs → paper.

2.3. Extended model instance

A more realistic cost function should consider the effect of other
external influences such as clinical area specialty. In practice, areas
with similar specialties are grouped into directorates that often share
common staff. Migrating areas within a directorate in close succession
may simplify staff training and minimise the amount of time that staff
have to retain knowledge of both systems.

With this in consideration, transitions between areas in the same
directorate might be weighted differently to those outside the directo-
rate. The cost function can then be modified:

∑=
∈

δ w d v o s( ) ( )i
i W

i i

= ⎧
⎨⎩

=
d v

κ v v
otherwise

( )
1i

i w

The constant κ is a parameter that weights the importance of intra-
directorate transitions. The Matlab code for both of the basic and

extended model instances is available from www.robots.ox.ac.uk/
∼wong.

2.4. Data

Data were acquired from the Churchill Hospital, Oxford, UK (Oxford
University Hospitals Foundation NHS Trust), which had been chosen as
the initial roll-out site for a new e-Obs system [25]. The hospital had
37,080 direct admissions between April 2013 and April 2014. For each
admission, the Trust informatics department queried the Electronic
Patient Record to obtain the clinical areas in which patients were ad-
mitted during their stay, in chronological order.

Fig. 1. the proposed graphical model showing all variables pertaining
to a clinical area, w.

Fig. 2. Steps 1 and 2 of the algorithm. Step 1: Each clinical area is
considered in turn. Both clinical area E and clinical area F have zero
patients going from e-Obs → paper (as all patients leave the hospital).
Clinical area E has fewer patients moving from paper → e-Obs re-
cording, so it wins the tiebreaker and is activated. Step 2: clinical area
F has zero patients going from e-Obs → paper. No other clinical area
has an equal or lower disruption cost, so F is activated.

Table 1
At each step, the table shows (cost, tiebreak). The bold number shows the chosen area at
each step.

Clinical area Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

A (10,10) (10,10) (10,10) (7,10) (4,10) (0,10)
B (14,14) (7,14) (7,14) (7,14) (0,14) –
C (3,3) (3,3) (0,3) – – –
D (10,10) (10,10) (0,10) (0,10) – –
E (0,7) – – – – –
F (0,13) (0,13) – – – –
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The data were processed as an adjacency matrix that fully defines
the graph model outlined previously. The organisational structure of
the hospital, containing information about each of the clinical direc-
torates, was ascertained through publicly-available documentation, and
is shown in Table 2.

This research was approved as a service evaluation for Oxford
University Hospitals Foundation Trust (Datix: 2920). As no patient
identifiable data was analysed, the study did not require review by the
National Research Ethic Service.

3. Results

Admissions data were used to generate the graphical model,
showing the clinical areas and annual patient transitions between April
2013 and April 2014 (Fig. 3). For clarity, only edges with weights of 30
or greater are shown and nodes that represent day case units have been
removed.

The visualisation highlights clinically significant features unique to
this data set. By inspection, we note that the graph has three primary

clusters of inter-connected clinical areas highlighted in red, blue and
green. These clusters relate to clinical areas with similar specialties.
Nodes coloured in red relate to areas that specialise in respiratory
problems, nodes in blue relate to cancer clinical areas, and green nodes
denote surgical clinical areas. The remaining area, Endocrinology, was
coded as a standard clinical area, but acts as a day unit that works
independently from the rest of the hospital.

Applying the ordering algorithm to the admission data produces the
order shown in Table 3. The algorithm was applied a second time to
include information about clinical directorates. In the absence of any
prior information, a value of κ = 0 was chosen. This asserts that
transfers within the same directorate are not penalised. The new order
is also shown in Table 3. In each case, the algorithm total run-time was
less than one second on a standard desktop PC.

Fig. 3 shows that there are relatively few complex patient pathways.
Of the hospital clinical areas, Day Surgery Unit and ICU have the most
outgoing edges, and thus the most transitions, to other clinical areas.
One would therefore intuitively expect both clinical areas to be ordered
last by the greedy algorithm; Table 3 confirms this to be true. One

Table 2
Clinical directorates and their constituent clinical areas.

Directorate 1 Directorate 2 Directorate 3 Directorate 4 Directorate 5

Resp X-ray Head and Neck Recovery Renal Upper GI
Endocrinology Palliative Care ICU Urology Lower GI
Respiratory Haematology Day Surgery Transplant
Resp Day Case Haem Day Case
Infectious Disease Oncology

Oncology SS
Colorectal

Fig. 3. Graph showing patient transfers between clinical areas at the
Churchill Hospital, Oxford. For clarity, only inter-clinical area trans-
fers of more than 30/year are shown, and day-case units for which
there were very few inter-clinical area transfers have also been ex-
cluded.
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would also expect clinical areas from which patients are commonly
discharged from the hospital to be ordered near the start. These include
Endocrinology, Palliative Care, and Head and Neck, which each have only
one outgoing edge. Given the typical type of patient in the clinical
areas, one may have expected Palliative Care at the start of the ordering
(in practice, of course, vital signs would not be required). However, the
algorithm lists Head and Neck to be rolled out initially. This is likely due
to incomplete data, as the Head and Neck area became clinically active
part way through the data collection period.

To compare the effectiveness of two competing roll-out strategies,
we use the number of e-Obs → paper transitions as a cost function. The
total cost of the roll-out is then the cumulative number of transitions
after rollout. By calculating the cost after the activation of each clinical
area, we can also highlight areas that are likely to be more problematic.
Fig. 4 shows the estimated cost (cumulative number of electronic to
paper transitions) under two roll-out strategies: the standard and di-
rectorate-adjusted algorithms.

4. Discussion

The results presented here show how a model of patient flow be-
tween clinical areas can be used to guide decision making during CIS

phased roll-out. We presented a cost function that quantitatively eval-
uates the clinical impact of switching between CIS systems. The cost
function, coupled with a greedy algorithm, allowed us to generate a
sensible clinical area order using real data.

The greedy algorithm was chosen to demonstrate how the model
could be simply interpreted in a useful manner. A significant benefit of
the greedy algorithm approach is that it is able to cope with practical
numbers of clinical areas. Given N clinical areas, the time for the al-
gorithm to complete is proportional to N3 (i.e. O N( )3 ) if each area is
connected to every other area. In reality, most clinical areas are more
sparsely connected, which means that the order is O N( )2 in practice. If a
naive approach to calculating a clinical area order were used instead,
one would consider all permutations of orderings leading to an in-
tractable solution requiring O(N!) calculations.

In an ideal situation, the combination of optimal sub-solutions
would lead to an optimal solution. When this is the case, alternative
approaches such as dynamic programming may be employed which
leads to a correct and efficient implementation. However, we have no
assurance that the cost functions considered here lead to this principle
of optimality, and so we must resort to a greedy approach. Our ap-
proach is therefore heuristic and cannot guarantee that the optimal
result ensues.

We further demonstrated, using clinical directorates as an example,
how the cost function can incorporate additional factors. Table 3
showed that the inclusion of clinical directorates had a limited effect on
the proposed order. Highly connected clinical areas, such as Day Surgery
Unit and Intensive Care Unit, which were ordered last in the standard
algorithm remained last in the directorate-adjusted algorithm. Simi-
larly, many of the initial clinical areas had a similar order. The reason
for the similarity between the two clinical area orders is that the
number of intra-directorate patient transfers was small in comparison to
the inter-directorate transfers.

When there were differences in order, the cumulative number of e-
Obs → paper transitions (Fig. 4) indicated whether the differences were
important. There were more transitions in the directorate model than in
the basic model, as the directorate model attempts to optimise com-
peting goals (transitions and ward grouping). Visual inspection of the
directorate-adjusted clinical area order showed large increases in cost
for areas 5, 8 and 15. These indicate clinical areas for which there are a
high numbers of e-Obs → paper transitions and may have greater
practical difficulties during roll-out.

The comparison of cumulative cost in Fig. 4 allowed us to identify,
prior to roll-out, individual clinical areas in the roll-out order that may
cause extra difficulties due to high numbers of e-Obs → paper transi-
tions. This analysis shows how a CIS implementation strategy may be

Table 3
Recommended clinical area orders derived from the Model Instance and Extended Model
Instance.

Order Without Directorate With Directorate

1 Head and Neck Head and Neck
2 Palliative Care Resp X-ray
3 Renal Endocrinology
4 Resp X-ray Palliative Care
5 Endocrinology Haem Day Case
6 Recovery Renal
7 Urology Oncology
8 Lower GI Resp Day Case
9 Respiratory Respiratory
10 Resp Day Case Urology
11 Infectious Disease Haematology
12 Haematology Infectious Disease
13 Haem Day Case Recovery
14 Oncology Lower GI
15 Colorectal Oncology SS
16 Oncology SS Colorectal
17 Upper GI Upper GI
18 Transplant Transplant
19 ICU ICU
20 Day Surgery Day Surgery

Fig. 4. The cumulative number of patients (annually) with e-Obs →

paper transitions (cost) by roll-out step for the without (grey) and
with (black) directorate clinical area orderings.
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analysed and refined prior to live roll-out. The method may also be
applied on real-time data to monitor progress of deployment. In the
event of an unexpectedly high number of transitions, the approach here
would allow a change of strategy mid-deployment as espoused by
Catwell [26].

Whilst we have only considered the phased roll-out of individual
clinical areas, the proposed approach may be extended for a ‘rolling-
thunder’ roll-out. Under this scenario, groups of clinical areas to be
rolled-out simultaneously would be modelled as a single node.
Alternative groupings may be tested, and evaluated using the cumula-
tive cost.

The approach of modelling flows between wards may also be used
for other clinical information systems. For instance, modelling patient
flows would be appropriate for blood/patient tagging, whereas one may
wish to model clinician location for a chage in hospital communication
system (e.g. bleep to phone). For a general CIS, it may be that other
clinical factors, such as the level of staff training, the ward acuity or
type (medical or surgical), or staff-to-patient ratio may be more im-
portant than patient transfers. In such scenarios, the additional factors
may be included in the variable, Vw. A corresponding cost function
would then be required to weight each factor. The choice of cost
function would rely on clinical judgment. However, unlike current
approaches, any clinical assumptions would be modelled explicitly.

5. Conclusion

In this paper, we developed a framework for quantitatively asses-
sing the phased rollout of CISs. The approach considered here differs
from previous work by explicitly identifying factors and quantitatively
assessing their relative importance via a cost function. The cost function
was used within a greedy algorithm to derive a clinical area order.

By applying the greedy algorithm on one year of clinical area
transition data acquired at the Churchill Hospital, Oxford, we generated
a clinically sensible roll-out order that minimises the number of “high-
cost” transitions (from electronic to paper recording). Furthermore, we
showed how the cost function could be extended to account for addi-
tional factors. We considered the impact of similar clinical specialties
(directorates) by incorporating an additional element to the tuple that
allowed us to model clinical areas with known similar clinical spe-
cialties. The inclusion of directorate had a limited effect of the proposed
order, but greatly increased the number of problematic transfers.
Finally, we demonstrated how, given a proposed roll-out order, the cost
function may be used to evaluate the effectiveness of the clinical area
ordering and highlight areas that are likely to cause greater difficulty.
Whilst the roll-out of CISs and other clinical interventions remains a
complex problem, the graphical model introduced here may help in
implementing and evaluating roll-out strategies objectively. The ap-
proach taken here is simple to understand, computationally light, and a
useful additional tool for understanding potential problems in CIS
phased roll-outs.
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