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Abstract. Cardiac cell models have become valuable research tools, but
biophysically detailed models embed large numbers of parameters, which
must be fitted from experimental data. The provenance of these param-
eters can be difficult to establish, and so it is important to understand
how parameter values influence model behaviour. In this study we exam-
ined how model parameters influence the repolarising current IKr in the
Courtemenache-Ramirez-Nattel model of the human atrial action poten-
tial. We used a statistical approach in which Gaussian processes (GP)
are used to emulate the model outputs. A GP emulator can treat model
inputs and outputs as uncertain, and so can be used to directly calculate
sensitivity indices. We found that 3 of the 10 parameters influencing IKr

had a strong influence on APD70, APD90, and Dome Vm. These three
parameters scale the magnitude of the IKr gating variable time constant
and the voltage dependence of the steady state activation curve, and
these mechanisms act to modify the amplitude of IKr during repolarisa-
tion. This study highlights the potential value of statistical approaches
for investigating cardiac models, and that uncertainties or errors in pa-
rameters resulting from attempts to fit experimental data during model
development can ultimately affect model behaviour.

1 Introduction

Since the introduction of the first model of cardiac cellular electrophysiology over
50 years ago [12], models of electrical activation and recovery in cardiac cells have
become important research tools. The present generation of cardiac cell models

http://www.springer.com/gp/book/9783319594477


represent not only changes in transmembrane potential resulting from movement
of ions through the cell membrane, but also the diffusion, storage, release, and
uptake of Ca2+ within the cell [5]. Typically, cardiac cell models are a stiff, non-
linear system of coupled ordinary differential equations, and are solved using a
numerical scheme to obtain time series of membrane voltage, intracellular Ca2+

concentration, and other quantities of interest.

Each of the equations involve parameters; for equations describing trans-
membrane current flow through ion channels, pumps, and exchangers these pa-
rameters typically include a maximum current density per unit membrane area,
and other parameters that regulate the dynamic behaviour of the current. The
parameters are fitted from experimental data often following the approach pio-
neered by Hodgkin and Huxley [6]. Many models take a modular approach to
building the full suite of equations representing transmembrane current flow,
with re-use of parameters from older models and experiments. The provenance
of these parameters is not always easy to establish [11], yet the influence of un-
certain parameters on model behaviour is difficult to assess because of model
complexity.

Recent studies have begun to address this problem by examining the sen-
sitivity of model outputs such as action potential duration (APD) to variable
model parameters [2,16]. These studies have concentrated on maximum conduc-
tances of ion channels, but even with this subset the potential parameter space
to explore is vast. Although cardiac cell models are relatively cheap to compute,
a comprehensive exploration of very high dimensional parameter space remains
computationally demanding.

An alternative approach is to build a statistical model (an emulator or meta-
model), which acts as a fast running surrogate for the original model or simu-

lator. This approach has been used to examine models of systems including
atmospheric pollution [8] and galaxy formation [17], where the emulator is a
Gaussian process (GP) [13]. A particular advantage of a GP emulator is that
the simulator parameters, or inputs, can be treated as uncertain so that they
are represented by a distribution rather than a fixed value. Using Gaussian (nor-
mal) distributions allows direct calculation of expected mean and variance of an
output given uncertainty in the inputs. The proportion of output variance that
is accounted for by variance in each input is then a first order sensitivity index
[13]. Furthermore, the main effect of model inputs can be directly calculated,
showing how a single input affects an output given specified distributions on the
other inputs. This approach has been used to examine cardiac cell models, where
inputs were ion channel maximum conductances and outputs were features of
the action potential [3,7].

The rapidly inactivating K+ current IKr regulates repolarisation in cardiac
myocytes, and is an important pharmaceutical target. The aim of the present
study was therfore to undertake sensitivity analysis of the IKr channel in the
Courtemanche-Ramirez-Nattel (CRN) model of the human atrial action poten-
tial [4].



2 Methods

2.1 CRN Model Inputs and Outputs

The equations describing the IKr current in the CRN model [4] are given below.
The current density IKr is given by

IKr =
gKrxr (Vm − EK)

1.0 + exp

[

Vm +Kr1
Kr2

] . (1)

Where the gating variable xr varies between 0 and 1, and is given by

dxr

dt
=

xr∞ − xr

τxr
; (2)

where the gating variable time constant τxr and steady state activation xr∞

depend on transition rates αxr and βxr;

αxr = Kr3
Vm +Kr4

1.0− exp

[

−
Vm +Kr4

Kr5

] , (3)

βxr = Kr6
Vm −Kr7

exp

[

Vm −Kr7
Kr8

]

− 1.0

, (4)

τxr =
1.0

αxr + βxr

, (5)

xr∞ =

[

1.0 + exp

(

−
Vm +Kr9

Kr10

)]

−1

. (6)

Each of the 10 parameters labelled Kr1 to Kr10 appear as numbers without
units in the original formulation, and in this study we examined variation in the
range 0.5× to 1.5× these values as shown in shown in Table 1. The maximum
conductance gKr was set to a baseline value of 0.0294 nS/pF and EK was set
to -86.7653 mV for fixed intracellular K+ concentration, as described below.

We identified seven outputs that describe features or biomarkers of the action
potential, based on previous work [2,3], and these are illustrated in Fig 1.

2.2 Implementation of CRN Model

The CRN model equations were implemented in Matlab (Mathworks, CA), us-
ing code automatically generated from the CellML repository (http://cellml.
org). The cell models were solved using the Matlab ode15s time adaptive solver
for stiff systems of ODEs, with tolerances set to 10−6. The CRN model does not
properly balance intracellular ion concentrations [18], so we fixed [Na+]i and
[K+]i at baseline values of 11.1 mM and 139.0 mM respectively.

http://cellml.org
http://cellml.org


Table 1. Baseline values for each input, and range over which each input was
varied for design data.

Parameter Baseline range

Kr1 15.0 (7.5 - 22.5)
Kr2 22.4 (11.2 - 33.6)
Kr3 3.0 ×10−4 (1.5 - 4.5) ×10−4

Kr4 14.1 (7.05 - 21.15)
Kr5 5.0 (2.5 - 3.75)
Kr6 7.3898 ×10−5 (3.6949 - 11.0847) ×10−5

Kr7 3.3328 (1.6664 - 4.9992)
Kr8 5.1237 (2.5619 - 7.6856)
Kr9 14.1 (7.05 - 21.15)
Kr10 6.5 (3.25 - 9.75)
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Fig. 1. Action potential features

2.3 Emulator Design Data

For fitting and evaluating the GP emulators, we obtained design data comprising
a set of 500 simulator runs. For each run, a value for each input was selected
from the range shown in Table 1, using Latin hypercube sampling to ensure
an even distribution of points in the input space. To achieve a stable action
potential duration, each simulator run included 40 stimuli of strength -2.0 nA
and duration 2 ms delivered at a 1000 ms cycle length to represent a resting
human heart rate. The final action potential in this sequence was used to obtain
the outputs. The distribution of action potentials and IKr gating dynamics are
shown in Fig 2, where the influence of uncertain inputs on repolarisation is
clearly visible.



(a) Action potentials
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Fig. 2. Design data showing (a) final action potential out of a sequence of 40;
(b) stabilisation of APD90 during the 40 beat sequence; (c) and (d) voltage
dependence of steady state activation xr∞ and gating variable time constant
τxr for each set of inputs. Bold lines indicate the model behaviour for baseline
values of the inputs, grey lines show design data.

2.4 Sensitivity Analysis

First order sensitivity indices produced from a GP emulator represent the pro-
portion of total output variance that is accounted for by variance in each input
[13]. We assumed that inputs and outputs could be described by a normal dis-
tribution, with the mean of each input set to the baseline value and variance set
to 0.01 of the range shown in Table 1.

3 Results

3.1 Emulator Fitting and Evaluation

We fitted and evaluated a separate GP emulator for each of the 7 outputs,
using an open source Python implementation; details including the URL have



been withheld to ensure anonymity of the authors.GP emu UQSA (available from
http://doi.org/10.5281/zenodo.215521). For each output, the 500 design
data were separated into a training set of 450 simulator runs and a test set of 50
simulator runs. Emulator hyperparameters were fitted to the training set with a
maximum likelihood approach described previously [3], using the fmin l bfgs b

optimisation function available in the Python SciPy package. Fitting was re-
peated five times to ensure that local maxima were avoided, and the fit with
greatest likelihood was selected. The test set was then used to compare outputs
predicted by the emulator against those produced by the simulator for the same
set of inputs. The difference between emulator and simulator outputs was sum-
marised using the Mahanalobis distance, which for a test set of 50 runs has a
reference distribution with mean 50 and standard deviation 10.5 [1].

Table 2. Fit and evaluation of emulator for each output.

Emulator Expectation Expectation Mahanalobis
of Mean of variance distance

dVm/dtMax.(mV/ms) 218.13 0.007 63.85
VmMax.(mV ) 24.47 5.62 ×10−6 9.43
NotchVm(mV ) -12.64 0.02 41.92
DomeVm(mV ) -8.62 0.015 43.29
APD70(ms) 233.04 59.26 49.99
APD90(ms) 300.14 89.69 51.19
RestingVm(mV ) -80.81 0.001 38.12

We considered a Mahanalobis distance between 30 and 70 (i.e. ± 2 SD)
to indicate a well fitted emulator, and the only emulator that did not meet
this criterion was VmMax.. The was not surprising, since IKr predominantly
influences repolarisation, and inspection of the design data showed a change of
only ±0.06mV in VmMax. arising from inputs varied across the full range.

3.2 Sensitivity Indices

The first order sensitivity indices were obtained using GP emu UQSA and are
shown in Fig 3. Each row shows the relative contribution of each input, and
the sum of these contributions is shown in the column to the right of the main
figure. For six of the emulators, the sum of sensitivity indices was close to 1.0,
indicating that interaction effects are negligible. The sum of sensitivity indices
for the VmMax. emulator was lower, indicating additional variance arising from
either the relatively poor fit or possible interactions.

Three of the inputs had the greatest effect on the outputs: Kr9 influenced all
outputs except for Dome Vm, Kr3 had a strong effect on Dome Vm, and Kr4 had
an intermediate effect on all outputs. In Fig 4 we have plotted the main effect
(obtained using GP emu UQSA) of these three inputs on APD70, APD90, and

http://doi.org/10.5281/zenodo.215521


Fig. 3. Sensitivity indices for each combination of input and output. The
column to the right is the sum of sensitivity indices for each output. Inputs
Kr3 and Kr4 scale the magnitude and voltage dependence of gate activation
(equation 3), and input Kr9 scales the voltage dependence of steady state
activation (equation 6).

Dome Vm. The main effect is the change in the expected mean of the emulator
output as one input changes while all others are assigned a fixed distribution
with mean 0.5 and variance 0.01 (in normalised units). These plots show that
increasing all three inputs acts to decrease APD.
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Fig. 4. Main effects of inputs Kr3, Kr4, and Kr9 on (a) APD70, (b) APD90,
and (c) dome Vm. Each input is plotted on a normalised scale corresponding to
the range in Table 1.

3.3 Insight into model mechanism

The mechanisms by whichKr3,Kr4, andKr9 act to modify the action potential
shape and duration are shown in Fig 5 and Fig 6. In Fig 5 the effect of multiplying



Kr3, Kr4, and Kr9 by 0.5 and 1.5 on the voltage dependence of τxr, xr∞, and
steady state IKr is shown. An increased Kr3 and Kr4 resulted in a shorter
activation gate time constant, while an increased Kr9 resulted in a leftward
shift in the voltage dependence of xr∞, and consequently an increased IKr at
voltages close to 0 mV .
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Fig. 5. Effect of multiplying inputs (a) Kr3 and (b) Kr4 by 0.5 and 1.5 on
voltage dependence of τxr, and effect of multiplying Kr9 by 0.5 and 1.5 on (c)
xr∞, and (d) IKr calculated using steady state values of xr, xr∞. Bold lines
show baseline model output.

The effects of changes in the gating parameters on IKr, IKs, and the action
potential are shown in Fig 6. Increased Kr3, Kr4, and Kr9 all acted to increase
the magnitude of IKr, resulting in more outward current during the plateau
phase of the action potential and a shorter APD. The increased outward current
led to a more rapid repolarisation, which in turn acted to reduce magnitude
of IKs. The change in IKs compensated for increased IKr, but not enough to
offset the increase in outward current. The magnitude of other currents was not
changed (data not shown).
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4 Discussion and Conclusions

In this study we have focussed on how the dynamical behaviour of a single
ion channel depends on parameters (or inputs) that are fitted from experimental
data. We have used GP emulators to calculate sensitivity indices, and have iden-
tified three inputs that have the greatest influence on model outputs. This study
builds on previous work that has studied how maximum ion channel conductance
influence model outputs [2,3,15,16], and another study that has investigated how
the dynamics of INa influence model behaviour [14]. Taken together, these stud-
ies show that tools developed for other modelling communities can be valuable
for examining computationally intensive cardiac models, and that uncertainty or
errors in fitting cardiac cell model parameters may have an important influence
on model behaviour. The present study highlights a number of directions for
future research, and these are discussed below.

Several different approaches have been adopted for sensitivity analysis of
cardiac models, and these include partial least squares regression [9,16] and a
population of models [15]. In this study we chose to construct GP emulators
to examine the properties of the IKr formulation in the Courtemanche model
because this approach has already shown promise for analysis of complete car-
diac cell models [3,7]. One advantage of GP emulators over other techniques is
that the emulator can treat model inputs and outputs as uncertain quantities.
Under the assumption that inputs and outputs have a normal distribution then
is it possible to directly calculate an output distribution given distributions on
model inputs, and this approach is computationally very efficient compared to
a more standard Monte Carlo method [3]. Another benefit from a fast-running
surrogate of a computationally demanding model is that a large number of model
runs can be used to identify sets of model parameters that are consistent with
experimental observations, a technique called history matching [17].

To fit the GP emulators, we generated design data by varying each of the
inputs Kr1 to Kr10 in the range 0.5× to 1.5× their baseline value. The baseline
values of these inputs are subject to constraints; for example Kr2, Kr3, Kr5,
Kr6, and Kr10 should be positive and non-zero. The range of model inputs over
which we trained the emulators was selected so that we could undertake sensitiv-
ity analysis without breaking the model. However, it is possible that sensitivities
are different outside this range. We also note that the effect of varying input Kr9
on the voltage dependence of steady state IKr shown in Fig 5(d) results in a
curve that no longer fits the experimental data shown in Figure 3 of [4]. History
matching of the IKr formulation to new experimental data, given our finding
that Kr3, Kr4, and Kr9 have a strong influence on model behaviour, would be
an interesting future direction and may be more computationally efficient than
other approaches [10].

We have only examined the dynamics of IKr at a single cycle length corre-
sponding to a resting human heart rate, and it is possible that different inputs
begin exert a stronger influence at shorter cycle lengths. Recent studies of cycle
length dependent sensitivity analysis have concentrated on the effect of inputs
that control the maximum flow of current through ion channels, pumps and ex-



changers [9]. A useful extension of this approach and the present study would be
to combine analysis of maximum conductances with model inputs that control
ion channel dynamics.

Acknowledgements: This work was funded by the UK EPSRC through grant
number EP/K037145/1.
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