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We measure the center-of-mass diffusion of poly(methyl methacrylate) (PMMA)-grafted nanopar-
ticles (NPs) in unentangled to slightly entangled PMMA melts using Rutherford backscattering
spectrometry. These grafted NPs diffuse ∼100 times slower than predicted by the Stokes-Einstein
relation assuming a viscosity equal to bulk PMMA and a hydrodynamic NP size equal to the NP core
diameter, 2Rcore = 4.3 nm. This slow NP diffusion is consistent with an increased effective NP size,
2Reff ≈ 20 nm, nominally independent of the range of grafting density and matrix molecular weights
explored in this study. Comparing these experimental results to a modified Daoud-Cotton scaling
estimate for the brush thickness as well as dynamic mean field simulations of polymer-grafted NPs in
athermal polymer melts, we find that 2Reff is in quantitative agreement with the size of the NP core plus
the extended grafted chains. Our results suggest that grafted polymer chains of moderate molecular
weight and grafting density may alter the NP diffusion mechanism in polymer melts, primarily by
increasing the NP effective size. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4982216]

I. INTRODUCTION

Depending on nanoparticle (NP) characteristics, polymer
nanocomposites (PNCs) can exhibit unique properties ranging
from tunable plasmonic absorption1,2 to enhanced electrical
conductivity.3 Improved mechanical properties4 and flamma-
bility5 have also been achieved by adding NPs that impart
strength and limit combustion, respectively, to the host poly-
mer. In addition to adding functionality to polymers, nanopar-
ticle mobility influences fundamental properties of the PNC
such as melt flow and viscosity,6–11 as well as the effective-
ness of self-healing materials to limit crack propagation.12

Therefore, an improved understanding of nanoparticle diffu-
sion in polymer melts is of both technological and fundamental
importance.13

The Stokes-Einstein (SE) relation describes the diffusion
of a sphere in a continuous medium and is given by

DSE =
kBT

6πηR
, (1)

where DSE is the Stokes-Einstein diffusion coefficient, kB

is the Boltzmann constant, T is absolute temperature, η is
the viscosity of the medium, and R is the NP radius.14 In a
dilute polymer solution, the diffusion of large nanoparticles
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(e.g., 0.3–2.2 µm) is found to obey the SE relationship.15

However, experimental and theoretical studies have shown
that the SE relationship underestimates nanoparticle diffusion
when the particle and tube diameter are comparable.6–8,10,16–21

For example, Grabowski and Mukhopadhyay18 using a mod-
ified version of fluctuation correlation spectroscopy reported
that the diffusion coefficient (D) of gold NPs in poly(butyl
methacrylate) melts is ∼200 times faster than DSE when the
NP diameter (2R = 5 nm) is similar to the tube diameter
dt ≈ 6 nm. In addition, small NPs can reduce the viscosity
of polymer melts, acting akin to plasticizers. This reduction of
melt viscosity has been attributed to an increase in free volume
due to the fast movement of NPs.7

For 2R << dt, Brochard Wyart and de Gennes13 predicted
that nanoparticle diffusion will deviate from SE diffusion
because the friction experienced by the NP is no longer cap-
tured by the bulk viscosity. Other theoretical studies22 predict
that this transition is gradual and SE diffusion is not recov-
ered until 2R is ∼5–10 times larger than the tube diameter.
Recent experiments have shown that hydrodynamic NP dif-
fusion is indeed recovered when 2R/dt is ∼5–6 in polymer
melts and in semi-dilute entangled DNA solutions.23,24 Alter-
natively, Cai et al.6,25 proposed that a hopping mechanism can
enhance nanoparticle mobility when 2R ∼ dt.

To test these prevailing theories, the nanoparticles need to
remain well-dispersed during the diffusion experiment. One
method to control the dispersion and stability of nanoparticles
in a polymer matrix is to graft polymer chains to the NP
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surface. Studies show that dispersion in a polymer matrix
can be controlled by varying the ratio of the brush to matrix
molecular weight (P/N).1,26–28 Hoshino et al.29 investigated
the dynamics of polystyrene (PS)-grafted silica nanoparticles
(110 nm) in unentangled PS melts using X-ray photon corre-
lation spectroscopy (XPCS) and observed that nanoparticles
followed sub-diffusive behavior when the annealing tempera-
ture was greater than 1.25Tg, where Tg is the glass transition
of the PS matrix. This sub-diffusive behavior was attributed to
the penetration of short matrix chains into the brush. Kandar
et al.30 investigated the effect of grafting density on the
dynamics of PS-grafted Au nanoparticles (2RNP = 2.4 nm)
in PS matrices. Using XPCS, they observed dynamical arrest
at moderate grafting density (σ = 0.4 chains/nm2), whereas at
high grafting density (σ = 2.3 chains/nm2), liquid-like motion
was observed. Liu et al. recently demonstrated using XPCS
that the NP diffusion mechanism of PS-grafted silica NPs in
PS melts is strongly dependent on the nanocomposite mor-
phology.31 These studies all suggest that the diffusion of
polymer-grafted NPs is closely connected to the nature of
the grafted layer, namely, the dynamics of the grafted poly-
mer chains and the interpenetration between the brush and
matrix chains.

We measure the diffusion coefficient of NPs grafted
with poly(methyl methacrylate) (PMMA) chains of molecular
weight N = 16 or 21 kg/mol and varying grafting density (σ)
in unentangled to slightly entangled PMMA melts of varying
matrix molecular weight P = 4–52 kg/mol. Using Rutherford
backscattering spectrometry (RBS) to measure the NP dif-
fusion coefficient, we find that these NPs diffuse in PMMA
melts ∼100 times slower than predicted according to the
Stokes-Einstein relation assuming a viscosity equal to bulk
PMMA and a hydrodynamic NP diameter equal to the NP core,
4.3 nm. As P/N ≤ 2.5, the NPs remain well dispersed through-
out the duration of the diffusion experiment. We demonstrate
that this slow NP diffusion is consistent with a significantly
larger effective NP size 2Reff ≈ 20 nm, nominally indepen-
dent of grafting density σ and matrix molecular weight P
in this study. Upon comparing these experimentally deter-
mined effective NP sizes to a modified Daoud-Cotton scaling
estimate for the brush thickness and dynamic mean field sim-
ulations of polymer-grafted NPs in athermal polymer melts,
we show that 2Reff agrees quantitatively with the size of
the NP core plus the extended grafted chains. Our results
suggest that grafted polymer chains of moderate molecular
weight and grafting density suppress the mobility of the NP
core via an enlargement of the NP effective size rather than
through enhanced friction via entanglements between graft
and matrix chains.

II. EXPERIMENTAL
A. Materials

Poly(methyl methacrylate) (PMMA) was purchased from
various commercial sources and used as received. The
supplier, stated molecular weight (P), polydispersity index
(PDI), and calorimetric glass transition temperature (Tg)
measured on heating at 10 K/min using a Q2000 differ-
ential scanning calorimeter (TA Instruments) are shown in

TABLE I. PMMA matrix molecular weight (P), ratio of P and PMMA crit-
ical molecular weight (24 kg/mol),33 polydispersity index, calorimetric glass
transition temperature, and commercial supplier.

P (kg/mol) P/Pc PDI Tg (K) Supplier

4 0.17 1.1 369 Polymer laboratories
8 0.33 1.1 368 Polymer source
14 0.58 1.09 377 Polymer source
17.5 0.73 1.1 381 Pressure chemical
20 0.83 1.14 390 Polymer source
34 1.42 1.06 393 Polymer laboratories
52 2.17 1.09 397 Pressure chemical

Table I. PMMA-grafted iron oxide nanoparticles (NPs) were
synthesized using methods described elsewhere.32 The NP
core diameter is log-normally distributed with a geometric
mean particle diameter 2Rcore = 4.3 nm and standard devia-
tion eσ = 1.2 as determined by image analysis of transmission
electron micrographs of polymer nanocomposite thin films.
Three sets of PMMA-grafted NPs of varying grafting density
and graft molecular weight were studied:σ = 0.17 chains/nm2,
N = 21 kg/mol (0.17-21); σ = 0.33 chains/nm2, N = 21 kg/mol
(0.33-21); andσ = 0.55 chains/nm2, N = 16 kg/mol (0.55-16).

B. Diffusion couple sample preparation

For NP diffusion measurements, a series of bilayer sam-
ples consisting of thick PMMA matrix films (>5 µm) topped
with thin (50 nm, as measured by ellipsometry) polymer
nanocomposite (PNC) films were prepared. For the matrix
films, PMMA was dissolved in dimethylacetamide (DMAc),
stirred for 20 h, and the solution was doctor bladed on a heated
(120 ◦C) glass substrate. After drying, the PMMA matrix
film was floated from the glass substrate in water, picked up
using a silicon wafer, and annealed for 3 days in vacuum at
Tg + 75 K. The PNC thin tracer films consisted of PMMA-
grafted NPs blended with PMMA of the same molecular
weight as the corresponding matrix film. To prepare these PNC
films, PMMA and the polymer-grafted NPs were dissolved in
toluene in separate vials and stirred for 20 h. The necessary
amount of NP solution to achieve NP iron oxide-core volume
fractions of 2.5 vol. % was then mixed with the PMMA solu-
tion and stirred for another 20 h. The PNC thin films were
prepared by spin-coating the PMMA/NP solution onto a sil-
icon wafer previously treated with a water soluble chitosan
sacrificial layer. The PNC tracer film was floated off the sili-
con wafer in water by dissolving the sacrificial layer and then
collected onto the PMMA matrix film. These diffusion cou-
ples were then annealed in vacuum at Tg + 75 K (cf. Table I)
for various annealing times such that the NP diffusion lengths
were ∼500 nm.

C. Rutherford backscattering spectrometry

Rutherford backscattering spectrometry (RBS) was used
to measure the concentration profiles of iron oxide NPs in
the diffusion couples, as previously described.34 In the RBS
experiment, helium ions (He+) of energy 2.023 MeV are inci-
dent normal to the plane of the diffusion couple sample, and
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FIG. 1. Concentration profiles of PMMA-grafted iron-oxide nanoparticles
(0.33-21) diffused into 52 kg/mol PMMA after annealing at 465 K for 0, 30,
and 60 h. Symbols depict measured data, and the solid lines depict fits used to
determine the NP diffusion coefficient (D = 1.8 × 10�15 cm2/s independent
of annealing time). The inset shows a schematic representation of the RBS
experiment.

the energy of backscattered He+ ions (θ = 170◦) is measured
using a solid-state detector. Data collection continued until
the yield near the maximum NP concentration reached ∼100
counts, typically an integrated charge of ∼30 µC. The RBS
yield versus channel spectra are then converted to NP volume
fraction versus depth into the matrix. According to recent the-
oretical and simulation studies of NP mobility in unentangled
and entangled polymer melts, the long time and length scale
motion of NPs is diffusive.6,19,22 As such, we have chosen to
analyze our measured concentration profiles (which span very
long time and length scales) using the Fickian diffusion model,
which captures well the NP concentration profiles, Fig. 1. It
should be noted, however, that XPCS studies of NP diffusion
in well entangled polymer melts have revealed anomalous,
hyper-diffusive NP motion (cf. Ref. 20). Resolving this dis-
crepancy is an important task but outside the scope of our
current study. The NP diffusion coefficient was obtained by fit-
ting the concentration profile using the one-dimensional solu-
tion of Fick’s second law for a finite source in a semi-infinite
medium,

φ (x) =
1
2

[
erf

(
h − x
√

4Dt

)
+ erf

(
h + x
√

4Dt

)]
, (2)

where x is depth, h is the PNC tracer film thickness, t is anneal-
ing time, and D is the diffusion coefficient. Experimental depth
profiles were fit using Eq. (2) convoluted with the Gaussian
instrumental resolution function (half width = 35 nm), and the
accessible depth was ∼800 nm.

D. Three-dimensional dynamic mean field simulations

We employ a coarse-grained molecular model for our
polymer nanocomposite system. Both the matrix and grafted
PMMA polymers in the experiment are modeled as discrete
Gaussian chains where the chain connectivity is maintained by
harmonic bonds. One end of the grafted chains is bonded to an
anchor point that is fixed on the NP surface. The total bonded
potential is the summation over the elastic energy stored in the
harmonic bonds,

Ub

kBT
=

∑nP

i=1

∑P−1

j=1

3(ri, j − ri, j+1)2

2b2

+
∑nN

i=1

∑N−1

j=1

3(ri, j − ri, j+1)2

2b2
+
∑nN

i=1

3(ri,N − rg,i)2

2b2
,

(3)

where N and P denote the number of segments in the grafted
and matrix chains while nN and nP denote the number of
grafted and matrix chains, respectively. Here, b is the statisti-
cal segment length; rg,i is the location of the anchor point on
the NP surface bonding the last segment in ith grafted chain to
the NP. These anchor points are randomly distributed on the
NP surface and move as a rigid body as the NP rotates.

Non-bonded interactions are taken through a Helfand
compressibility potential35 that penalizes deviations of the

local total density ^
ρ+(r) from the average density ρ0

βUnb =
κ

ρ0

∫
dr

[
^
ρ+ (r) − ρ0

]2
, (4)

where κ controls the compressibility of the system. The
density of each component, the polymer monomers and the
nanoparticle core, is given by a shape function that describes
the distribution of the mass about the component’s center.
For the polymer monomers, we use a unit Gaussian h (r)

=
(

1
2πa2

) 3
2 e−|r |

2/2a2
, where a is a length scale that controls

the range of the interaction. For the NP, we employ Γ (r)
=

ρ0
2 erfc(

|r−rNP |−Rp

ξ ), which has the form of a spherical step
function with radius Rp that smoothly decays from the bulk
density in the center ρ0 to 0 over a length scale controlled by ξ.
The total density is then given by ^

ρ+ (r) =
∑

i h(r − ri) + Γ (r) ,
where the sum over i goes over all monomers in the sys-
tem. It can be shown that the effective non-bonded interaction
between the different components is given by a convolution of
the shape functions,36,37 which makes the non-bonded inter-
actions non-local. We sample the model using a 3D version
of dynamic mean field theory38 that we have recently imple-
mented,39 which uses a particle-to-mesh scheme to evaluate
the non-bonded interactions and is similar in spirit to single-
chain in mean field40 and related methods.41 We note that
although our implementation involves a dynamic mean-field
approximation, thermodynamic fluctuations are accurately
sampled.39

To map our Gaussian chain models onto the experi-
mental PMMA polymers, we set up the number of seg-
ments in the Gaussian chain, NCG, and the statistical segment
length, b, such that the unperturbed radius of gyration of the

Gaussian chain, Rg =

√
NCG−1

6 b, matches the radius of gyra-

tions of the real PMMA polymer, Rg,exp =

√
n−1

6 bexp, where
n is the number of monomers and bexp is the experimen-
tally measured statistic segment length in the real PMMA
polymer. By adopting the experimentally measured bexp for
PMMA at 0.66 nm33 and choosing b at 1.96 nm, the grafted
PMMA polymers with molecular weight, 16 and 21 kg/mol,
are mapped to the Gaussian chains with N of 18 and 24
monomers, respectively. At the same time, the matrix PMMA
polymers with molecular weight 4, 14, and 52 kg/mol are
mapped to the Gaussian chains with P of 4, 16, and 60
monomers, respectively. To ensure the Gaussian chain has
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the same volume as for the real PMMA polymer, we use the
equation, v= n

NCG
vexp, to determine the monomer volume, v,

in the Gaussian chain and the average density, ρ0 = v�1.
Here, the experimentally measured PMMA monomer volume,
vexp = 0.149 nm3.33

In the simulations, all the dimensional quantities are
scaled by the statistical segment length, b, and the energy unit
is set to kbT. The temporal quantities used here are normalized
by the segment diffusion time b2/D0, where D0 is the segment
diffusion coefficient used in the Langevin equation. We employ
a compressibility κ = 140 to suppress large density deviations
from the bulk value. The spatial resolution is dx = 0.25, and
the time step is δt = 0.02. The NP interfacial width, ξ = 0.25
and the segment smearing size, a, are approximated as a = b

2 .
Each simulation ran for approximately two million iterations
after the equilibration stage and trajectories were saved every
103 iterations to calculate the chain volume fraction profiles
about the NP. Possible error sources in the dynamic mean field
simulations include the discretization of the Gaussian chain
with finite number of segments NCG to model the PMMA
polymers. To test this, we have doubled NCG by decreasing
b for selected designs of the simulation system and found no
appreciable changes in the corresponding density profiles of
the grafted chains.

We compare these 3D dynamic mean field volume frac-
tion profiles to 2D self-consistent field theory calculations
in the supplementary material, Fig. SI. 1. There are clear
quantitative differences between the volume fraction profiles
determined by these different techniques, although qualita-
tively, they show similar trends. We attribute these differences
to the relative importance of thermodynamic fluctuations at
such short chain lengths, as well as the important difference in
packing of grafted polymer chains in two (cylindrical) versus
three (spherical) dimensions.

III. RESULTS AND DISCUSSION

Figure 2 shows representative transmission electron
micrographs of the PNC tracer films across the range of studied
ratios of matrix to graft molecular weight (P/N) and PMMA
grafting densities. For all grafting densities, the NPs are

well-dispersed in the PMMA matrix up to P/N ∼ 2.5, beyond
which NPs aggregated presumably due to depletion-attraction
forces.27 This result is consistent with the wet to dry brush
transition reported in literature.1,26–28 To confirm that NPs
remain well-dispersed during annealing of the diffusion cou-
ples, we have used RBS to analyze the NP concentration
profiles of all samples at multiple annealing times (Fig. 1).
We interpret the observed annealing time-independent NP
diffusion coefficients as evidence that the NPs remain well-
dispersed during annealing. If the NPs were to aggregate
during annealing, the large increase in effective particle size
would result in a diffusion coefficient that decreases dramati-
cally with annealing time. We find annealing time-independent
diffusion coefficients for all NP/polymer matrix combinations
where P/N < 2.5, while for systems with P/N > 2.5, we find
from RBS analysis that the NPs aggregate near the surface
during annealing and do not diffuse deeply into the PMMA
matrix.

The nanoparticle diffusion coefficients decrease with
increasing matrix molecular weight and are largely inde-
pendent of grafting density and graft molecular weight,
Fig. 3. We do note, however, that the diffusion coefficients
of the 0.55-16 NPs are slightly greater than those of the
0.17-21 and 0.33-21 NPs, a difference that may be attributable
to the slightly smaller graft molecular weight (and thus shorter
length of the grafted chain). Because our NP diffusion mea-
surements span PMMA matrix molecular weights from well
below to moderately above the critical molecular weight
(∼24 kg/mol for PMMA33), we caution against strict inter-
pretation of the observed molecular weight dependence of
the measured NP diffusion coefficients or the apparent devia-
tions from Rouse (Mw

�1) or entanglement (Mw
�3.4) controlled

friction.42

We next compare the measured NP diffusion coeffi-
cients to those predicted according to the Stokes-Einstein
relation (Eq. (1)). Because the NP core volume fraction is
very low for these experiments and representative of the dilute
limit, we first employ the viscosity of the bulk PMMA (with
0 vol. % NPs) to account for the hydrodynamic friction expe-
rienced by these NPs. We have measured the zero-shear vis-
cosity of bulk PMMA at three molecular weights spanning

FIG. 2. Top-view transmission elec-
tron micrographs of polymer nanocom-
posite tracer layers (ϕNP = 0.025, thick-
ness = 50 nm) across the range of NP
type (grafting density, grafting molec-
ular weight, N) and matrix molecular
weights, P. The ratio of matrix and graft
molecular weight (P/N) is shown in the
upper-right corner of each micrograph,
and the scale bar is 100 nm.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-033798
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FIG. 3. Nanoparticle diffusion coefficients measured at Tg + 75 K (solid sym-
bols) and predicted according to the Stokes-Einstein relation (open symbols)
using the measured viscosity of bulk PMMA and the nanoparticle core radius.
The PMMA critical molecular weight is indicated with an arrow.

the range of NP diffusion measurements, and provide direct
comparisons at these three values of P only. As is seen in
Fig. 3, the measured NP diffusion coefficients are significantly
lower (∼100 times) than predicted by the Stokes-Einstein
relation across all matrix molecular weights and grafting
densities. The observed, excessively slow diffusion of these
grafted NPs is quite surprising given that the NP core diameter
2Rcore = 4.3 nm is significantly smaller than the tube diameter
of PMMA (dtube ≈ 6–7 nm) or the polymer coil size (2Rg) for
most of the matrix molecular weights studied herein.

Theoretical studies have predicted and experiments have
shown that apparent faster-than-Stokes-Einstein NP diffusion
may occur when the NP diameter is smaller than these char-
acteristic length scales in entangled polymer melts because
chain-scale friction no longer controls the mechanism of
nanoparticle diffusion.6–8,10,16–19 These predictions are strictly
valid only for bare nanoparticles exhibiting neutral interac-
tions with the polymer matrix, and the NP diffusion experi-
ments available in literature have primarily focused on sim-
ilar cases. Recently, Mangal et al. measured the mobility of
polymer-grafted NPs in polymer melts using X-ray photon
correlation spectroscopy, finding faster-than-Stokes-Einstein
diffusion of PEO-grafted NPs in entangled PMMA melts.20 It
should be noted, however, that the graft molecular weight in
these studies was quite small (2 kg/mol), while in our stud-
ies the graft molecular weights are 16 or 21 kg/mol. This
larger graft molecular weight may considerably augment the
effective hydrodynamic NP size and contribute to the observed
slow NP diffusion. In this regard, the current data may reflect
a similar case as our recent studies of the diffusion of sil-
ica NPs in poly(2-vinyl pyridine) melts,23 where we found
unexpectedly slow NP diffusion consistent with the forma-
tion of a polymer bound layer that increases the effective NP
hydrodynamic size.

To account for these dramatically lower-than-expected
NP diffusion coefficients, we begin by assuming that the NPs
diffuse with an unknown and significantly augmented effec-
tive diameter 2Reff, and the Stokes-Einstein relation in fact
holds when describing the diffusion of these presumably larger
grafted-NPs. This assumption is reasonable in light of the
fact that most of our experiments explore diffusion of NPs

in the unentangled regime where the SE relation is expected
to be valid.22 We do not expect this assumption to hold in
highly entangled polymer melts unless the particles are much
larger than the tube diameter (2R/dt > 5–6).22,23 We rewrite
the Stokes-Einstein relation describing the measured NP
diffusion as

D =
kBT

6πηPNCReff
, (5)

which accounts for the new effective NP diameter 2Reff and
the correspondingly larger zero-shear viscosity of the PNC
ηPNC. We estimate the viscosity of the PNC by assuming that
the effective nanoparticles interact as hard spheres and enhance
the viscosity of the polymer melt in a manner similar to col-
loidal suspensions.43 In our current case, the measured NP
diffusion coefficients are ∼100 times slower than predicted by
the SE relation for the NP core in a PMMA melt, which sug-
gests that the effective NP diameter is many times larger than
2Rcore. It is thus possible that the effective NP volume fraction

ϕeff = ϕcore

(
Reff

Rcore

)3
is quite large and may be approaching the

random close packed jamming volume fraction ϕmax ≈ 0.63.
At these potentially large effective volume fractions, it

has been shown that the zero-shear viscosities of colloidal sus-
pensions44 and highly loaded polymer nanocomposites45 are
no longer well-described by Einstein’s equation (corrected to
second order), but rather follows well the phenomenological
Krieger-Dougherty equation,46,47

ηPNC = ηpoly

(
1 −

ϕeff

ϕmax

)−2

. (6)

We use this relation to estimate the PNC viscosity and write
the normalized diffusion coefficient,

D
DSE

=
Rcore · ηpoly

Reff · ηPNC
=

Rcore

Reff

*
,
1 −

ϕcore

ϕmax

(
Reff

Rcore

)3
+
-

2

, (7)

where D is the measured diffusion coefficient (described by
Eq. (5)) and DSE is the SE relation describing the diffusion
of the NP core in the neat PMMA melt. The NP-core vol-
ume fraction varies from ∼0.0025 to 0.0075 with an average
ϕcore ≈ 0.005 (see Fig. 1) for all analyzed annealed concen-
tration profiles, and we thus solve Eq. (7) to determine Reff at
ϕcore = 0.005 for all measured ratios D/DSE, Fig. 4(a). We
have also calculated Reff at ϕcore = 0.0025 and 0.0075 for
the 0.17-21 NPs and include this information as error bars
in Fig. 4(a).

Figure 4(a) shows the effective NP diameter 2Reff deter-
mined from Eq. (7) for the three grafted NPs as a function
of matrix molecular weight. The effective NP diameter 2Reff

≈ 18–20 nm is more than four times larger than the NP core
diameter 2Rcore and is essentially independent of the grafting
densities and matrix molecular weights used here. Further-
more, this effective NP size is nearly 3 times larger than the
tube diameter of PMMA, where at the studied unentangled-to-
weakly entangled matrix molecular weights, significant devi-
ations from hydrodynamic NP diffusion are not predicted.22

As shown in Fig. 4(b), these larger effective NPs increase the
matrix viscosity due to the larger effective NP volume fractions
(we find ϕeff ∼ 0.40–0.50 for the studied cases).
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FIG. 4. (a) Effective nanoparticle diameter in the melt as determined by NP
diffusion measurements (solid symbols), the modified Daoud-Cotton scaling
approach (solid lines), and dynamic mean field simulations (open symbols)
plotted as a function of matrix molecular weight. Upper and lower error bars
on experimental data correspond to Reff values of the 0.17-21 NPs calculated
at ϕcore = 0.0025 and 0.0075, respectively (as described in text). Reff from
simulations is determined as the distance from the NP center to where matrix
chains occupy exactly 50% of the total volume. (b) The calculated effective
zero-shear viscosity of the nanoparticle-modified PMMA melt (solid sym-
bols), as well as the measured zero-shear viscosity of bulk PMMA (open
symbols).

The presence of grafted polymer chains at the moderate
molecular weights and grafting densities studied herein likely
augments the effective hydrodynamic size of these small-core
NPs. Using a modified Daoud-Cotton model, Ohno et al.
quantified the brush height of PMMA-grafted silica NPs (of
moderate grafting density with a broad range of graft molecular
weights) in good solvent.48,49 More recently, Hore et al. used
small angle neutron scattering to test the validity of the model
for describing the brush thickness of PMMA-grafted iron
oxide NPs suspended in PMMA melts and found good agree-
ment.50 In the concentrated polymer brush regime, the brush
thickness h is well described by this modified Daoud-Cotton
model such that

h

(
1 +

h
2Rcore

)
= a (σsm)1/2 lmN , (8)

where a is a constant of order one, σ is the graft density,
sm is the cross-sectional area of the graft chain, lm is the
contour length per monomer, and N is the graft degree-
of-polymerization. Using the same parameters for PMMA-
grafted chains as in the study of Ohno et al. (a = 1.15,
sm = 0.54 nm2, lm = 0.25 nm), we have estimated the brush
thickness for the three PMMA-grafted NP systems studied

herein and plot the corresponding effective NP diameter along
with the experimental data in Fig. 4(a). As seen in Fig. 4(a),
these Daoud-Cotton estimates agree well with the experimen-
tally determined effective NP sizes, suggesting that NP mobil-
ity in these studied systems is well-approximated by the SE
relation and furthermore the effective hydrodynamic NP size
is determined by the full radial extent of the grafted polymer
chains.

We have also employed dynamic mean field simulations
to model our experimental systems and provide a more detailed
understanding of the structure of the grafted polymer layer
on these NPs. We have simulated a grafted nanoparticle (at
three grafting densities corresponding to the three experimen-
tal systems) dispersed in an athermal polymer matrix corre-
sponding to the PMMA molecular weights for which we have
measured viscosity data. From these simulations, we have
calculated the 3-dimensional graft and matrix chain volume
fraction profiles averaged over the polar and azimuthal angles.
Figure 5(a) presents these averaged volume fraction profiles
for the 0.33-21 grafted NP embedded in an athermal poly-
mer melt of molecular weight P = 4, 14, and 52 kg/mol. The
grafted polymer layer is strongly wet by the matrix chains as
indicated by the relatively high matrix volume fraction near
the NP core surface, Rcore = 2.15 nm. The grafted polymer
chains also occupy a substantial part of the total volume out
to distances several times larger than Rcore. Furthermore, the

FIG. 5. Volume fraction profiles of grafted (solid line) and matrix (dashed
line) polymer chains calculated from 3D dynamic mean field simulations.
(a) NPs with grafting density 0.33 chains/nm2 and graft molecular weight
21 kg/mol (0.33-21) suspended in a polymer melt of varying molecular weight
(4, 14, and 52 kg/mol). (b) NPs of varying grafting density suspended in the
14 kg/mol matrix. Inset: simulation snapshot of the 0.33-21 grafted NP in
the 14 kg/mol melt, where the dashed circle depicts the effective hard sphere
particle size determined from NP diffusion measurements.
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graft volume fraction profiles are nearly independent of matrix
molecular weight for all studied systems. These aspects of the
simulations corroborate two key observations in our experi-
mental data—namely, the large effective NP size and its weak
dependence on matrix molecular weight (Fig. 4(a)).

Consistent with our previous studies,51 we estimate the
simulated effective NP radius as the distance from the NP
center where the matrix chains occupy exactly 50% of the
total volume. As seen in Fig. 5(a), this distance is rela-
tively close to the surface of the NP core, around r ≈ 4 nm.
We plot this volume-fraction estimation of 2Reff along with
the experimental data in Fig. 4(a). At fixed grafting density
and graft molecular weight, these effective sizes determined
from the simulations are essentially independent of matrix
molecular weight, consistent with the experimental results. At
fixed P, the simulated effective NP size increases by nearly
a factor of two as grafting density increases from 0.17 to
0.55 chains/nm2. This result stands in contrast with the exper-
imental data, where it is seen that 2Reff determined experi-
mentally is essentially independent of grafting density and is
several times larger than this volume-fraction estimation of
the effective NP size.

Alternatively, we consider the thickness of the grafted
polymer layer as defined by the maximum radial extent of
the grafted polymer chains, a quantity that is directly con-
nected to the modified Daoud-Cotton estimate of the polymer
brush thickness. It is seen in Fig. 5(a) that the graft volume
fraction profiles exhibit similar radial dependencies regard-
less of matrix molecular weight at r > 6 nm. Apart from a total
decrease in volume fraction with decreasing grafting density,
Fig. 5(b) illustrates that the radial dependence is qualitatively
independent of grafting density. The maximum extent of the
grafted polymer layer is rmax ∼ 12.5 nm and nominally inde-
pendent of NP type (grafting density and grafting molecular
weight) and matrix molecular weight. This 2rmax is compara-
ble to the experimentally determined hydrodynamic diameter
of these grafted NPs diffusing in PMMA melts (solid symbols,
Fig. 4) and the above-mentioned modified Daoud-Cotton esti-
mate for the brush thickness. This agreement indicates that
the effective size of polymer grafted nanoparticles in ather-
mal polymer melts is largely controlled by the furthest extent
of the grafted chains rather than the degree of exclusion of
matrix chains by the grafted chains. Alternatively, our results
could also indicate that the grafted chains are significantly
slowing the diffusion of matrix chains in their near vicinity,
effectively “dragging” them during the slow process of NP
diffusion and augmenting the effective NP size in this manner.
Either way, these results clearly show that polymer grafts of
moderate molecular weight and grafting density dramatically
alter the diffusion mechanism of NPs in unentangled to lightly
entangled athermal polymer melts. Moreover, this study has
established a robust experimental and theoretical approach to
exploring grafted NP diffusion that can be expanded to a wider
variety of systems. Finally, we would like to emphasize that the
findings of this study may be limited to the range of currently
explored experimental parameters (namely, grafting densi-
ties and molecular weight), and further studies over a much
broader range of grafting densities and molecular weights are
necessary to completely understand how grafted polymers

influence NP diffusion in both unentangled and entangled
polymer melts.

IV. CONCLUSION

Using RBS, we measure the diffusion coefficient of
PMMA-grafted NPs of varying grafted molecular weight (N)
and grafting density (σ) in PMMA melts of varying molec-
ular weight (P). These NPs diffuse ∼100 times slower than
predicted according to the Stokes Einstein relation assum-
ing a viscosity equal to bulk PMMA and a hydrodynamic NP
diameter equal to the NP core. We show that this slow NP dif-
fusion is the result of a significantly increased effective NP size
2Reff ≈ 20 nm, which is essentially independent of the grafting
densities and matrix molecular weights studied. Comparing
these experimental results to a modified Daoud-Cotton scaling
estimate for the brush thickness and detailed dynamic mean
field simulations of polymer-grafted NPs in athermal poly-
mer melts, we find that 2Reff is comparable to the size of the
NP core plus the extended grafted chains (2rmax). Our results
suggest that grafted polymer chains of moderate molecular
weight and grafting density alter the NP diffusion mechanism
in polymer melts, namely, by substantially increasing the NP
effective size.

SUPPLEMENTARY MATERIAL

See the supplementary material for a comparison of the
grafted polymer volume fraction profiles as determined by 3D
dynamic mean field theory and 2D self-consistent field theory.
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