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Abstract  12 

Conventional row crop agriculture for both food and fuel is a source of carbon dioxide (CO2) and nitrous 13 

oxide (N2O) to the atmosphere, and intensifying production on agricultural land increases the potential 14 

for soil C loss and soil acidification due to fertilizer use. Enhanced weathering (EW) in agricultural soils--15 

applying crushed silicate rock as a soil amendment-- is a method for combating global climate change 16 

while increasing nutrient availability to plants. EW uses land that is already producing food and fuel to 17 

sequester carbon (C), and reduces N2O loss through pH buffering. As biofuel use increases, EW in 18 

bioenergy crops offers the opportunity to sequester CO2 while reducing fossil fuel combustion. 19 

Uncertainties remain in the long term effects and global implications of large-scale efforts to directly 20 

manipulate Earth’s atmosphere, but EW in agricultural lands is an opportunity to employ these soils to 21 

sequester atmospheric C while benefitting crop production and the global climate.   22 

Keywords: basalt, carbon sequestration, agriculture, global climate change, silicate weathering, biofuels 23 
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1. Introduction 24 

Atmospheric CO2 is regulated on geologic timescales by the natural chemical weathering of 25 

silicate rocks, a process which can be accelerated by applying crushed fast-weathering silicate rocks to 26 

the land surface as “enhanced weathering” (EW) [1,2,3,4].  Conventional row crop agricultural practices 27 

result in a net loss of C from the soil to the atmosphere and high requirements for fertilizer and lime 28 

[5,6,7,8].  EW with basalt, a fast-weathering, Ca- and Mg-rich silicate rock, has the potential to create a 29 

net C sink in these systems while reducing N loss, counteracting soil acidification, and supplying 30 

nutrients through the byproducts of the weathering processes.  The 10-15M km
2
 of global cropland [9] 31 

offers a host of environments for deployment of EW substrates, with a potential return of 200-800 kg 32 

sequestered CO2 t
-1

 basalt [10].  In addition, growing interest in biofuels to reduce fossil fuel 33 

consumption has increased the proportion of agricultural land producing annual and perennial 34 

bioenergy crops, with the potential to expand into marginal lands [7,11,12,13]. Perennial crops have 35 

longer growing season than annuals and extensive root systems supporting large biotic communities 36 

[8,11,14], which may be more effective than annuals at weathering. In this review, we examine the 37 

potential for basalt EW to sequester CO2 and benefit crop yield in conventional and perennial bioenergy 38 

agroecosystems.   39 

2.  Basalt weathering for C sequestration  40 

The chemical weathering of silicate rock sequesters CO2 as bicarbonate and carbonate minerals 41 

in soils and oceans [1,3,15]. Basalt, a common construction material, is being explored for EW due to 42 

availability and nutrient content. Basalt weathering occurs at slow natural rates over 6.8M km
2
, or 4.6% 43 

of terrestrial land area [16]. EW in agricultural lands expands the potential weathering area by 10-15M 44 

km
2
 [3,15], and offers secondary benefits to agriculture from basalt application as a soil amendment 45 

[15]. The use of rock fertilizers is not novel: dolomite and limestone are commercially available, and 46 
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have three major values beyond C sequestration: buffering soil pH, reducing N loss, and providing 47 

elemental nutrients [17,18,19,20]. The various forms of basalt contain 8-20% Ca and Mg oxides by 48 

weight, and 1-2% potassium oxides and phosphates, with small quantities of micronutrients, including 49 

Cu, Ni, and Zn [e.g. 21,22,23]. In an agricultural setting, organic acids produced by plants weather the 50 

rock surface, liberating nutrients and dissolving silica [24]. Ca
2+

 and Mg
2+

 are among the most easily 51 

weathered base cations of basalt [25,26], and react to form soluble bicarbonate compounds[10]. 52 

Consumption of H
+
 ions during the weathering process buffers the soil, increasing the availability of 53 

existing soil nutrients, particularly P, which form plant-resistant compounds at low pH [Figure 2, 20,27].   54 

Global rates of rock weathering are directly related to temperature, moisture, and interactions 55 

with vegetation [4,14,28,29].  Basalts are among the fastest weathered silicate rocks, and in-situ 56 

weathering of basalt minerals on the Earth’s surface currently consumes 179 Mt of CO2 annually [16], 57 

approximately .5% of annual fossil fuel emissions [30]. This sequestration is limited by basalt quality (Ca 58 

+Mg concentration and degree of previous weathering) [4,10] and weathering conditions, such as low 59 

temperatures in Siberia or dry conditions in Ethiopia[16], which limit slow the rate of chemical reactions. 60 

Weathering is enhanced by increasing the reactive surface area and by increasing temperature and 61 

moisture: EW will proceed most rapidly in warm, wet environments [15,26,31].  Rates of CO2 capture by 62 

EW are uncertain, but the most Ca and Mg-rich silicate rocks have the capacity to sequester >1t CO2 t
-1

 63 

rock, while basic rocks, including basalts, range from 200-800 kg t
-1

 [4,10,15]. Plants and rhizosphere 64 

microbes, particularly mycorrhizal fungi, accelerate weathering while mining the rocks for nutrients, 65 

including P and K, through the production of root exudates [24,32,33,34]. The rate of mineral dissolution 66 

from ground rock increases 1-5x in the presence of plants [14,18,29,32].   67 
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3. Agricultural lands as carbon sinks 68 

Global soils represent a C reservoir of up to 1.5 Pg of organic C and 1 Pg of inorganic C [6], but 69 

many agricultural soils are CO2 sources due to soil disturbance and heavy cropping, emitting 5-6 Gt CO2-70 

eq yr
-1

  [6,7,35,36,37]. To support the growing human population over the next century, global cropland 71 

must expand, or agricultural production must intensify on existing arable land [9,11].  Expansion into 72 

natural areas such as tropical forest, or increases in management practices such as tillage and fertilizer 73 

application can greatly increase soil C disturbance and N loss to volatilization and runoff [11].  EW has 74 

potential to mitigate the effects of agriculture at a global scale and at global locations, without 75 

disrupting food production. Earth’s surface supports 10-15M km
2
 of arable land with potential to deploy 76 

EW (7-10% of global land area) [3,15], an area that is expected to expand with growing production 77 

requirements in the future (Table 1). The ubiquity of agricultural lands around the world gives a wide 78 

range of temperature and moisture regimes at which EW can be explored, and the weathering rate will 79 

differ for each, as will the specific soil chemistry that will determine appropriateness of EW [15,38].  80 

Carbon losses from agricultural soils occur due to soil disturbance, crop harvest, and microbial 81 

activity [6,11].  Crop biomass temporarily sequesters 128-165 Gt of C [6], and contributes organic matter 82 

to soil as roots and litter, but disturbance during tillage, microbial consumption of organic matter, and 83 

the removal and subsequent destruction of aboveground biomass result in a net loss of C from 84 

agricultural soils under row crops [6,12,37]. EW sequesters atmospheric CO2 as inorganic C in soils, and 85 

does not directly counteract the organic C loss from agricultural practices, instead reducing net C loss 86 

[15].  Alkaline solutions formed in terrestrial reactions may travel through soil water and groundwater to 87 

streams and rivers and ultimately to oceans, where vast quantities of C are stored in the shells of marine 88 

organisms and precipitated to the sea floor [39]. 89 
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(a) EW effects on the N cycle in agricultural soils 90 

Much of the increase in agricultural productivity in the last century can be traced back to the 91 

widespread adoption of N fertilization, but long-term N fertilizer use has negative effects at both global 92 

and local scales. N fertilizer production consumes 1.2% of annual energy produced globally, and 93 

represents 1.2% of total GHG emissions [40,41]. Fertilizers are often applied at rates in excess of 94 

biological demand, or in excess of neutralizing soil ions, and lost to volatilization or runoff, resulting in 95 

eutrophication of aquatic systems [5]. N2O has a global warming potential ~300 times higher than CO2 96 

over a 100-year time period [42], and N fertilizers increase rates of nitrification and/or denitrification 97 

[43,44,45].  Conservation of N in agriculture is critical to reducing the rates of N fertilizer production and 98 

application, and N emissions from agricultural soils. 99 

EW of basalt shares some similarities to liming, a practice that alters soil pH with CaCO3 to 100 

improve nutrient availability in crops, but emits CO2 to the atmosphere as carbonates weather [43]. This 101 

CO2 loss is compensated for by reduction of N2O, a more potent greenhouse gas [42], and increased C 102 

sequestration in biomass. Logic indicates that increasing soil pH will increase N2O emissions due to 103 

increases in microbial N mineralization and nitrification; however, multiple studies have shown a decline 104 

in N2O emissions following lime applications [43,44,45]. The mechanism of N2O reduction through liming 105 

is not well understood, but may be a result of increased microbial production of enzymes reducing N2O 106 

to N2 at neutral pH [45,46]. Though a representative basalt (~20% CaO+MgO) has half the buffering 107 

capacity of limestone (40% CaO by weight), proposed rates of basalt application (2-25x the rate of 108 

limestone) [3,47] are adequate to substitute for agricultural lime. 109 

(b) Effects of EW on soil pH and plant nutrition 110 

Approximately 30% of global soils are acidic (pH<5.5), and continued overuse of ammonia-based 111 

N fertilizers adds free protons and lowers soil pH, resulting in the formation of insoluble nutrient 112 
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compounds that are unusable by plants, nutrient deficiencies, reduced crop yield, and water quality 113 

degradation [5,48,49,50]. Plant uptake of base cations further lowers soil pH, and essential nutrients 114 

including P, K, and S form compounds unavailable to plants as pH decreases. Conversely, plant-115 

availability of Fe, Mn, Cu, and Z increase at low pH, creating potential for metal toxicity [Figure 2, 5,49].  116 

EW consumes free protons in the formation of bicarbonate and raises soil pH, and may increase plant-117 

availability of existing nutrients in the soil while adding micronutrients and Si [50,51]. Though EW does 118 

not directly sequester organic C from plants, increases in nutrient availability could support greater 119 

biomass production, and subsequently lead to increased organic C inputs to the soil system from roots 120 

and litter. 121 

Root exudates chemically weather rocks and minerals, and the reactions are enhanced by 122 

mycorrhizal acidification of the rhizosphere [14,29,32,33,34,52]. Root-associating mycorrhizal fungi 123 

provide the link between the inorganic C fixation of EW and the organic C cycle of agricultural soils. 124 

Mycorrhizal fungi are critical for developing soil structure, which preserves organic matter and resists 125 

water erosion [53]. Increases in soil organic matter benefit agriculture by increasing soil water retention 126 

and crop yields, both of which amplify weathering by increasing mineral-water contact times and 127 

demand for inorganic nutrients, respectively [32].  128 

(c) Potential for increased carbonate formation – a global, millennial effect 129 

Carbonate precipitates from the soil solution when soils are saturated with Ca
2+

 and Mg
2+

 130 

cations, and alkaline soils are a significant terrestrial sink of CO2 [10,54]. Like their acidic counterparts, 131 

alkaline soils suffer from nutrient limitations and loss of productivity, and may benefit from the 132 

additions of Fe from EW [Figure 2, 50]. Alkalinity resulting from EW may travel through the vadose zone 133 

to surface and ground waters (Figure 1), and eventually to rivers and oceans [10,15,16]. Ocean inputs of 134 

base cations are desirable to combat ocean acidification, an effect of the continuing rise of atmospheric 135 
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CO2 [2,3,37].  Surface coastal oceans provide a major sink for an influx of bicarbonate ions liberated by 136 

weathering which, in the presence of adequate Ca
2+

 or Mg
2+

 cations, can precipitate biologically (e.g. 137 

corals and forams) and on longer timescales abiotically (limestone) [39].  The reaction producing 138 

carbonate from bicarbonate liberates CO2 (1 kg kg
-1

 sequestered); however the resulting mineral is 139 

highly stable and will persist for millions of years in oceans [3,15,39].  140 

4. Bioenergy crops and the carbon balance 141 

Bioenergy crops have been investigated in both temperate and tropical regions as a means of 142 

partially mitigating CO2 emissions from burning fossil fuels.  Combustion of bioethanol and biodiesel 143 

produces less net CO2 than fossil fuels because bioenergy feedstocks sequester CO2 as biomass and 144 

belowground in soil as they grow, recycling C between the atmosphere and the terrestrial C pool 145 

[7,12,37]. Crops used to produce first generation biofuels (1G) from sugars and oils including maize, 146 

soybeans, and sugar crops, are grown on over 9M km
2
 of agricultural land globally, currently with a 147 

90/10 split between food and fuel. In the past 20 years, fuel production from 1G bioenergy crops has 148 

increased from near zero in 1990 to 85 million tons of bioethanol and biodiesel in 2010, and the number 149 

is expected to grow as countries follow the models of Brazil, the EU, and the USA, with subsidies and 150 

mandates for fossil fuel reductions (Table 1B) [55]. 1G bioenergy crops compete with food crops for land 151 

area and would benefit from EW in the same manner as those grown for food. 152 

Second generation bioenergy crops (2G), including perennial grasses and woody plants, are 153 

grown for cellulose and require additional processing for bioethanol production. 2G crops are intended 154 

to spare prime agricultural land and to separate the food and fuel production streams in agriculture 155 

[8,11,12,55,57].  Perennial crops have the combined benefits of negative C balance [7,8,12] and high 156 

biomass production on marginal land [11,58]. While 2G bioenergy crops have lower nutrient 157 

requirements than 1G crops (perennial grasses in the USA range from unfertilized to half the rate of 158 

Page 7 of 18

http://mc.manuscriptcentral.com/bl

Submitted to Biology Letters



For Review
 O

nly

8 

 

maize) [12], plant-induced weathering of basalt could supply nutrients that improve marginal soils, 159 

increasing yields and promoting further organic C sequestration.  160 

5. Limits of agricultural benefits from basalt weathering, questions and uncertainties  161 

Global opportunities to deploy EW are widespread, while feasibility at specific locations is more 162 

limited. Basalts account for 6.8M km
2
 of Earth’s surface, and significantly more beneath the surface and 163 

under the oceans [16,59], but mining, processing, and transportation of large amounts of basalt to 164 

agricultural areas presents a financial and logistic challenge to farmers [3,10]. Over 80% of agricultural 165 

commodities are consumed locally [9], and areas with limited exports may lack transportation 166 

infrastructure needed to import basalt. Remote sources of basalt that do not overlap with arable land, 167 

such as outcrops in Siberia or Ethiopia [16], add to the expense of producing the material. In addition to 168 

the capital investment in purchasing and transporting basalt, fuel consumption and subsequent CO2 169 

release during mining and transportation reduce gains made by enhanced weathering, though only by 170 

an estimated 0.5-3% of C sequestered [15]. Proposed application rates of 10-50 t ha
-1

 in agricultural soils 171 

[3] exceed typical limestone application rates for maize/soybean in the United States 5 to 25-fold [47], 172 

requiring heavy machinery for distribution and restricting deployment of EW in remote or pastoral 173 

areas. However, EW in only a portion of global agricultural land area has the potential to offset a 174 

significant amount of CO2 production [10,16]. In the USA, with ~70M ha of maize and soybeans planted 175 

annually [60], deployment of basalt (10% CaO and 10% MgO, RCO2 = 0.32 [10]) at rates between 10 and 176 

50 t ha
-1

 represents a theoretical maximum CO2 capture of .2-1.1 Gt CO2, up to 13% of the global annual 177 

agricultural emissions over the weathering lifespan of the material. This value exceeds the US annual 178 

contribution to agricultural emissions (~10% of global) [30,61] before accounting for additional 179 

reductions in N2O emissions or fertilizer use. However, the rate of weathering in these soils is unknown, 180 

creating uncertainly in predicting how quickly CO2 capacity will be reached. Initial deployment to areas 181 
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of high-intensity agriculture where basalt, road access, and heavy machinery are available, such as North 182 

America [22] or the UK [10] will be the first test of weathering potential in farmlands.  183 

Widespread adoption of EW will require demonstration of the effectiveness of EW for the global 184 

benefit of C sequestration, and local benefits of N loss reduction, base cation buffering, and nutrient 185 

addition that will benefit farmers directly. While C sequestration is of global importance, few farmers 186 

will be willing to expend the cost of basalt additions without commensurate improvements in yield or 187 

soil fertility, and assurances that basalt application will not negatively influence long term productivity, 188 

crop value, or the health of farm workers, neighboring landowners, or consumers. Field trials are 189 

needed to quantify C capture and demonstrate agricultural benefits of weathering byproducts. 190 

Additional uncertainties surrounding EW include long-term effects of climate manipulation, varied rates 191 

of weathering at different global locations, availability (logistic and financial) of basalt to landowners, 192 

both government and landowner perception of the value of C sequestration, and the unforeseen risks 193 

and benefits of rock fertilizers.   194 

6.  Future of agricultural and bioenergy lands – looking toward 2050 195 

According to FAO estimates [9], the global population will increase to 9.1B by 2050, and world 196 

energy demand will rise between 20 and 100% (Table 1A) [62]. Currently, 37% of global land area is used 197 

for agriculture, including both cropland and pasture, and agricultural production is expected to grow at 198 

approximately 1% per year through 2050 [9]. By 2050, cereal grain production for food and fuel is 199 

expected to increase 46% from 2012 yields, and oils 80% (Table 1).  Higher productivity requires 200 

increased retention and effectiveness of N fertilizers, with consumption expected to increase 1.4% per 201 

year between 2012 and 2030 [9]. Biofuel predictions for 2050 estimate that the demand for biomass for 202 

energy production will increase between 71 and 200% (Table 1B) [13,63,64], potentially tripling land 203 

area in energy crop production. While the development of bioenergy crops and EW were both 204 
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conceived to combat greenhouse gases and climate change, a shifting climate will exert feedbacks on 205 

both.  Higher temperatures and rising CO2 concentrations may increase arable land area and crop yields 206 

in high latitude regions, but may accelerate organic C decomposition in soils or create desert conditions 207 

unfit for agriculture in drier regions [64,65]. Rates of EW may be increased by higher temperatures, but 208 

limited by reduced rainfall. The optimal locations for deploying EW will shift, as will agricultural 209 

production, in response to climate variability. 210 

7. Conclusions  211 

Strategies for mitigating the effects of atmospheric CO2 in the Earth system as the human 212 

population increases are required and our review indicates EW with basalt has the potential to harness a 213 

natural process for C sequestration at globally relevant scales in agroecosystems while benefitting food 214 

and fuel production. EW on agricultural lands could combat soil acidification and N loss while providing 215 

plant-essential nutrients, two major issues associated with intensive cropland farming. However, caution 216 

is required before large-scale deployment can be considered. We need better understanding of 217 

potential positive and negative impacts on crop production and feedbacks on soil biogeochemistry and 218 

unforeseen consequences.  Small scale pilot studies that provide empirical data and build public trust 219 

and support are essential next steps. 220 
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Table 1.  

(A) Global population projections and projections of agricultural production of edible crops for fuel 

through 2050, and (B) projections of global biodiesel/bioethanol production and 1G bioenergy crop land 

use. 

A. 

  Year  2005  2030  2050  % increase 

Population
a
    6.6B  8.3B  9.1B  37% 

Global arable land
b
  15M km

2
 18.5M km

2
 21M km

2 
40% 

Cereals
a
   2.3 Bt  2.7 Bt  3.0 Bt  30% 

Bioenergy/Non-food cereals 65 Mt  182 Mt  182 Mt  180% 

Oils    139 Mt  230 Mt  252 Mt  81% 

Bioenergy/Non-food oils 7 Mt  29 Mt  29 Mt  314% 

Sugar    185 Mt  295 Mt  333 Mt  80% 

Bioenergy/Non-food sugars 28 Mt  81 Mt  81 Mt  189% 

 

B.  

  Year 2006 2010  2020  % increase 

Bioethanol production
b
 31 Mt 67 Mt  125 Mt  303% 

Biodiesel production 6 Mt 17 Mt  50 Mt  733% 

Bioenergy land use 1.05M km
2
 2.2M km

2
 4.8M km

2 
357% 

a
 [8] 

b
 [55] 
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