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ABSTRACT: Simbiotics is a spatially explicit multiscale modeling
platform for the design, simulation and analysis of bacterial
populations. Systems ranging from planktonic cells and colonies, to
biofilm formation and development may be modeled. Representation
of biological systems in Simbiotics is flexible, and user-defined
processes may be in a variety of forms depending on desired model
abstraction. Simbiotics provides a library of modules such as cell
geometries, physical force dynamics, genetic circuits, metabolic
pathways, chemical diffusion and cell interactions. Model defined
processes are integrated and scheduled for parallel multithread and
multi-CPU execution. A virtual lab provides the modeler with analysis modules and some simulated lab equipment, enabling
automation of sample interaction and data collection. An extendable and modular framework allows for the platform to be
updated as novel models of bacteria are developed, coupled with an intuitive user interface to allow for model definitions with
minimal programming experience. Simbiotics can integrate existing standards such as SBML, and process microscopy images to
initialize the 3D spatial configuration of bacteria consortia. Two case studies, used to illustrate the platform flexibility, focus on
the physical properties of the biosystems modeled. These pilot case studies demonstrate Simbiotics versatility in modeling and
analysis of natural systems and as a CAD tool for synthetic biology.
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Bacterial colonies are networks of interacting cells that
coordinate their behavior to produce system level

organization.1−3 As an additional layer of organization, bacteria
may form biofilms, i.e., complex communities of cells often of
mixed consortia that adapt to their environment and coordinate
their individual behavior.4−6 Bacterial colonies and biofilms are
relevant in many disciplines ranging from microbiology and
medicine to biotechnology such as synthetic biology.7

Numerous existing and potential future applications include
antibiotic resistance, chronic infections and colonisation, dental
plaque formation, biofuel production and other biological
engineering applications. The pursuit of these applications
relies on cell populations being understood in an integrative
multiscale manner.8,9

Synthetic biology aims to repurpose biological components
in a modular way for novel applications.10 The development of
synthetic multicellular systems allows for mixed cohorts of
bacteria with each species programmed to carry out specific
tasks. When developing these systems one inserts genetic
devices into individual cells,11 thus it is vital to understand how
these devices effect multicellular system-wide behavior. The

design, synthesis and analysis of such synthetic systems is time
and resource intensive, typically involving multiple iterations
around the workflow. A major challenge in the development
of these systems resides in their complexity, scalability and
robustness, thus models of population dynamics are essential in
the realization of such systems.12,13

To catalyze this process, in silico models have been
developed,14 providing insights into the dynamics of proposed
systems allowing verification of their feasibility prior to resource-
intensive lab work. Such models typically focus on genetic
circuits and the behavior of single cells, however the dynamics
and self-organizing capabilities exhibited by populations of
interacting cells is in need of additional research effort.
Understanding these multicellular systems is difficult due to

the complex nature of their dynamics: first because systems
emerge from the interplay between their constituent cells,
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with feedback between microprocesses such as gene regulation and
metabolism, and macroprocesses such as spatial organization and
differentiation.15,16 Second, each cell has stochastic behavior that
may change significantly based on its local environment,17

understanding population behavior thus requires an in-depth
knowledge of how its constituent parts behave. The population
behavior of colonies can be analyzed to derive statistical
correlations, however these representations do not explain the
dynamics within the system or how population organization occurs.
Modeling multicellular systems in a spatially explicit manner

is crucial in understanding overall behavior. The notion of
spatial locality is inherent in these systems, with a cell’s indi-
vidual dynamics and its local environment directly effecting
each other in a feedback loop. As these interactions propagate
across populations we can observe how system coordination is
a self-organizing property, observing higher level relationships
and the driving forces behind system wide behavior.
We present Simbiotics, a multicellular bacterial simulator

which represents cells as individual physical entities embedded
in chemical gradients, each cell may have modeler-defined

dynamics and may interact with its environment and with other
cells. Through the explicit spatial modeling of individual cells
we aim to both understand existing multicellular systems,
especially biofilms, and offer a CAD platform to aid in the
synthetic biology workflow for exploring design space and
testing system robustness in silico, prior to synthesis.

Related Work. Several modeling tools have been developed
to understand the dynamics of bacterial populations and the
multicellular systems they form.18−20 General cell population
modeling tools include gro21 and CellModeller4,22 intended to
simulate the biophysical patterning of multicellular systems in
2D, focusing on physical interactions and chemical signaling.
BSim23 is another general tool which is used to model cells in
3D, providing a general agent-based platform in which the user
can define custom rules to describe cellular behavior, as well as
environmental structures via 3D meshes. More specific tools
include iDynoMiCS,24 the successor of BacSim,25 which is a
modeling tool for biofilm formation. It allows for the specifi-
cation of cellular properties and simulation of a biofilm growing
on a surface. Substrate dependence is also represented in the

Table 1. High-Level Feature Comparison between Simbiotics and Existing Agent-Based Modeling Tools for Bacterial
Populationsa

Simbiotics iDynoMiCS24 BSim23 gro21 CellModeller422 DiSCUS26 Infobiotics Workbench20

Bacterial growth X X X X X X

Rule based internal cell dynamics X X X X X X

Differential equation based internal cell dynamics X X X X

SBML based internal cell dynamics X

Gillespie submodels X X

Bacterial motility X X X

Chemotaxis X X X X

Cell surface interactions X

Membrane transport X X X

Environmental forces X X X

Chemical environment X X X X X X

Extracellular polymeric substances X X

2D X X X X X X

3D X X X

Microscopy image processing X

Fluid dynamics X

Conjugation X

Computational acceleration X X

Programming language Java Java Java Python Python Python Java
aX marks a feature being present.
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model, showing how the location of cells effects their growth.
DiSCUS26 is a specific 2D bacterial simulator modeling hori-
zontal gene transfer between neighboring cells. All of these
tools simulate chemical diffusion by discretising the environ-
ment space into subvolumes and calculating the flux between
neighboring compartments.
Each platform takes a level of abstraction at which to

represent the system and focuses on simulating relevant
processes to the questions for which the models are developed.
Existing models have a common underlying theme of an agent-
based modeling framework representing cells interacting in an
environment. However, a unification of these models into a
common platform has not yet been conceived. Implementation
of some computational acceleration such as multithreading, par-
allelization and GPU acceleration is also crucial for platform
viability scaling to large system sizes.
These platforms may be integrated into a computational

biologist or chemical engineer’s workflow, used in the modeling
and characterization of systems. When selecting a tool appro-
priate for their work, they may consider the three following
factors: the modeling capacity of the platform, the usability of
the platform, and the scalability of the platform. Modeling
capacity is the ability of a platform to describe a given system,
representing its constituent components and processes.
Usability is the ease in which that description can be expressed
in the platform, and scalability is the potential for the platform
to simulate large industrially relevant systems.
A platform developed for this type of modeling must

therefore be flexible enough to for a user to describe their target
system, extendable such that new processes may be represented
in the platform, usable such that the platform interface is intu-
itive and does not require extensive progamming to achieve
valid model outputs, and scalable such that modeling of popu-
lations relevant to real system is feasible. Table 1 depicts the
functionality implemented in existing modeling tools and in
Simbiotics.

■ SIMBIOTICS

We present a spatially explicit modeling platform, Simbiotics,
which allows for the design, simulation and analysis of synthetic
bacterial populations. Simbiotics simulates hybrid-models,
where an agent-based model describes bacteria and other physi-
cally interacitng agents, which is coupled to a continuous
chemical environment. Each agent can have many submodels
describing its internal biological processes. Unique species can
be defined, and large mixed populations can be simulated.

Through this coupling we can observe the interplay between
individual cellular processes and population level organization.
Simbiotics provides a modeling library consisting of a wide

range of processes, describing physical, chemical and biological
processes of bacterial population dynamics. Model specifica-
tions may be constructed by attaching library modules to the
simulator, allowing for the description of populations of custom
species and environmental properties. Additionally one can
define analysis tools in the model specification, automating
model interactions, simulated events, data collection and
analysis.
The platform software architecture is flexible, users may

develop models by composing library modules, only model
specific processes are then simulated. Simbiotics library
modules are parameterized to allow for fine-tuning for user
needs. New library modules may be developed and added to
the library by implementing Simbiotics interface classes, this is
described in the User Manaul. The platform and library are
readily extendable to add new features as necessary, ensuring
the relevance of the software as computational methods and
knowledge of biological processes develop.
Novel functionality in Simbiotics include the processing of

microscopic images to initialize the simulation of the spatial
state, additionally the integration of existing standards such as
SBML ensure the accessibility and communication of models.
We allow for the modeling of processes such as membrane
transport through passive or active mechanisms, active cell
motility due to flagellar or pili activity and chemotaxis.
Simbiotics may also simulate cell surface adhesion through
processes such as electrostatic and receptor-adhesin inter-
actions. Extracellular-polymeric substances (EPS) may also be
modeled, either through a particulate representation or via
mass-spring kinetics which cause bacteria to adhere to the
substratum and other cells.
The integration of these multiscale processes is a main con-

tribution of Simbiotics, allowing for the modeling of large
bacterial populations while capturing microprocesses in
individual cells.

Implementation. Simbiotics is developed in Java; it utilizes
the spatial representation, multithreaded and multi-CPU
parallelized execution, and the 3D rendering as implemented
in the Cortex3D platform.27 The platform is designed with a
modular architecture, allowing for model features to be
represented as discrete components that can be readily
added, removed and modified for the specific modeling appli-
cation. This is achieved via a three component architecture

Figure 1. (a) Simbiotics architecture overview, showing that the interface is a bridge with which the user attaches library models to the simulation
core. (b) A schematic of a basic Simbiotics model, composed of a set of 6 library submodels. The model specification utilitises specific library
modules for each feature of the system, ranging from cell shape to metabolic behavior. The model specification can be composed and run via the
interface layer. For a running model, the core layer integrates all model defined processes and schedules their execution for multithreaded and multi-
CPU environments.
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comprising of a simulation core, a modeling library and a
modeling interface. This plug-and-play framework allows for
rapid model prototyping and reiterative designs for the
reification of models. The software architecture is depicted in
Figure 1 (a).
The core of Simbiotics is the computational engine,

integrating all model defined processes and scheduling com-
mands for parallel execution. It is a framework with interfaces
which are populated from the modeling library.
The modeling library contains a collection of modules, which

are discrete submodels describing specific model behavior. These
range from physical law integrators and chemical diffusion-
reaction solvers, to bacterial geometries, cellular dynamics and
boundary conditions. Modules describing virtual lab components
and scheduling are also present, accompanied by analysis and
data exporter modules. An exhaustive list of present library
modules can be found in the User Manual in Supporting
Information, here we descibed how to use and compose existing
modules and how to develop news to add to the library.
The modeling interface allows the user to specify the inputs

and outputs of the platform. Models can be designed by
composing library modules in a JSON model specification file.
Modules are parametrizable to allow for their customization.
The interface also allows for the optional real-time 3D
rendering of the simulation, with live graph plotters visualizing
model statistics and on-the-fly analysis. Simbiotics is packaged
into a stand-alone jar, which can be run from command-line.
It requires a configuration file which contains the Simbiotics
parameters and filepath to the JSON model file. A full
description of how to compose models in Simbiotics can be
found in the User Manual.
Modeling. We describe the current Simbiotics Library

modules, elaborating on their functionality and the mathe-
matics used in their calculations. These submodels are
independent and can be attached to models to compose
them into a full model specification. A schematic which
illustrates the modeling of systems through composing library
modules can be seen in Figure 1 (b).
Environment. The simulation domain describes the

boundaries of the environment, it may be set to be 3D or
constrained to 2D. It is continuous space with a grid systems to
discretise volumes for representing chemical distributions.
Domain boundary conditions may describe a solid surface
and its physicochemical characteristics, periodic boundaries
may also be defined such that cellular and chemical entities
enter the opposing side of the domain which they leave. An
escape boundary can be defined such that entities are removed
from the simulation when leaving the boundary. Additionally a
boundary may describe a rate with which to introduce chem-
icals or bacteria into the environment, modeling a chemostat or
stochastic bacterial world outside of the simulation domain.
Spherical Cells. Cells may be coccus, represented as spheres.

Each has a position vector pi which represents its center as
coordinates in 3D continuous space bounded within the simu-
lation domain, a radius ri and mass mi. Additionally each cell has
a velocity vector vi which describes its current velocity as a 3D
vector, and a 3D unit vector which describes the orientation of
the body ψ̂i.
Rod-Shaped Cells. Cells may be bacilli, represented as rods.

Each is modeled by two points at positions pi
a and pi

b, which are
connected by a rigid spring. These positions define the end
points of the rod, constructing the line li = pi

b − pi
a, which

describes its length li = |li| and orientation ψ̂ =i l
li

i
. Rods are

considered to be cylindrical along li, with hemispherical caps.
Each has a center of mass pi which is the point along the rod
axis that is equidistant from the two end points. Rods also have
a radius ri, mass mi and each of its spheres has a velocity vector,
vi
a and vi

b.
A schematic for spherical and rod-shaped cells can be seen in

Figure 2 (a) and (b).
Cell Neighborhood. A Verlet-list is implemented to store the

nearest neighbors of a cell, for a cell i its nearest neighbor list is
denoted as Mi. A neighboring cell j is included in this list if the
absolute distance between cell’s closest points pi and pj is less
than a given threshold Mr. For spherical cells, Mr

S = ri + rmax,
where rmax is the maximum cell radius in the system. For rod-
shaped cells Mr

R = 0.5li + 0.5lmax, where lmax is the maximum rod
length in the system. The total number of cells at any time t is
denoted by N(t). A schematic showing the representation of
cellular agents can be seen in Figure 2 (f).
A cell’s local environment also has chemical properties, its

position pi maps to a voxel Vi in the discretized grid space. This
voxel contains a list of chemical species and corresponding
concentrations present in that volume. The concentration at Pi
may be an interpolation between Vi neighboring voxel concen-
trations, this is calculated with Sheppard’s method as imple-
mented in the Cx3Dp component of the software.27

Alternatively it may be assumed that each voxel has a uniform
distribution within it. A schematic can be seen in Figure 2 (c).

Physics. The motion of cells is determined by Newtonian
dynamics, forces are translated into a change in velocity, and
subsequently a change in velocity resulting in a change in
position:

=
t

t
t

p
v

d ( )

d
( )i

i (1)

=
t

t
t

m
v Fd ( )
d

( )i i

i

T

(2)

where Fi
T is the total force experienced by a bacterial cell. The

equation to calculate Fi
T is user defined, and may have as many

force components as desired. Here we present the default
equation used to calculate Fi

T,

∑= + + + + + +
=

F F F F F F F( ) ...i
j

M

ij ij ij i i i
T

1

C S E R F G
i

(3)

where i runs from 1 to N(t), Fij
C is the force due to cell−cell

collisions, Fij
S is the force due to specific adhesin receptor

interactions, Fij
E is the force due to nonspecific electrostatic

interactions, Fi
R is the translational diffusion force, Fi

F is the
force of viscous drag on the cell and Fi

G is the force of gravity.
Together, Fi

R and Fi
F turn eqs 1−3 into a Langevin Dynamics

approach.28 The Strömer−Verlet method is used for the
numerical integration of positions and velocities due to forces.
We calculate the force components individually, as follows.
Cells experience forces due to collisions with other

geometries in the 3D domain. For two cells at positions pi
and pj, θ̂ij is the unit vector describing the line orientation

between the cell centers from j to i, calculated as θ ̂ =
−

| − |

p p

p pij
i j

i j
.

Resolving collisions between spherical cell involves calculating
response forces to apply to each cell. This is modeled as a
strong spring which pushes cells apart, where Fij

C is the total
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force experienced by a cell due to its colliding neighbors, KC the
spring constant for collisions and xij is the overlap distance of
collision partners, xij = ri + rj − |pj − pi|,

θ
=

̂ >
⎪

⎪⎧⎨
⎩

K x x
F

if 0

0 otherwise
ij

ij ij ijC C

(4)

The sphere at position pi receives the force Fi
C = Fij

C, and the
sphere at position pj receives the force Fj

C = −Fij
C according to

Newton’s third law.
A similar approach is taken for modeling collisions with rod-

shaped cells. For the two colliding rod line segments li and lj,
we find the closest points ci and cj which form the shortest line
between them lij = cj − ci. The ratio along the rods which the

points lie Pi and Pj are calculated as =
| − |

Pi l

c pi i
a

i
and =

| − |
Pj l

c pj j
a

j
.

We calculate the overlap xij between rods to be xij = ri + rj − |lij|.
We then calculate the total force that rods exert on each other
in the same form as eq 4, the distribution of this force onto the
rod’s end points follows the same approach as implemented in
previous modeling work.29 Where Fi

Ca is the force applied to
point pi

a,

= − − PF F(1 )i i i
Ca C

(5)

= −PF Fi i i
Cb C

(6)

= − PF F(1 )j j j
Ca C

(7)

= PF Fj j j
Cb C

(8)

Collisions between a sphere and rod are solved as a partial
form of rod−rod collisions. For a sphere at position pi, we find
the position cj on the rod line segment lj which forms the
shortest line between them lij = cj − pi. We calculate the
overlap xij, forces Fi amd Fj and ratio Pj in the same manner as
for rod−rod collisions. The sphere receives the full force Fi and
Fj is distributed onto the rods constituent spheres in the same
manner as eqs 7 and 8. A schematic can be seen in Figure 2(d).
Collision force responses may be modeled with Hertzian

theory rather than the force expression in eq 4. Hertzian theory
models the elastic contact between colliding cells. In eq 4
KCxijθ̂ij is substituted with E(ri + rj)

1/2xij
3/2, where E is the

parameter representing the elastic modulus of a cell.30−32

Adhesin receptor interactions are modeled as springs con-
necting cell geometries. An interaction between an adhesin-
receptor pair q and s has a specific force constant Kqs

S associated
with it. The extension of the spring is calculated as αij = la − lr.
Where la = |pi − pj| is the actual length of the spring, and
lr = Rl(ri + rj) is the resting length of the spring. Rl being a
spring relaxation factor allowing the spring to leave an offset
between cell surfaces.

θα α
=

̂ >
⎪

⎪⎧⎨
⎩

K
F

if 0

0 otherwise
ij

qs ij ijS
S

(9)

An adhesin-receptor interaction is reversible if a sufficiently
large force pulls the cells apart. This is modeled as a maximum
extension that the spring may reach before breaking. We calcu-
late the maximum extension to be αij

max = Cpq·lr, where Cpq is the
extension factor for adhesin and receptor p and q. If αij > αij

max

the interaction spring is removed.

Figure 2. We consider two cells, a spherical cell (coccus) at position pi and a rod-shaped cell (bacillus) at position pj. (a) Spheres have a position pi.
Rods have start and end positions pj

a and pj
b, a length lj = pj

b − pj
a, and a center position pj which is equidistant between pj

a and pj
b along its length lj.

(b) Both spheres and rods have an associated radius ri/j and mass mi/j. Cocci have an orientation ψ̂i, and bacilli have an orientation ψ̂ =j l

lj

j
. (c) A

cell’s center position determines which diffusion grid voxel Vi/j the cell is in. (d) An example of a sphere and rod cell colliding, xij is the magnitude of
the overlap between cells. For a bacillus the force of a collision is distributed to its start and end points according to Pj. (e) An example of a bacillus
cell dividing, where pj and lj are the position and length of the dividing cell. The positions of the child cells are pk and pl, and they have lengths lk and
ll. Both child cells inherent the same radius rj. (f) An example of cell neighborhoods. The red circle represents the neighborhood range of the bacilli
cell at pj, and the blue circle the range of the cocci cell at pi. For a given cell, other cells are considered in a neighbor if their center point exists within
the range.

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.6b00315
ACS Synth. Biol. XXXX, XXX, XXX−XXX

E

http://dx.doi.org/10.1021/acssynbio.6b00315


Cells experience forces due to nonspecific interactions such as
van der Waals interactions and electrostatic repulsion when their
membranes are in close range. An established method for modeling
these forces is DLVO theory.33,34 However, this model operates on
distances in the order of nanometers which are negligible in
Simbiotics. We have a similar representation, modeling a
proportional adhesive force as a two cell surfaces approach. Kij

E is
the adhesive force constant and dij is the distance between the cell
centers defined as dij = |pi − pj|. Two cells interact if they are
within range of each other’s extended sphere of influence, defined
as the cells radius ri multiplied by a range factor rE.

θ
=

̂ <
+⎧

⎨⎪⎪

⎩⎪⎪

K

d
d

r r r

F
if

( )

2

0 otherwise

ij

ij

ij
ij ij

i j
E

E

2
E

(10)

To calculate the force random fluid motion has on a free-
floating cell, we use eq 6 to find the force on a given particle at
each moment in time. KR is a constant describing the maximum
force the cell experiences. We generate a random number
between 0 and KR and multiple it by a random unit vector η̂ to
calculate the current force:

η= ̂KFi
R

R (11)

In the numerical integration, we must take care to normalize
the force by the inverse square root of the integration step.
To describe the effect of friction for each cell we calculate a

drag force which is proportional to the friction coefficient KF,
representing the viscosity of the medium. The drag force is also
proportional to the velocity of the cell vi:

= −KF vi i
F

F (12)

Gravity is modeled as a constant force acting on a cell,

γ= ̂K mFi i
G

G (13)

where KG is the gravitational acceleration constant, mi is the
mass of the cell and γ ̂ is the unit vector describe the direction of
the force, pointing to negative y.
Chemistry. Simbiotics allows for custom definition of

chemical species with their respective diffusion and degradation
rate constants. Chemicals can exist in the extracellular space or
within cells and can be transported across membranes via a
variety of mechanisms. Chemical reactions occur in intracellular
compartments that are elaborated on in the metabolism section.
Extracellular diffusion is implemented with the finite volume

method.35 The simulation domain is decomposed into regular
nonoverlapping subdomains. The flux between neighboring
subdomains is calculated for each chemical species as follows:

= −→J D
S

d
u u( )i j c

ij

ij
j i

(14)

where ui and uj are the concentrations of a chemical species in
the two neighbor subdomains, Dc is the corresponding diffusion
coefficient for that chemical species and Sij is the cross-section
connected the two subdomains, and dij is the distance between
the center points of the two subdomains.
The only extracellular reaction modeled is degradation, to

calculate this a rate law can be defined for each chemical species.
Where A is a chemical species and kA is its rate of degradation:

→ ⌀A
kA (15)

One may also describe chemical sources and sinks, a chemostat
adjacent to any simulation domain boundary, a flux of bacteria
into the domain through boundaries, and a basic flow-chamber
which models a constant flow across the entire domain.

Biology. A wide range of biological processes are implemented,
including cell growth kinetics and metabolic rules, cell division,
motility, quorum-sensing through membrane transport, cell−cell
and cell−surface adhesion as well as gene regulatory networks.
Bacteria can also produce extracellular polymeric substances,
which can form an extacellular matrix. We describe next the set of
modeling decisions and simplifications made in order to capture
and integrate these various processes.

Cell Internal Dynamics, SBML and Gillespie Integration.
Intracellular processes such as gene regulation and metabolism
can be modeled using either Boolean networks36 or sets of
differential equations,37 both being widespread formalisms to
specify cell internal dynamics. Neither of the two approaches
makes specific assumptions of the biochemical nature of the
involved components, and both can therefore be used to express
arbitrary cell processes including gene regulation, metabolic
reactions or high-level decision making. Additionally one may
use Systems Biology Markup Language (SBML)38 models to
represent deterministic ordinary differential equations.
For Boolean network representations nodes may represent

cellular states such as gene expression, phenotype differentiation
or sensory information such as whether the cell is in contact with
a surface. Nodes in the network are in one of the discrete states
on or off, with directed arcs between nodes to describe an
activation or inhibition relation. Arcs into a node are composed
with propositional logic relations to form transition rules. All node
transitions are solved synchronously and then updated.
Cellular processes can also be modeled with differential

equations for which a solver is implemented. This solver allows
for the composition of sets of ordinary differential equations
that are integrated with a fourth order Runge−Kutta method.
A basic Gillespie simulation module is also implemented,
allowing for submodels of stochastic chemical processes. Each
cell may have its own internal Gillespie model.
An SBML solver LibSBMLsim39 is integrated, allowing for each

cell to potentially have its own SBML model. An SBML model
could be used to describe the metabolic or genetic dynamics of a
bacterial cell. Any state variable or parameter of the SBML model
can be set or get by other submodels of a cell in Simbiotics,
allowing for the full integration of SBML. This enables a coupling
between cell internal dynamics and interactions with their
environment, such as a chemical species permeating the cell
membrane and being introduced into the metabolism, or surface
protein expression based on gene regulation.

Cell Growth and Death. As bacteria grow their mass
increases and we calculate the change in mass Δm for the
current time step based on growth and maintenance kinetics.
Here we describe kinetic representations that are valid in
Simbiotics, we follow a similar approach to iDynoMiCS.4 The
change in the mass of a bacterial cell is based on the calculated
growth rate μi., where μi is a function of the depending nutrient
concentration Si in the local extracellular compartment Vpi,

μ=
m
t

S
d
d

( )i
i i (16)

Bacterial growth can be modeled as a constant process
ignoring substrate dependence. Bacteria grow according to a
growth rate Gr which is a uniformly distributed random variable
with mean Gr and variation Gv, such that μi = Gr ± Gv.
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Specific growth kinetics describe how bacterial growth is
calculated based on cell maintenance and available nutrient
concentration. A variety of reaction kinetics are implemented
which are listed in Table 2, one can compose these kinetics to
design custom nutrient-based growth dynamics.

Cells die if their radius is below a critical threshold rmin.
When a cell dies its geometry is completely removed from the
simulation, any intracellular chemicals are then moved to the
extracellular compartment in the diffusion grid which contained
the cell’s center of mass. Cell growth and death are imple-
mented as an extended version of the dynamics used in the
iDynoMiCS software.24 Growth dynamics may now be coupled
to either extracellular or intracellular cell chemical concentra-
tions, additionally the distribution of intracellular chemicals
upon cell death is implemented.
We assume that cell biomass density remains constant

throughout the cell cycle,40 therefore when a cell grows in mass

it is expressed by a growth in volume. As a coccus cell grows, its
radius ri increases. For a bacillus cell, growth is only along the length
of the cell li, as variations in its width are neglible in comparison.41

Cell Division. A binary fission library module implemented.
Cell division occurs upon a cell reaching twice its original
mass.41,42 We consider child cells to inherit about half of the
mass of the parent cell.43

Spherical Cells. This process involves dividing the geometry
volume in two with a ratio Dr, which is a uniformly distributed
random variable with mean 0.5 and variation Dv. This ratio
describes the distribution of volume between the two child
cells. The replicating bacteria will shrink and be repositioned,
and a replica cell instance will be created at the calculated
position of the child cell.
The volume of the two child bacteria are calculated with the

division offset as follows, where VT is the total volume of the
dividing cell, V1 and V2 are the corresponding child cell volumes.

=V D V1 r T (17)

= −V D V(1 )2 r T (18)

All intracellular chemical molecular amounts are divided
according to this ratio. Additionally all cell defined processes
are copied across to the new child cell.
To find the center positions of the child bacteria, the radii r1

and r2 of the new cells are deduced from their volumes. A random
unit vector û is then generated to find an axis of division.

Rod-Shaped Cells. Rod-shaped bacteria replicate upon
reaching twice their original length.44 For a dividing rod
whose center of mass is at position pi and has an orientation ψ̂i,
we calculate the position of child cell centers of mass pj and pk
as follows,

Figure 3. Microscopy image loading, showing the processing from the original microscopy Z-stack to Simbiotics model state. (a) Schematic showing
that a Z-stack undergoes image processing to extract and encode features such as cell positions. This encoding is then used in Simbiotics model
initialization to model state. (b) Example of microscopy image processing. Left: 2D projection of microscopy Z-stack. Middle: 2D projection of
image processed Z-stack, from which image features may be extracted. Right: 2D projection of Simbiotics model, showing loaded cellular agents in
the same configuration as the original Z-stack.

Table 2. Growth Kinetic Equationsa

growth kinetic equation

First-order kinetic μ = Gr ± Gv

Monod kinetic μ = +
S

K SS

Simple inhibiton μ = +
K

K S
i

i

Hill kinetic μ =
+

S

K S

h

h h
S

Haldane kinetic μ =
+ +

S

K S S
Ki

S
2

aμ is the growth rate, S is a given substance concentration, and K is the
half-saturation constant of a given substance.
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ψ= + + ̂l rp p (0.5 )j i i i i (19)

ψ= − − ̂l rp p (0.5 )k i i i i (20)

Both child cells inherit the same radius as the parent cell and
are of identical lengths, we must take care to subtract the radius
from the child cell length, so that both child cells fit within the
volume of the parent cell, lj = lk = 0.5li − ri. A schematic can be
seen in Figure 2 (e).
Membrane Transport. Chemicals can pass through cell

membranes via either passive or active transport mechanisms.
Passive membrane transport is solved in a similar manner as
described in the Diffusion section, such that the flux is only
from high to low concentrations.45 The flux due to passive
transport mechanisms for a given chemical species is denoted
by JC

P, where Ai is the surface area of the cell, Ci is the con-
centration of the chemical in the cell, and Cj is the
concentration of the chemical in the extracellular compartment
which the cell center point reside in. A membrane permeability
factor for individual chemical species PC can be defined such
that the flux is proportional to a chemical’s permeability:

= −J P A C C( )i j iC
P

C (21)

Active transport is modeled via a Monod function that
calculates the flux based on the source concentration, it is a
unidirectional flux and the source can be set to be either
intracellular or extracellular.46 The flux due to active transport
mechanisms for a given chemical species is denoted by JC

A,
where C is the chemical concentration at the source, KC is the
half-saturation constant of the chemical flux, and QC is the
maximum flux at which the active transport mechanism can
work for that chemical species:

=
+

J Q
K

K CC
A

C
C

C (22)

Active Motility. Bacteria can be actively motile due to
flagellar driven micromotility or pili mediated twitching-
motility, these processes may be deployed to accomplish a
random walk or chemotaxis.47−49

Micromotility in species such as Escherichia coli involve run
and tumble phases, in which bacteria alternate between accel-
erating forward and rotating in place.29 We model this by
probabilities pendrun and pendtumble with which the bacteria switch
from a run or a tumble into the alternate state. During the run
phase a constant force Fendrun is applied to the bacteria in the
direction it is facing ψ̂. During the tumble phase we assign a
new orientation ψ̂ to the cell by generating a random unit
vector. No directional force is applied to the bacteria when
tumbling.
Twitching motility is modeled using the same algorithm as

the micromotility with different parameters. Both pendrun and
pendtumble are relatively high, resulting in low persistence rapid
movements.
Chemotaxis is modeled using a modified version of the

micromotility run and tumble dynamics, implemented similar
to the Keller−Segel method.50,51 Cells perform a run and
tumble and sample the concentration of the chemoattractant at
periods of Δtmemory representing their sensory memory. Cells
compare their current concentration C(t) with the previous
concentration they experienced C(t − Δtmemory). This is
calculated by C(t) − C(t − Δtmemory), if the value is less
than 1 the cell is descending the gradient and has a high

probability to tumble. If the value is greater than 1 we know we
are ascending a gradient or traversing a plateau, we calculate
the gradient strength by how much C(t) − C(t − Δtmemory) is
above 1. The cell has a probability to tumble pendrun that is
inversely proportional to the gradient strength, such that cells
ascending a gradient are less likely to stop running.

Extracellular Polymeric Substances. Bacteria can produce
extracellular polymeric substances (EPS).52,53 EPS can be
modeled via two mechanisms. The first is an implicit form
modeling EPS via mass-spring dynamics connecting adjacent
cells. This implementation utilizes the same algorithm as the
specific cell−surface interactions as described in the Physics
section. This representation assumes that when two cells are
close by their relative positions are constrained by the presence
of adhesive EPS, thus a spring is formed between two
neighboring geometries where the distance between their
center positions pi and pj is less than the sum of their radii
multiplied by some range factor REPS(ri + rj).
An alternative form is to model EPS as particles that exist as

geometric agents in the environment. This is modeled in a
similar manner to iDynoMiCS.24 Bacterial cells have capsular
EPS which is bound to their membrane, this capsule has a
volume Vi

C associated with it, and it is added to the cell’s
volume to calculate the cells total radius considering both active
(cellular) and inactive (EPS) biomass. Upon Vi

C reaching a
threshold VEPS, an EPS particle is added to the local

Figure 4. Microscopy images showing Streptococcus gordonii (a) and
Actinomyces oris (b) where the scale bar is 1 μm. (c, d) S. gordonii and
A. oris are modeled as spheres. (e) Depiction of the modeled
interactions between S. gordonii and A. oris.
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environment at a random position adjacent to the cell. The EPS
particle has the same volume as VEPS and the capsule volume Vi

C

is reset to 0.
EPS particles are modeled as passively motile spheres which

may undergo specific and nonspecific interactions with neigh-
boring EPS particles and cells, as described in the Physics
section.
Features. Analysis Suite. Simbiotics has a built-in analysis

suite; this consists of additional submodels that can be attached
to a model specification to perform measurements. A virtual lab
is implemented for more in-depth analysis, offering typical
wetlab instruments and mathematical analysis features. Analysis
tools and data exporters can be attached to the model speci-

fication and used to collect data and process it throughout the
simulation. Users may define schedules which automate model
analysis modules, programming specific model interactions or
data collection and processing events.
The virtual lab currently consists of microsensors for

sampling chemical field, biomass, biofilm height and gene
expression profiling. A simulated spectrophotometer to obtain
optical density measurements is also implemented. Virtual light
is projected into a face of the cubic simulation domain, the
ratio of light we detect leaving the opposite face of the domain
is used to derive the optical density measurement. This is
achieved by projecting the cells onto the face of the domain
from which the light enters, then partitioning this into a 2D

Figure 5. Simulated and experimental optical density measurements showing aggregation. Dashed lines are experimental results, solid lines are
simulated. (a) Simulated aggregation due to nonspecific interactions with different force constant KE values, compared to experimental optical
density curves for single population aggregation. (b) Simulated aggregation due to specific receptor-adhesin interactions with different force
constants KS values, compared to experimental optical density curve of mixed population coaggregation. (c) Simulated aggregation due to both
nonspecific and specific interactions with different force constants KS/E values, compared to experimental optical density curve of mixed population
coaggregation. (d) Experimental optical density curves of two monoaggregating and one coaggregating population. The three curves are shown for
each density (from top to bottom) 4.0×, 2.0×, 1.0× and 0.5×. (e) Simulated optical density curves of aggregation curves for A. oris and S. gordonii
aggregation independently, and one curve for coaggregation of a mixed population. The three curves are shown for each density (from top to
bottom) 4.0×, 2.0×, 1.0× and 0.5×.

ACS Synthetic Biology Research Article

DOI: 10.1021/acssynbio.6b00315
ACS Synth. Biol. XXXX, XXX, XXX−XXX

I

http://dx.doi.org/10.1021/acssynbio.6b00315


grid. We consider the light not to pass through a grid voxel if a
cell intersects it.
Additional statistics tools include measurements of the mean

squared displacement and velocity autocorrelation function of
bacteria, as well as detailed data gathering regarding cell
interactions, gene expression and spatially distributed biomass
concentrations. One can also run a biofilm height measurement
algorithm that can encode a heatmap image of biofilm heights
as well as measuring the average and standard deviation of mea-
surements. A general data collector is implemented, which
allows the modeler to append desired properties of the system
they wish to know, such as cell species number, chemical con-
centrations, simulation execution time, gene expression and
number of cell−cell interactions.
An optical real time 3D rendering is provided by the

interface, this allows for the custom rendering of different
model components. Live graph-plotting is available to show
model statistics during simulations. Snapshots and videos of the
simulation can be taken, with optional filters to allow for
Z-stack slices, filtered cell populations or cell state highlighting.
Snapshots consist of all agent geometry encodings and user-
selected states, they may be loaded back into Simbiotics which
reconstructs the physical state and allows for the navigation of
the 3D model. Additionally a basic PovRay exporter can convert
a Simbiotics snapshot into a PovRay image file to be rendered.
All lab modules may be attached to a model specification in the

same way modules are attached to describe system dynamics.
Modules have parameters for users to tune their behavior.
Characterization of systems using the virtual lab may be achieved

through parameter sweeps. The user may set a model parameter
to be a sweep, such that the simulation will run multiple version
each with a different parameter value in the sweep.

Microscopy Image Processing. A major contribution of
Simbiotics is the ability to process microscopy images of 2D and
3D bacterial conformations. This allows for the initialization of
simulations from realistic biological configurations.
To initialize the spatial configuration of bacteria one may use

microscopy Z-stack images. Image processing requires three
steps: we first apply a theshold image sementation that gener-
ates binary data representing the Z-stack, we then identified
individual cells and encode details such as center position and
radius in a data file. The data file can then be loaded in the
configuration file that Simbiotics uses to initialize the cell
population. This process is depicted in Figure 3 where a Z-stack
image is loaded into Simbiotics.
For a multispecies population one may use image analysis

techniques to identify cell species, for visually similar species
one may use staining techniques to differentiate. Once the cell
species has been identified this can be used to attach relevant
model processes describing the cell’s behavior, such as an
SBML model and other Simbiotics submodels.
This microscopy image processing allows for the simulation

of an imaged population, as well as the simulation of a subset of
the population through some filtering process. Through this
one may observe the effect the filtered subpopulation has on
the development of the population by the divergence of the
filtered model from the original.

Figure 6. Simulation snapshots and microscopy images showing aggregation in both simulated and actual system. In microscopy images A. oris are
red and S. gordonii are green. (a) Initially well-mixed population of simulated cells (both A. o and S. g). (b) Uniformly distributed aggregates after
4 simulated hours. (c) Large aggregates among many unbonded cells. (d) Asymmetrically distributed aggregate sizes with few unbonded cells.
(e−h) 2D projections of cross sections taken from (a−d). (i) Microscopy image of experiment showing an initially well-mixed population.
(j, k, l) Micropscopy images showing different aggregation structures. All images show the microscopy/simulation after 4 h.
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One may also compare the simulated state and the experi-
mental state as the system evolves, iteratively changing model
parameters to fit them to the experimental dynamics. This
process could be automated, allowing for parameter fitting of
models through refinement of the original specification based
on the actual data.

■ CASE STUDIES

Simbiotics has been used to pursue two experimental case
studies that are presented here. The first relates to oral bacterial
aggregation in a fluid, and the second relates to E. coli biofilm
formation. We develop a model of the experimental system,
then explore the effect that model parameters have on the
system dynamics.
Bacterial Coaggregation in a Fluid. Bacterial cells can

aggregate together and form clusters. This process is governed
by the surface characteristics of cells that dictate the forces they
exert on each other. Cell surfaces may be charged, this affects
the strength of van der Waals forces and electrostatic repulsion,
known as nonspecific interactions. Surface adhesins and recep-
tors may also be present, which undergo specific interactions if
they have the appropriate structure to form an adhesive bond,
this bond has a key-lock mechanism.54 We consider the
influence of these surface proteins in the aggregation of two
bacteria found in the mouth, Streptococcus gordonii and
Actinomyces oris, which have a matching adhesin and receptor
pair (Figure 4).55

Single species aggregation is governed by nonspecific sur-
face interactions as there are no matching adhesin-receptor
pairs. Coaggregation of a mixed population is facilitated by a
matching adhesin-receptor on the surfaces of S. gordonii and
A. oris. To isolate the process of surface-mediated interactions
without metabolic behavior, the cells were initially washed in
sodium azide, such that their biological activity is ceased
but their physical properties where preserved. The aggregation
of bacteria in a cuvette of 1 mL solution was measured by
following changes in optical density. We started with a well-
mixed population and use a spectrophotometer to obtain a time
series of OD600 measurements. As aggregates formed the optical
density of the population decreased as more light could pass
through the cuvette.
Analysis. To understand the dynamics of coaggregation

we first isolate the processes of nonspecific mediated
monoaggregation. We then consider the indepedent effect of
a specific interaction between two species. The combined
model of nonspecific and specific interactions are then
analyzed. Finally we consider the effect of cell population
density on the system, performing experiments and simulations
of mono and coaggregation at 3 different initial densities, 0.5×,
2.0× and 4.0× that of the original system.
Analysis of nonspecific interactions involved changing the

force bacteria exert on each other capturing different surface
charges. Figure 5 (a) shows optical density measurements for
both the experimental and simulated tests. The experimental
curves show the single-species aggregation behavior of
S. gordonii and A. oris on their own. As the nonspecific inter-
action force constant KE is increased the rate at which aggre-
gates form increases, however it saturates at values of KE > 50.
With high force constant values regularly sized aggregates
typically form as seen in Figure 6 (b), low force constant values
lead to irregular aggregation at around KE = 35 as seen in
Figure 6 (d). Aggregation does not occur when KE ≤ 30, this is

due to the attractive electrostatic force not being sufficient to
prevent Brownian motion from causing the cells to dissociate.
Analysis of additional specific interactions involved changing

the probability PS at which two colliding bacteria with matching
receptor and adhesin will interact specifically, and the strength
KS of this interaction. Figure 5 (b) shows optical density
measurements for experimental and simulated coaggregation.
Experimental (dashed lines) show coaggregation of a mixed
S. gordonii and A. oris population. Simulated (solid lines) show
coaggregation optical density measurements, a parameter sweep
over KS and PS was performed. Figure 5 (c) shows the same
experimental results with the coaggregation results of the com-
bined specific and nonspecific interaction model. One can see
the aggregation rates from purely specific interactions as seen in
Figure 5 (b) are enhanced by the presence of nonspecific
interactions as seen in Figure 5 (c). An explanation for why this
may occur is due to nonspecific interactions having an extended
sphere of influence, interacting with neighbors which are not in
direct contact, whereas specific interactions only occur for cells
which are in physical contact.
Strong specific interactions typically lead to uniform

aggregate sizes similar to nonspecific interactions, however
variations of low KS and PS values lead to irregular aggregation
as seen in Figure 6 (c) and (d). The reason for this may be due
to the fact that single cell−cell interactions easily dissociate due

Figure 7. Simulated biofilm with K = 10 and P = 10, shown after 12 h
in (a) and after 24 h in (b). Both have a cross-section displayed
displayed below. (c) Parameter sweep of K and P. Nine heatmaps of
simulated biofilm height measurements (μm) with different K and P
parameters where cell−surface and cell−cell interactions have the
same rates. These images show the biofilm after 12 h.
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to Brownian motion, however if small aggregates persist, other
cells may join to form a larger aggregate. The presence of addi-
tional cells creates a network of specific interactions between
neighboring cells in the aggregate. A synergistic effect occurs
where each cell has multiple interactions, stabilizing the
aggregate and leading to a few large aggregates forming in a
generally well-mixed population. When interactions are strong
enough, cells do not dissociate once they adhere to each other.

In a well-mixed solution with uniformly distributed Brownian
motion this leads to regularly sized aggregates.
Our model does not produce the large aggregate islands as seen

in the microscopy images shown in Figure 6 (h). The reason for
this may be due to additional forces present in the actual experi-
ment such as hydrodynamics which we do not model explicitly.

Aggregation at Varied Population Densities. To consider
the effect of population density on aggregation experiments

Figure 8. (a) Biofilm grown with high cell−surface interaction rates and low cell−cell interaction rates [KS = 10, PS = 10, KC = 0.1, PC = 0.1].
(b) Biofilm grown with high cell−surface interaction rates and medium cell−cell interaction rates [KS = 10, PS = 10, KC = 0.25, PC = 0.25].
(c) Biofilm as seen in Figure 7 (c) [K = 10, P = 10] which has equal K and P values for both cell−cell and cell−surface. (d) Experimental biofilm
height distribution. (e) Simulated biofilm height distribution. (f) Comparison between microscopy images and simulated synthetic of biofilms
formed by E. coli strains. Top row shows microscopy images of DH5−α, csrA and pgaA in order. The bottom rows shows snapshots of simulated
biofilms for corresponding strains.
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with 0.5×, 2× and 4× the initial population size were per-
formed. Figure 5 (d) shows experimental results, and (e) shows
simulation results.
We find the aggregation rate of bacteria is proportional to the

population density. This can be explained by the mean free
path that a cell travels before interacting with another cell
decreasing as density increases, therefore a higher probability
of a physical adhesion as density increases. An additional
mechanism is that large clusters tend to sink faster, as the
combined motions of its constituent cells cancel, leading to a
stronger effect of gravity. The sinking of aggregates leads to a
decrease in the OD600 reading.
We find that aggregation rate is more sensitive to population

density in the simulation, however overall simulation results
show strong qualitative trends with the experimental findings.
We note that spectrophotometry is a generalized technique
which has been applied to the measurement of aggregation, and
due to the nature of the method it is not a perfect deduction of
aggregate formation.
Biofilm Development. Biofilms are colonies of bacteria

which have adhered irreversibly to a substratum, this process is
governed by complex metabolic and genetic adaptions which
effect the characteristics of a cell such as surface properties and
motility.56,57 Surface colonisation is heavily influenced by surface
characteristics of cells effecting their adhesion to the surface and
other cells.5,58 Further architectural development of the biofilm is
thus effected by the pattern of initial attachment points to the
surface, as well as the spreading pattern of the growing colony
due to cell−cell interactions. We consider mutant E. coli forming
biofilm, and aim to understand the effect of cell surface
properties on biofilm development. Three strains of E. coli are
used in the experiments, DH5-α, a csrA strain with higher surface
charge, and a PgaA strain with an even higher surface charge.
The strains were cultivated overnight for 16 h in a 3 mL

Synthetic Urine media with the addition of 0.1% glucose59

aerobically at 30 °C and 120 rpm. Overnight grown cultures
were then reinoculated into fresh Synthetic Urine media (1:100
dilution) and 200 μL was grown in a 96 well plate in the static
condition for 48 h. The supernatant was then removed and its
optical density was measured. The optical density of the biofilm
formed on the surface was also measured by resuspending the
biofilm with the synthetic urine media, and the planktonic/
biofilm ratio was considered. The biofilm was also imaged by
staining the biofilm formed on these 96 well plates using the
Live/Dead BacLight stain (ThermoFisher Scientific, UK) using
a Leica SP2 confocal laser scanning microscope.
Analysis. We consider the height distribution of biofilms to

characterize their morphologies. Biofilms which are flat and
uniform produce a low standard deviation in height, whereas
lumpy and irregular biofilms produce a larger height variation.
Through this process we can relate local cell surface inter-
actions to colony level spatial organization.
We observe the effect of cell surface charge by growing

biofilms with different cell parameters. The parameters
modified are the rate PS with which a cell adheres to a surface
it is in contact with, strength KS of the interaction with the
surface, rate PC with which a cell will adhere to another con-
tacting cell and strength KC of that cell−cell interaction. Snap-
shots of a simulated biofilm can be seen in Figure (a) and (c).
First we set cell−surface and cell−cell parameters to be

symmetric, such that cells have the same rate at which they
interact with other cells and surfaces, and they interact with
other cells and surfaces with the same force constant.

From Figure 7 (c) one can see that as we increase the rate at
which cells interact PS/C, the biofilm covers more surface area due
to more bacteria attaching directed to the substratum. Clusters
then form as other planktonic cells attach to those already in the
biofilm. As we increase the strength of cell interactions KS/C we
observe taller and denser biofilms, this may be explained by
the fact that bacteria stick to each other more firmly and thus the
biofilm can grow stable mushroom-like structures which extend
from the substratum into the fluid medium.
By changing the parameters PS/C and KS/C we obtain varied

biofilm development. However, these parameters produce a
consistent biofilm architecture, with hemispherical clusters of
bacteria spreading across the surface forming lumpy and
irregular biofilms.
We consider the effect that an asymmetrical cell adhesion to

other cells than to surfaces would have. In Figure 8 (a, b, c) we
compare biofilms grown with symmetric cell−cell and cell−
surface adhesion to a biofilm grown with asymmetric param-
eters, such that the probability a cell will bind to a surface PS
and the strength of that cell−surface interaction KS are
relatively high in comparison to cell−cell interaction probability
PC and strength KC. This results in significantly reduced biofilm
formation, with a spreading of cells across the surface leading to
a more uniform structure.
Our model and analysis offer an explanation as to how

cell−surface interactions can influence biofilm architecture.
When cells interact with the environmental surfaces and other
cells at a similar rate biofilms tend to form an irregular and
lumpy structure. This can be explained by early colonisation
leading to clustered growth on the surface forming an irregular
structure, as lumps increase the probability that planktonic cells
will adhere to them as they protrude into the fluid due to strong
cell−cell interactions. Cells that interact weakly with each other
but strongly with a surface tend to form flat and uniform
biofilms. This can be explained by cells in the biofilm being able
to detach from other cells, allowing them to spread across the
surface or becoming planktonic in the fluid; they may then
colonise the surface elsewhere. Over time cells populate the
surface, but due to weak cell−cell interactions a thick layer of
cells does not emerge until the surface is covered forcing
growth in height.
Model findings reinforce the observations made in experiments,

Figure 8 (d) shows experimental biofilm height distributions and
(e) simulated height distributions. Strains such as PgaA which
have a higher surface charge have stronger cell−cell interactions

Table 3. Parameters for the Coaggregation Case Study
Model

submodel variable symbol value unit

Sphere S. gordonii cell
radius

rgordonii 0.5 μm

Sphere A. oris cell radius roris 0.5 μm
Brownian motion Force constant KR 2.2 μm

cs3/2

Friction Force constant KF 2.0 μg
cs

Gravity Force constant KG 0.0002 μm

cs2

Nonspecific
interactions

Force constant KE 25−50 μ μg m

cs

3

2

Range rE 3.0 interactions
cs

Specific interactions Force constant KS 6−7 μg

cs2

Probability PS 0.1−10 interactions
cs
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which lead to large irregular biofilms, where as a low surface
charge strain DH5-α produce less biofilm with a uniform
structure. Visual comparisons between experimental and
modeled biofilms can be seen in Figure 8 (f).

■ DISCUSSION

In this article, we have presented Simbiotics, a novel individual
based simulator for bacterial populations and biofilms, and
demonstrated its modeling and analysis features alongside two
example case studies that illustrate its potential for computer
aided design in the synthetic biology workflow. The Simbiotics
library provides a range of submodels that can be attached to a
model specification to represent the target system, as demon-
strated in the case studies.
There are numerous simulators for population dynamics,

however there is yet to be a standardized platform for modeling
bacterial populations in a multiscale manner. Simbiotics pro-
vides an extendable modular framework in which the user can
integrate a wide range of processes, including interfacing with
standard formats such as SBML for modeling individual cells
and microscopy images for describing spatial composition of
populations. The extendable library and distributed CPU
parallelization features allow for the scaling of Simbiotics
functionality as it is further developed.
Our case studies focus on physical properties of the modeled

systems. Although Simbiotics also allows for the detailed

Figure 9. Stress test showing log of simulated time against the simulation execution time. Stress tests were performed with spherical cells, suspended
in a fluid experiencing a random mixing force. For each test, C is the number of cells, and X is the length of one side of the cubic simulation domain

in μm. (a) Results for a density of ×1.25 10 cells
mL

5
. (b) Results for a density of ×5 10 cells

mL

5
. (c) Results for a density of ×1 10 cells

mL

6
. All tests were performed

on two cores of a single node of the HPC.

Table 4. Parameters for the Biofilm Case Study Model

submodel variable symbol value unit

Sphere E. coli cell diameter r 1.0 μm

Brownian motion Force constant KRp 2.2 μm
cs

3/2

Force constant KRs 1.0 μm

cs3/2

Friction Force constant KF 2.0 μg
cs

Gravity Force constant KG 0.0002 μm

cs2

Cell growth Growth rate GR 0.00025 μg
cs

Specific interac-
tions

Cell−cell force constant KC 0.1−10 μg

cs2

Cell−surface force con-
stant

KS 0.1−10 μg

cs2

Cell−cell probability PC 0.1−10 interactions
cs

Cell−surface probability PS 0.1−10 interactions
cs
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modeling and characterization of cell internal/biological
processes, we have used this ability only to a limited degree
in these studies. This choice was guided by the observation that
there are already numerous tools for the biodesign automation
of genetic circuits38,60 and metabolic pathways61,62 but that
there is still a lack of physically accurate population level simu-
lators which can integrate these submodels.
Case study findings show Simbiotics’ flexibility in modeling a

target system, and the process with which model specifications
can be refined to further understand the dynamics of a target
system. Model development can verify that our understanding
of the experimental system is correct, and explain the driving
forces behind population behavior. It can also expose dis-
crepancies between the real system and the simulated one,
thereby revealing areas of insufficient system understanding.
We find that interactions between cells lead to statistical

population behavior that is comparable to experimental results.
Spatial organization is not only guided by physical interactions
between cells, but also by biochemical properties which may
modulate the way in which cells interact.
In future work, we plan to expand the Simbiotics modeling

library and virtual lab, develop a graphical user interface,
alongside optimization of the simulation core. Furthermore, we
also plan to integrate Simbiotics with our in-house Infobiotics
2.0 design suite for synthetic genetic designs,20 as well as the
SBOL data format, which provides a standard for representing
and communicating synthetic biology systems.63

Data Plotting. All data plots were generated using custom
scripts using Python 2.7.9, Matplotlib 1.4.2 and Seaborn 0.6.0.
Data was automatically exported from Simbiotics and into
Python scripts.
Simbiotics Coaggregation Model. To model the dynamics

of the system we approximate bacterial cells to be spheres with
surface properties. Each cell performs a random-walk due to the
effect of Brownian motion causing the population to mix. Cells
have an extended sphere of influence to represent their surface
charge effects, these are modeled as nonspecific equations
as described in the modeling section. S. gordonii cells have
adhesins on their surface and A. oris have a matching receptor,
an interaction between the two is modeled as described in the
modeling section under specific interactions.
As the main parameters to the simulation we consider the

strength of nonspecific interactions due to surface charge, KE.
We also take the probability that two colliding cells with a
matching receptor-adhesin will interact PS, representing the
density of adhesins and receptors on the cell surfaces. Further
more we consider the strength of an adhesin-receptor
interaction KS. All of the model parameters are displayed in
Table 3.
We start with a well mixed population of individual bacteria

and use the simulated spectrophotometer as described in the
Simbiotics Analysis section to obtain a timeseries of optical
density measurements.
Simbiotics Biofilm Model. Our model of biofilm develop-

ment represents cell growth, cell motility, surface-mediated
interactions and basic gene regulation. Model initialization
starts with a planktonic population suspended in the fluid
phase, with a solid substratum existing on the bottom face of
the simulation domain. Cells experience Brownian motion with
a force constant KRp, and may come into contact with the
substratum. Cells contacting the substratum may adhere to it
with the rate PS and an interation strength KS. Once attached to
the substratum, cells experience a lower magnitude of Brownian

motion, KRs, and may adhere to other contacting cells at a rate
PC and an interaction strength KC. These cells are then
considered to be part of the biofilm and experience lower
Brownian motion and may adhere to other cells. Cells grow at a
rate GR with growth dynamics as described in the Simbiotics
modeling section. All model parameters can be seen in Table 4.

■ COMPUTATIONAL DETAILS
The bacterial coaggregation case study model involved
simulating between 20 000 and 160 000 cellular agents in a
cubic simulation domain of length 368 μm. Simulating 5 h of
aggregation took between 4 and 38 h of computational time.
The biofilm case study model involved simulating an initial

population of 3000 cellular agents in a cuboidal domain of size
300 × 50 × 300 μm. Simulating 12 h of biofilm growth took
20 h of computational time, at this time there were 750 000
cellular agents in the simulation domain.
Both case study models were simulated on a high perfor-

mance computing cluster. The simulations were run on one
node, multithreaded across 5 cores. The node CPU specifi-
cation being Xeon E5−2690 v2 with 256GB of RAM.
Performance analysis shows that calculating the physics of the

system such as cell−cell collisions, movement and interaction
forces, consume the largest amount of computational time. The
scaling of the physics calculations is linear with the number of cells
O(N), however becomes O(N2) when cells are packed together
extremely closely such as when aggregates form or dense biofilms.

Stress Tests. We preformed stress tests on the Simbiotics
platform, analyzing the performance scaling for different
population and domain sizes. Tests were performed on two
cores of a single node of the HPC (Figure 9).

Performance Scaling. First we tested how performance
scales for cellular populations of the same density for varied
domain volumes. We performed the tests for 3 population

densities, ×1.25 10 cells
mL

5
, ×5 10 cells

mL

5
and ×1 10 cells

mL

6
. For each density

we scale the population and domain size, maintaing the same
density and observing how performance scaled.

Sphere and Rod Comparison. See Figure 10 for details.

Figure 10. A stress test of sphere and rod-shaped cells, showing the
log of simulated time against the simulation execution time (both in
hours). 100 000 spherical and 100 000 rod-shaped cells were simulated
independently, suspended in a fluid volume of 1 mL. Cells experience
a random mixing force to induce collisions. Tests were performed on
two cores of a single node of the HPC.
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