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This paper examines existing day-to-day models based on a virtual day-to-day route choice experiment using the latest mobile 
internet techniques. With the realized day-to-day path flows and path travel times in the experiment, we calibrate several well-
designed path-based day-to-day models who take the Wardrop’s user equilibrium as (part of) their stationary states. The 
nonlinear effects of path flows and path time differences on the path swapping are then investigated. Participants’ path 
preferences, time-varying sensitivity and learning behavior in the day-to-day process are also examined. The prediction power of 
various models with various settings (nonlinear effects, time-varying sensitivity, and learning) is compared. Assumption of 
rational behavior adjustment process in Yang and Zhang (2009) is further verified. Finally, evolutions of different Lyapunov 
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1. Introduction and literature review 

There has been a substantial stream of development of day-to-day dynamic models to look into the variation of 
traffic flows from epoch to epoch (Cascetta, 1989; Watling and Cantarella, 2015). It is believed that travelers’ 
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experiment and collected the participants’ day-to-day route choice data using the latest mobile internet techniques. 
With the experimental data the existing day-to-day models are studied from the following aspects. First, the existing 
path-based day-to-day models in the literature are calibrated. Second, the nonlinear effects of path flows and path 
time differences on route switching are investigated. Third, participants’ preferences to different paths, variation of 
their sensitivity over time, and their learning behavior are examined. Fourth, the assumption of “rational behavior 
adjustment process” is verified. Fifth, the prediction power of various day-to-day models is compared. Finally, 
various forms of Lyapunov functions used for stability analysis in the literature are examined.  
 
The rest of this paper is organized as follows. Section 2 introduces the settings and processes of the virtual route 
choice experiment. Section 3 provides the findings from the quantitative analyses on the data. Section 4 draws the 
conclusions and discusses possible future directions. 

2. Introduction of the virtual route choice experiment 

To mimic travelers’ decision-making processes from epoch to epoch in real life, the traditional laboratory or virtual 
experiments usually involved a relatively small number of participants and/or required the participants to repeatedly 
make decisions within short periods of time. In order to mimic the real world better, we managed to involve a larger 
number of participants and allow longer periods for decision-making, with the help of the social networking app 
Wechat. The network in Figure 1 was used, and the link travel times were calculated as 

   40 1 0.15a a a a at v t v Y    , with parameters given in Table 1, where av , 0
at  and aY  are respectively the flow, 

free flow time and capacity of link a . In our experiment, 268 participants took part for 26 rounds, where each round 
corresponded to a true calendar day. Most of the participants were students of the Southwest Jiaotong University in 
China. On the first day, the route map and the free flow times on the three paths were provided to the participants at 
8:00 a.m. The participants had the entire daytime to determine which path to travel and were asked to submit their 
decisions before 9:00 p.m. When all the route choices were submitted, the path travel times would be calculated 
based on the predetermined travel time functions. Notably, the travel time functions were unknown to the 
participants. The participants choosing the shortest path(s) would then be the winners of that day and immediately 
get the monetary reward. The reward given to each winner was random, but in total equal to the number of winners 
multiplied by one Chinese Yuan per winner. On the second day and afterwards, both the route map and the path 
travel times on the previous day were provided (in minute and rounded to one decimal place) to the participants at 
8:00 a.m. They would then make and submit decisions before 9:00 p.m.; the travel time would be calculated at night 
and the winners would be rewarded. The process proceeded until terminated by us.  
 

 

Figure 1. Network structure and paths. 
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historical traffic experience, as well as their prediction on future traffic conditions, would influence their trip 
decisions from day to day. Prediction of the traffic condition in the future epoch (e.g., traffic volume of the morning 
peak on working day) can help the transportation agencies arrange appropriate management and control strategies 
ahead of time. It is especially useful when the network structure changes (Guo and Liu, 2011; He and Liu, 2012). In 
general, two types of trip decision, i.e., route choice and departure time choice, are considered in the day-to-day 
study context. The focus of this paper is solely on route choice. Readers interested day-to-day departure time 
choices can refer to some pioneering works by Hu and Mahmassani (1997), Mahmassani (1990), Mahmassani and 
Chang (1986), Mahmassani et al., (1986), and recently by Xiao and Lo (2016), just to name a  few. 
 
Starting from the pioneer work by Smith (1984) and Horowitz (1984), the day-to-day route choice models are to 
study how the aggregate traffic flow changes based on current/historical flows and travel costs. The day-to-day 
model is a deterministic-process model if it is formulated as ordinary differential equations or difference equations, 
and their steady states can be different kinds of user equilibrium (UE), including deterministic UE (DUE, i.e. 
Wardrop’s UE), stochastic UE (Cantarella and Cascetta, 1995; Smith and Watling, 2016), and boundedly rational 
UE (Di et al., 2015; Guo and Liu, 2011; Mahmassani and Chang, 1987; Ye and Yang, 2016). The stochastic-process 
models, on the other hand, formulate flow dynamics as stochastic processes, and the steady state is the equilibrium 
probability distribution (Cascetta, 1989; Cascetta and Cantarella; 1991; Davis and Nihan, 1993; Hazelton, 2002; 
Hazelton and Parry, 2016; Hazelton and Watling, 2004; Parry and Hazelton, 2013; Watling and Cantarella, 2015). 
 
The interaction between day-to-day dynamic route flows and other components of the transportation system is 
widely studied in the analytical way, which includes the traffic information system (Bifulco et al., 2016; Cantarella, 
2013; Cho and Hwang, 2005; Friesz et al., 1994), fixed or responsive signal control strategies (Cantarella et al., 
2012; Huang et al., 2016; Liu and Smith, 2015; Smith et al., 2015; Smith and Mounce, 2011; Xiao and Lo, 2015), 
congestion pricing (Friesz et al., 2004; Farokhi and Johansson, 2015; Guo, 2013; Guo et al., 2016; Tan et al., 2015; 
Wang et al., 2015; Xu et al., 2016; Yang, 2007; Yang and Szeto, 2006; Yang et al., 2007; Ye et al., 2015), and 
tradable credit scheme (Ye and Yang, 2013). Day-to-day dynamics in other travel modes are also studied, such as in 
railway (Wu et al., 2013) and transit (Bar-Yosef et al., 2013; Cantarella et al., 2015; Li and Yang, 2016).  
 
Besides theoretical development, the route choice based day-to-day dynamics is also studied through simulation and 
laboratory experiments. Most of these studies were concerned about how travelers’ route choices are affected by 
various factors such as information, experience, risk, uncertainty, personality factors, as well as various 
transportation system components mentioned above (Avineri and Prashker, 2005, 2006; Ben-Elia et al., 2008, 2013; 
Hu and Mahmassani, 1997; Lotan, 1997; Lu et al., 2011; Mahmassani and Herman, 1990; Mahmassani and Stephan, 
1988; Rapoport et al., 2014; Srinivasan and Mahmassani, 2003; Yang et al., 1993). The laboratory experiments were 
also used to test the static UE theories such as Braess Paradox and Downs-Thomson Paradox (Dechenaux et al., 
2014; Morgan et al., 2009; Rapoport et al., 2009).  
 
Our paper focuses on another interesting question that has not yet received sufficient attention in the research 
community: are the various route choice based day-to-day models proposed so far good enough to reflect the real-
life situation, and if yes, what are their relative good performances? Regarding this question, some early and recent 
empirical studies are conducted by Avineri and Prashker (2005), He and Liu (2012), Mahmassani and Jou (2000), 
Meneguzzer and Olivieri (2013), Rapoport et al., (2014), just to name a few. In contrast, in this study we focus on a 
specific group of DUE-based day-to-day route choice models, which all have nice stability and convergence 
property but are not empirically studied yet. And to answer our question, we conducted a virtual route choice 
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where       1 ,n n n
rs f c  is a function specifying how  nf  and  nc  determine the flow changing rate from path r  to 
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    . The first-order day-to-day models investigated in this paper include 
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The network tatonnement process (NTP) (Friesz et al., 1994) and the projected dynamic system (PDS) (Zhang and 
Nagurney, 1996; Nagurney and Zhang, 1997) are not investigated here for two reasons: first, they will degenerate to 
XYY dynamics under mild conditions (Xiao et al., 2016); second, their parameters cannot be estimated by the 
regression method used in this paper. The parameter   in Eq. (1) can be calibrated by both simulation and 

regression, under different forms of  1n
rs
  in Eqs. (2)-(6). 

3.1. Simulation-based calibration 

The simulation-based method is to find the values of the parameters under which the simulated evolution process 
can fit best the observed flow swapping rates (in the sense of minimizing the sum of squared error between 
simulated and observed flow swapping rates). As shown in Figure 3, none of these five models can produce a 
fluctuation pattern close to the observation, and the simulated trajectories of PSAP, FIFO and XYY almost overlap 
with each other.  
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Table 1. Link characteristics 

Link no. ( a ) 1 2 3 4 5 

Free flow time ( 0
at ) (min) 25 10 5 20 15 

Capacity ( aY ) 40 80 80 40 40 

 
In order to win the reward, the participants would have incentive to choose the shortest path, which fits their 
behavior into the assumption of DUE. Therefore, our analyses in this paper will only focus on those day-to-day 
models whose equilibrium states are DUE. With the parameters given in Table 1, we can calculate a unique 
equilibrium path flow pattern of [89, 89, 89], with an identical path travel time of 142 min. After plotting the 
observed day-to-day path flows and path travel times in Figure 2, we can find that, as the experiment proceeded, the 
fluctuation of path flows and path times became smaller and smaller, and on the 26th round/day the network state 
was close to the equilibrium so we terminated the experiment. Furthermore, the average path travel time fluctuated 
even less and was very close to the equilibrium path time even at the early stage of the experiment. 
 

   
(a)                      (b) 

Figure 2. The day-to-day evolution of (a) path flows and (b) path travel times. 

3. Data analyses 

This section will be devoted to exploring the existing day-to-day models, by calibrating the parameters of these 
models based on the collected data. For the subsequent analyses, denote by 268d   the fixed origin-destination 

demand,  1,2,3,4,5A   the link set, and  1,2,3R   the path set. Let  n
rf  and  n

rc  respectively be the flow and 

actual travel time on path r R  on day n , n  1, 2, …, 26. Define     T
,n n

rf f r R   and     T
,n n

rc c r R   as 

the column vectors of path flows and path travel times, where “T” stands for the transpose operation.  
 
The focus in this section will be on the first-order day-to-day models, in which the path flows on day 1n   are 

uniquely determined by the flows and travel times on day n . Denoting  1
rs
ng   as the flow swapping rate from path r  

to path s  on day 1n  , the general first-order day-to-day flow dynamics can be expressed as 

         1 1 ,n n n
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n

s fg c   , 0   (1) 
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3.2.1. The five original day-to-day models 

For the convenience of model comparison, define the day set  2,3, , 25N    throughout the whole Subsection 

3.2. We begin the analyses with the five day-to-day models in Eqs. (2)-(6). The regression is based on the following 
formulation, 

      11 1n n
rs rs
n

rsg     , n N ,        , 1, 2 , 1,3 , 2,3r s   (7) 

where  1n
rs
  is the random error, and  1n

rs
  is calculated by substituting the observed  nf  and user-informed  nc  

into Eqs. (2)-(6). Notably, considering    1 1
s

n n
rs rg g    and    1 1n n

rs sr
    , only three path pairs are considered in 

the regression, and the intercept is excluded. The plots of  1
rs
ng   against  1n

rs
  (Figure 4) show an origin-centric 

pattern and positive correlation between them.  
 

 

Figure 4. Plots of  1
rs
ng   against  1n

rs
 . 

The result of ordinary least square (OLS) regression on Eq. (7) is listed in Table 2. The heteroscedasticity is detected 
in PSAP, XYY and ETFD. The autocorrelation is detected in SGFD. We will not try to correct for the 
autocorrelation of SGFD hereafter, until we discuss the learning behavior in Section 3.2.5. 
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p-value 2.16E-9 1.66E-10 7.51E-10 5.91E-8 6.32E-5 

White test (p-value) 0.007* 0.304 0.027* 0.036* 0.636 

Q test (p-value) 0.328 0.588 0.370 0.092 0.019** 
* Homoscedasticity rejected at 5% significance level 
** Autocorrelation-free rejected at 5% significance level 

 
The first way to tackle heteroscedasticity is to modify the model forms. Comparing the forms of ETFD and SGFD in 
Eqs. (5) and (6), SGFD shares the same term as ETFD but includes extra functions of travel times in the 
denominator. Enlightened by this, we simply modify PSAP, FIFO, XYY and ETFD by dividing the average travel 
time, which read 
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Figure 3. Best-fitted trajectories based on simulation: (a) Path 1; (b) Path 2; (c) Path 3. 

3.2. Regression-based calibration 

The simulation-based calibration shows the difficulty in reproducing the day-to-day flow pattern by one particular 
model with only one parameter. Therefore, we turn to a relaxed problem: given the path flows and costs of a 
particular day, how accurately can we predict the flows on the next day? For this problem, the regression-based 
calibration can be used. The regression analyses are conducted with the help of the built-in function regstats in 
Matlab R2016a. To clarify, ̂  denotes the calibrated value of parameter  ; the p-value associated with ̂  is 
obtained on a two-side test and indicates that the null hypothesis ( 0  ) is rejected at a significance level higher 
than this p-value. The heteroscedasticity is tested by the White test. The first-order autocorrelation is tested by the 
Ljung-Box Q test (or Q test for short), and the higher-order autocorrelations are not tested. The p-value of the White 
test (Q test) indicates that the null hypothesis of homoscedasticity (autocorrelation-free) is rejected at a significance 
level higher than this p-value. In this study, we consider a significance level of 5% for both heteroscedasticity and 
autocorrelation, so they might need to be dealt with if the associated p-value is smaller than 0.05. 
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3.2.2. Nonlinear effects of flows and cost differences on route switching 

Mounce and Carey (2011) suggested incorporating nonlinear effects in the original PSAP formulations. Following 
this idea, we define the following bivariate function  ,h x p ,  
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and extend Eqs. (2)-(5) as follows, 

 PSAP:                    1 , , , , ,n n n n n n n
rs r r s s s rp q ph f h c c f h c cq h p q
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 XYY:         1 , ,n n n
rs r sh c cp q q    (16) 
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rs r s s rh f h c c cp q p q h cf p h q
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where parameters p  and q  capture the degree of nonlinearity. Finding the best values of p  and q  in each model 
can be treated as a nonlinear regression problem 
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The results (Table 5) prefer a slightly concave relation between cost differences and swapping rates for all four 
models, while the relations between flow and swapping rates are quite different: although they all suggest convex 
relations, PSAP suggests a decreasing one but FIFO and ETFD suggest an increasing one. The day-to-day models in 
Eqs. (14)-(17) with these optimal p  and q  values are then calibrated, and the results are given in Table 6.  

Table 5. Optimal parameter values for capturing nonlinear effects 

 PSAP FIFO XYY ETFD 
p  -0.69 1.20 - 3.12 
q  0.99 0.92 0.89 0.31 

Table 6. Calibration based on optimal p  and q  values (OLS) 

 PSAP FIFO XYY ETFD 

  
̂  2.07 2.35E-6 0.13 1.20E-6 

p-value 5.73E-10 1.42E-10 6.00E-10 1.21E-9 

White test (p-value) 0.084 0.475 0.073 0.057 

Q test (p-value) 0.369 0.629 0.406 0.483 

3.2.3. Path preferences 

Being curious about whether the paths are treated differently when participants were making route choices, we write 

      1 1 1n n
rs rs rs r
n

s rsg      , n N ,        , 1, 2 , 1,3 , 2,3r s   (18) 

where rs  represents participants’ preference between paths r  and s , and rs  is the path-specific sensitivity. The 
following WLS will be used if heteroscedasticity is detected (at the 5% significance level) in OLS: 
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The calibration (Table 3) of these four new models gives statistically significant (at 1% level significance level) ̂ , 
and the heteroscedasticity of PSAP, XYY and ETFD are corrected. Interestingly, the new ETFD model and the 
SGFD model have the same numerator but different denominators, while the former is autocorrelation-free but the 
latter is not. It is worth pointing out that, the model modification should not alter the properties of the original day-
to-day model in terms of steady states and stability. Here under our modification, the steady states are unchanged, 
but the stability requires revisit. 

Table 3. Calibration results of the modified models (OLS) 

 PSAP (new) FIFO (new) XYY (new) ETFD (new) 

  
̂  0.132 1.84E-3 14.5 0.221 

p-value 7.38E-10 3.22E-10 9.98E-10 1.69E-08 

White test (p-value) 0.062 0.162 0.186 0.410 

Q test (p-value) 0.508 0.655 0.456 0.181 

 
Bearing in mind the restrictions of doing model modification, we adopt the weighted least square (WLS) that does 
not need to change the model forms. In particular, the following WLS is used: 
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Notably, the samples with  1 0n
rs
   will be ruled out in the WLS regression. The result is given in Table 4. 

Comparing with the OLS result in Table 3, the heteroscedasticity of PSAP, XYY and ETFD are corrected, although 
the autocorrelation of SGFD upholds. However, the significance level of ̂  is only 5% in SGFD and even higher in 
other four models. And for the latter four models, the 95% confidence interval (CI) shows tiny chance for   to be 
zero or even negative. Based on these observations, we will stick to OLS unless heteroscedasticity appears, and in 
the latter case, WLS will be applied instead. 

Table 4. Calibration results of the original models (WLS) 

Model 
  White test 

(p-value) 
Q test 
(p-value) ̂  p-value 95% CI 

PSAP 6.75E-4 0.079 [-0.074, 1.3]×1E-3 0.376 0.587 

FIFO 8.97E-6 0.062 [-0.044, 1.7]×1E-5 0.310 0.583 

XYY 7.12E-2 0.054 [-0.012, 1.3]×1E-1 0.250 0.503 

ETFD 1.26E-3 0.061 [-0.054, 2.4]×1E-3 0.356 0.197 

SGFD 8.80E-2 0.038 [0.048, 1.6]×1E-1 0.137 0.003* 
* Autocorrelation-free rejected at 5% significance level 
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The calibration result of Eq. (22) w.r.t. the five models in Eqs. (2)-(6) are given in Table 8. The ̂  values indicate a 
decreasing trend of  ; however, it is not significant at 5% level in all models except SFGD; however, not 
surprisingly, SGFD is not autocorrelation-free (at 5% significance level). An interesting finding is that, comparing 

the formulations of ETFD and SFGD, the inclusion of denominator    n n
ss R

cc
 
    changes   from time-

invariant to time-varying. The explanation might be that, as the experiment proceeds, the system will evolve closer 

to the equilibrium, and thus the value of    n n
ss R

cc
 
    will gradually decrease. Such a decreasing trend would 

counteract the decreasing trend of  , so the ETFD model shows no time-dependency. It is unclear why ETFD is 
autocorrelation-free but SGFD is not. 

Table 8. Calibration results with time varying parameter 

Model OLS/WLS 
     White test 

(p-value) 
Q test 
(p-value) ̂  p-value 95% CI  ̂  p-value 

PSAP WLS -1.13E-5 0.595 [-5.37, 3.10] ×1E-5  8.04E-4 8.30E-4 0.416 0.477 
FIFO WLS -3.39E-7 0.222 [-8.89, 2.10] ×1E-7  1.32E-5 8.65E-5 0.517 0.581 
XYY WLS -2.36E-3 0.291 [-6.78, 2.07] ×1E-3  0.1019 1.82E-4 0.518 0.451 
ETFD WLS -2.69E-8 0.999 [-7.74, 7.74] ×1E-5  0.0012 7.72E-3 0.260 0.220 
SGFD OLS -8.00E-3 0.004* [-1.34, -0.26] ×1E-2  0.1932 2.50E-5 0.437 0.022** 
* Null hypothesis 0   rejected at 1% significance level 
**Autocorrelation-free rejected at 5% significance level 

 
To confirm our conjecture on the cause of difference between ETFD and SGFD, we redo the regression of Eq. (22) 

with  1n
rs
  from Eqs. (8)-(11). The results in Table 8 suggest a time-dependent   for the new FIFO model. What 

we can find in this subsection is that, the assumption of time-varying parameters is actually associated with the 
model. 
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The result is given in Table 7. The ˆ rs  values show that Path 2 is most preferred; however, this is not evident 
according to the p-value and 95% CI. Again, the autocorrelation is detected (at 5% significance level) in SGFD 
between path pair (2,3).  

Table 7. Calibration results on the path preference 

Model  ,r s  rs   rs  
Is OLS? White test 

(p-value) 
Q test 
(p-value) ˆ rs  p-value 95% CI  ˆ rs  p-value 

PSAP 
(1,2) 0.06 0.927 [-1.18, 1.29]  7.02E-4 0.0477 No 0.459 0.609 
(1,3) 0.13 0.934 [-3.08, 3.34]  5.10E-4 0.0009  0.793 0.891 
(2,3) -2.69 0.160 [-6.52, 1.14]  9.77E-4 0.0000  0.860 0.597 

FIFO 
(1,2) 0.09 0.887 [-1.21, 1.39]  9.46E-6 0.0369 No 0.397 0.595 
(1,3) -0.12 0.935 [-3.10, 2.86]  9.31E-6 0.0002  0.704 0.818 
(2,3) -2.32 0.233 [-6.23, 1.59]  1.15E-5 0.0001  0.858 0.455 

XYY 
(1,2) 0.03 0.956 [-1.17, 1.24]  7.37E-2 0.0360 No 0.353 0.583 
(1,3) 0.12 0.936 [-2.94, 3.18]  6.25E-2 0.0003  0.751 0.962 
(2,3) -2.97 0.132 [-6.90, 0.95]  1.16E-1 0.0001  0.927 0.550 

ETFD 
(1,2) 1.12 0.554 [-2.75, 4.99]  8.86E-4 0.0080  0.367 0.386 
(1,3) 0.63 0.691 [-2.61, 3.87]  8.58E-4 0.0008  0.838 0.862 
(2,3) -3.36 0.090 [-7.28, 0.56]  2.24E-3 0.0000  0.771 0.757 

SGFD 
(1,2) 0.60 0.749 [-3.23, 4.44]  7.94E-2 0.0136  0.136 0.084 
(1,3) -0.36 0.819 [-3.56, 2.84]  8.50E-2 0.0010  0.212 0.886 
(2,3) -2.65 0.347 [-8.37, 3.06]  8.83E-2 0.1235*  0.870 0.031** 

* Null hypothesis 0rs   not rejected at 5% significance level 
** Autocorrelation-free rejected at 5% significance level 

3.2.4. Time-varying parameters 

Horowitz (1984) assumed that travelers’ sensitivity to the path time difference can change along the evolution 
process. Under this circumstance, the parameters calibrated from historical data may not work well for predicting 
the future traffic condition. To examine this effect, we set up a time window of 15 days, calibrate the day-to-day 
processes in Eqs. (2)-(6) with observations in this time window, and see how ̂  changes as the time window rolls 
forward. The time window is  1 ,4, 13,M m m m    , and m  rolls from 16 to 25. Again, WLS 
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will be used if OLS rejects homoscedasticity at a 5% significance level. Here the denominator is different from 
 1n
rs
  used in earlier subsections in order to get a statistically significant and heteroscedasticity-free result. For all 

regressions, we have 0   rejected at 5% significance level and homoscedasticity not rejected at 5% significance 
level. Unfortunately, autocorrelation-free is rejected at 5% significance level in 4 out of 10 regressions for SGFD. 
The evolution of ̂  is demonstrated in Figure 5. As we can see, the SGFD model shows an obvious decreasing 
trend on ̂ , while the trend is less obvious in the other four models. However, the trend in SGFD is problematic due 
to the existence of autocorrelation! 
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counteract the decreasing trend of  , so the ETFD model shows no time-dependency. It is unclear why ETFD is 
autocorrelation-free but SGFD is not. 

Table 8. Calibration results with time varying parameter 

Model OLS/WLS 
     White test 

(p-value) 
Q test 
(p-value) ̂  p-value 95% CI  ̂  p-value 
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FIFO WLS -3.39E-7 0.222 [-8.89, 2.10] ×1E-7  1.32E-5 8.65E-5 0.517 0.581 
XYY WLS -2.36E-3 0.291 [-6.78, 2.07] ×1E-3  0.1019 1.82E-4 0.518 0.451 
ETFD WLS -2.69E-8 0.999 [-7.74, 7.74] ×1E-5  0.0012 7.72E-3 0.260 0.220 
SGFD OLS -8.00E-3 0.004* [-1.34, -0.26] ×1E-2  0.1932 2.50E-5 0.437 0.022** 
* Null hypothesis 0   rejected at 1% significance level 
**Autocorrelation-free rejected at 5% significance level 

 
To confirm our conjecture on the cause of difference between ETFD and SGFD, we redo the regression of Eq. (22) 

with  1n
rs
  from Eqs. (8)-(11). The results in Table 8 suggest a time-dependent   for the new FIFO model. What 

we can find in this subsection is that, the assumption of time-varying parameters is actually associated with the 
model. 
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The result is given in Table 7. The ˆ rs  values show that Path 2 is most preferred; however, this is not evident 
according to the p-value and 95% CI. Again, the autocorrelation is detected (at 5% significance level) in SGFD 
between path pair (2,3).  

Table 7. Calibration results on the path preference 

Model  ,r s  rs   rs  
Is OLS? White test 

(p-value) 
Q test 
(p-value) ˆ rs  p-value 95% CI  ˆ rs  p-value 
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FIFO 
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(1,3) -0.12 0.935 [-3.10, 2.86]  9.31E-6 0.0002  0.704 0.818 
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XYY 
(1,2) 0.03 0.956 [-1.17, 1.24]  7.37E-2 0.0360 No 0.353 0.583 
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(2,3) -3.36 0.090 [-7.28, 0.56]  2.24E-3 0.0000  0.771 0.757 

SGFD 
(1,2) 0.60 0.749 [-3.23, 4.44]  7.94E-2 0.0136  0.136 0.084 
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* Null hypothesis 0rs   not rejected at 5% significance level 
** Autocorrelation-free rejected at 5% significance level 

3.2.4. Time-varying parameters 

Horowitz (1984) assumed that travelers’ sensitivity to the path time difference can change along the evolution 
process. Under this circumstance, the parameters calibrated from historical data may not work well for predicting 
the future traffic condition. To examine this effect, we set up a time window of 15 days, calibrate the day-to-day 
processes in Eqs. (2)-(6) with observations in this time window, and see how ̂  changes as the time window rolls 
forward. The time window is  1 ,4, 13,M m m m    , and m  rolls from 16 to 25. Again, WLS 
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will be used if OLS rejects homoscedasticity at a 5% significance level. Here the denominator is different from 
 1n
rs
  used in earlier subsections in order to get a statistically significant and heteroscedasticity-free result. For all 

regressions, we have 0   rejected at 5% significance level and homoscedasticity not rejected at 5% significance 
level. Unfortunately, autocorrelation-free is rejected at 5% significance level in 4 out of 10 regressions for SGFD. 
The evolution of ̂  is demonstrated in Figure 5. As we can see, the SGFD model shows an obvious decreasing 
trend on ̂ , while the trend is less obvious in the other four models. However, the trend in SGFD is problematic due 
to the existence of autocorrelation! 
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when learning the travel times, and they are relatively “aggressive” if 1  .  

(2) The SGFD model also suggests 01 .317   , which is statistically significant at 1% level. The 95% CI also 

shows that 1  is quite likely to be negative, which reveals some learning-like pattern. However, different from 

the XYY model, such “learning” is not on travel cost but on  1
rs
n .  

(3) The SGFD is finally autocorrelation-free! Reminding the autocorrelation of SGFD in Table 2, such learning 
formulation in Eq. (27) is actually a standard form to correct for autocorrelation. Moreover, since the other four 
models in Table 2 are autocorrelation-free, it is not surprising that they show no learning behavior here. The 
difference between ETFD and SGFD again tells us that the learning behavior is also model-dependent. 

Table 10. Calibration results for user learning models 

Model OLS/WLS 
1      White test 

(p-value) 
Q test 
(p-value) 1  p-value 95% CI   p-value 

PSAP WLS -0.086 0.379 [-0.28, 0.11] 5.47E-4 0.131 0.609 0.681 

FIFO OLS -0.107 0.300 [-0.31, 0.10] 8.55E-6 9.39E-7 0.309 0.736 

XYY OLS -0.109 0.308 [-0.32, 0.10] 6.67E-2 4.35E-6 0.122 0.498 

ETFD OLS -0.185 0.090 [-0.40, 0.03] 8.35E-4 1.35E-4 0.195 0.262 

SGFD OLS -0.317 0.002* [-0.52, -0.12] 5.42E-2 5.65E-3 0.806 0.420 
* Null hypothesis 1 0    rejected at 1% significance level 

 
Now we can go back to handle the autocorrelation reported earlier on SGFD (Table 7 and Table 8). The path-
specific SGFD with learning now reads 

        1 11rs rs rs rs rs rs r
n

s
n ng g        , n N ,        , 1, 2 , 1,3 , 2,3r s   (30) 

and the OLS results are given in Table 11. The autocorrelation between path pair (1,3) is corrected. No path 
preference is confirmed according to the statistics on rs . The path switching on path pairs (1,2) and (1,3) shows no 

obvious learning behavior, but is positively correlated to  1
rs
n , although there exists a small possibility that 12 12   

for path pair (1,2) could be zero or negative. The learning-like pattern on path pair (2,3) is possible, with 231 0  ; 

however, it seems that its flow swapping is now not quite determined by  1
12
n .  

Table 11. Calibration of SGFD with user learning and path preference (OLS) 

 ,r s  parameter calibrated p-value 95% CI White test (p-value) Q test (p-value) 

(1,2) 

rs  0.163 0.928 [-3.52, 3.84] 

0.176 0.326 1 rs  -0.296 0.083 [-0.631, 0.040] 

rs rs   0.061 0.056 [-0.001, 0.123] 

(1,3) 
rs  -0.356 0.824 [-3.63, 2.92] 

0.294 0.943 1 rs  -0.014 0.935 [-0.360, 0.332] 

rs rs   0.084 0.003* [0.031, 0.137] 

(2,3) 
rs  -1.597 0.523 [-6.68, 3.48] 

0.581 0.392 1 rs  -0.550 0.012** [-0.965, -0.135] 

rs rs   0.012 0.838 [-0.104, 0.127] 
*Null hypothesis 0rs rs    rejected at 1% significance level 
**Null hypothesis 1 0rs   rejected at 2% significance level 
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Table 9. Calibration results on the time-varying parameter in new models (OLS only) 

Model 
     White test 

(p-value) 
Q test 
(p-value) ̂  p-value 95% CI  ̂  p-value 

PSAP (new) -4.61E-3 0.173 [-1.13, 0.21] ×1E-2  0.18 7.88E-6 0.029** 0.413 
FIFO (new) -9.44E-5 0.032* [-1.80, -0.08] ×1E-4  2.78E-3 3.65E-7 0.076 0.509 
XYY (new) -0.68 0.057 [-1.38, 0.02]  21.39 1.63E-6 0.097 0.378 
ETFD (new) -4.97E-3 0.429 [-1.74, 0.75] ×1E-2  0.27 2.02E-4 0.078 0.155 
* Null hypothesis 0   rejected at 5% significance level 
** Homoscedasticity rejected at 5% significance level 

3.2.5. User learning in the day-to-day process 

Previous research also tried to explicitly model how travelers predict the future travel costs based on their 
experience, usually by an exponential smoothing rule (Bie and Lo, 2010; Cascetta and Cantarella, 1993; Cantarella 
and Cascetta, 1995; Horowitz, 1984; Watling, 1999; Xiao et al., 2016; Ye and Yang, 2013). In Xiao et al. (2016), 

the XYY model in Eq. (4) is modified by replacing the experienced time  n
rc  with the perceived/predicted time 

 1n
rC   on path r R  on day 1n  , i.e.,  

       11 1n n
rs r s
ng C C    , 0   (24) 

and  1n
rC   is updated through the following exponential smoothing rule, 

        1 1n n n
r r rC c C     , 0 1    (25) 

Substituting Eq. (25) into Eq. (24) yields 

           1 1 n n
rs rs r s
n ng g c c     , 0  , 0 1    (26) 

Unrigorously, Eq. (26) can be easily extended to other day-to-day models, which leads to a general day-to-day 
model with learning, 

        1 11rs rs s
n n n

rg g    , 0  , 0 1    (27) 

where  n
rs  takes those forms in Eqs. (2)-(6). Calibration result of this learning model is given in Table 10, where the 

WLS is based on 
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Again, we have some interesting observations.  
(1) The assumption of learning is not supported in PSAP, FIFO, XYY or ETFD. If we only look at the value of 

1 , all these four methods suggest 1 0  , or equally 1  . In particular, for the XYY model, according to 

Eq. (25), a 1   obviously violates the widely-used assumption of 0 1    in the literature. However, is this 
completely impossible? By rewriting Eq. (25) into the following form,  

         1n n n n
r r r rC C c C     (29) 

the learning process can now be interpreted as that, travelers will correct their previous perception/prediction by 
adding or subtracting a proportion   of the difference between actual and perceived/predicted travel times. As a 

result, the perceived/predicted time would increase if    n n
r rc C  and decrease otherwise. From a practical point 

of view, both 0 1    and 1   could happen in reality: with 0 1   , travelers are relatively “conservative” 
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Again, we have some interesting observations.  
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result, the perceived/predicted time would increase if    n n
r rc C  and decrease otherwise. From a practical point 
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Table 13. Performance of different models in prediction 

  PSAP FIFO XYY ETFD SGFD 

Original form (OLS) 
Eqs. (2)-(6) 

RMSE 8.247 7.959 8.127 8.631 9.490 
AE-10 70.8% 72.2% 72.2% 68.1% 55.6% 
AE-20 93.1% 94.4% 94.4% 90.3% 83.3% 

New form (OLS) 
Eqs. (8)-(11) 

RMSE 8.125 8.032 8.159 8.484 - 
AE-10 75.0% 66.7% 65.3% 69.4% - 
AE-20 95.8% 91.7% 93.1% 91.7% - 

Original form 
(WSL) 

RMSE 8.248 8.013 8.172 8.662 9.493 
AE-10 72.2% 73.6% 70.8% 69.4% 55.6% 
AE-20 93.1% 93.1% 93.1% 88.9% 83.3% 

Nonlinear effect 
(OLS) 

RMSE 8.096 7.942 8.102 8.180 - 
AE-10 68.1% 68.1% 69.4% 65.3% - 
AE-20 95.8% 94.4% 95.8% 93.1% - 

Time-varying 
(original form) 

RMSE 8.331 7.984 8.188 8.664 8.953 
AE-10 70.8% 73.6% 70.8% 69.4% 59.7% 
AE-20 93.1% 94.4% 94.4% 88.9% 87.5% 

Time-varying 
(new form) 

RMSE 8.017 7.770 7.948 8.446 - 
AE-10 75.0% 72.2% 75.0% 72.2% - 
AE-20 94.4% 97.2% 97.2% 91.7% - 

User learning 

RMSE 8.177 7.897 8.066 8.454 8.885 

AE-10 73.6% 70.8% 70.8% 69.4% 61.1% 

AE-20 93.1% 94.4% 95.8% 91.7% 86.1% 

3.4. Rational behavior adjustment process 

The evolution processes in Eqs. (2)-(6), as well as NTP and PDS, have commonality that the total travel cost of the 

network would decreases based on the previous day’s path travel costs, i.e.       1 0n n nf f c    , until DUE is 

reached. This property was noticed by Zhang et al. (2001) and Yang and Zhang (2009), and was named as the 
“rational behavior adjustment process” (RBAP) by the latter. Guo et al. (2013, 2015) pointed out that the same 
feature can be found in the link-based models such as He et al. (2010), Han and Du (2012) and Smith and Mounce 
(2011). The RBAP-like models with elastic demand were proposed in Sandholm (2002, 2005), Yang (2007) and Li 
et al. (2012). 
 

To verify the RBAP property, we plot       1n n nf f c    against n  in Figure 6: the maximum value is 510, and the 

minimum is -14072. Among the 25 points, only 8 of them (marked as “×”) are nonnegative. Therefore, the 
assumption of RBAP is well satisfied in our experiment. An additional observation is that the absolute value of 

      1n n nf f c    was gradually shrinking to zero along the day-to-day process. 
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The SGFD with learning, time-varying   and constant   writes 

            1 1 111rs rs rs rs
n n n nng g           (31) 

and the OLS result is given in Table 12. Not surprisingly, the autocorrelation is corrected, and the homoscedasticity 
persists. The learning-like behavior is possible, with 1 0  .   is possible to decrease with time, since 1   and 

0  . 

Table 12. Calibration of SGFD with user learning and time-varying parameter (OLS) 

parameter calibrated p-value 95% CI White test (p-value) Q test (p-value) 

1    -0.26 0.0113 [-0.46, -0.06] 

0.627 0.267   -6.38E-3 0.0204 [-11.7, -1.0]×1E-3 

  0.15 0.0012 [0.06, 0.24] 

3.3. Model comparison based on regression results 

To evaluate and compare the prediction power of all the day-to-day models we have investigated so far, the root 

mean square error (RMSE), defined as        
21 1

,
243ˆ n n

n r s rs rsN
g gRMSE



     , is a standard indicator, 

where  1ˆrs
ng   is the predicted flow swapping rate based on the calibrated parameter value(s). Since RMSE is not 

intuitive in explaining the accuracy of prediction, we further define indicator AE-x (x=10 or 20) as the proportions 

of those samples which satisfy    1 1ˆ n n
r rf f x    in the total 72 samples, where  1ˆ n

rf
  is the predicted path flow 

based on the calibrated parameter value(s).  
 
The values of RMSE, AE-10 and AE-20 are calculated based on the calibrated parameter values in Section 3.2 and 
given in  
Table 13. Before discussing them, we have to emphasize that our conclusion given below is very rough. The 
heteroscedasticity and autocorrelation may not be corrected in some cases, and sometimes the WLS replaced the 
OLS for tackling heterogeneity. However, different WLS forms are used in different places, the WLS does not 
necessarily have the same sample set as that of OLS, and the OLS minimizes the RMSE but the WLS does not. All 
of these affect the numbers listed in  
Table 13. The comparisons are made below. 
(1) Regarding RMSE, FIFO>PSAP>XYY>ETFD>SGFD (where “>” means “better than”), but the gaps between the 

first three models are small. Regarding AE-10 and AE-20, FIFO~PSAP~XYY>ETFD>SGFD (where “~” means 
“similar to”). 

(2) Altering the function form of the day-to-day models does not necessary improve the prediction power, compared 
with the original form.  

(3) The WLS does not necessary improve the prediction power, compared with OLS. 
(4) Compared with the original day-to-day models, the forms incorporating nonlinear effects unsurprisingly reduce 

the RMSE, and the AE-20 is also better off but the AE-10 is worse off. 
(5) Considering the time-varying parameter or learning behavior ought to reduce the RMSE value (but not 

necessarily AE-10 and AE-20) than without considering them; however, the WLS counteracts such 
improvement, and even when OLS is used, such improvement is very mild.  
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Nonlinear effect 
(OLS) 

RMSE 8.096 7.942 8.102 8.180 - 
AE-10 68.1% 68.1% 69.4% 65.3% - 
AE-20 95.8% 94.4% 95.8% 93.1% - 

Time-varying 
(original form) 

RMSE 8.331 7.984 8.188 8.664 8.953 
AE-10 70.8% 73.6% 70.8% 69.4% 59.7% 
AE-20 93.1% 94.4% 94.4% 88.9% 87.5% 

Time-varying 
(new form) 

RMSE 8.017 7.770 7.948 8.446 - 
AE-10 75.0% 72.2% 75.0% 72.2% - 
AE-20 94.4% 97.2% 97.2% 91.7% - 

User learning 

RMSE 8.177 7.897 8.066 8.454 8.885 

AE-10 73.6% 70.8% 70.8% 69.4% 61.1% 

AE-20 93.1% 94.4% 95.8% 91.7% 86.1% 

3.4. Rational behavior adjustment process 

The evolution processes in Eqs. (2)-(6), as well as NTP and PDS, have commonality that the total travel cost of the 

network would decreases based on the previous day’s path travel costs, i.e.       1 0n n nf f c    , until DUE is 

reached. This property was noticed by Zhang et al. (2001) and Yang and Zhang (2009), and was named as the 
“rational behavior adjustment process” (RBAP) by the latter. Guo et al. (2013, 2015) pointed out that the same 
feature can be found in the link-based models such as He et al. (2010), Han and Du (2012) and Smith and Mounce 
(2011). The RBAP-like models with elastic demand were proposed in Sandholm (2002, 2005), Yang (2007) and Li 
et al. (2012). 
 

To verify the RBAP property, we plot       1n n nf f c    against n  in Figure 6: the maximum value is 510, and the 

minimum is -14072. Among the 25 points, only 8 of them (marked as “×”) are nonnegative. Therefore, the 
assumption of RBAP is well satisfied in our experiment. An additional observation is that the absolute value of 

      1n n nf f c    was gradually shrinking to zero along the day-to-day process. 
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The SGFD with learning, time-varying   and constant   writes 

            1 1 111rs rs rs rs
n n n nng g           (31) 

and the OLS result is given in Table 12. Not surprisingly, the autocorrelation is corrected, and the homoscedasticity 
persists. The learning-like behavior is possible, with 1 0  .   is possible to decrease with time, since 1   and 

0  . 

Table 12. Calibration of SGFD with user learning and time-varying parameter (OLS) 

parameter calibrated p-value 95% CI White test (p-value) Q test (p-value) 

1    -0.26 0.0113 [-0.46, -0.06] 

0.627 0.267   -6.38E-3 0.0204 [-11.7, -1.0]×1E-3 

  0.15 0.0012 [0.06, 0.24] 

3.3. Model comparison based on regression results 

To evaluate and compare the prediction power of all the day-to-day models we have investigated so far, the root 

mean square error (RMSE), defined as        
21 1

,
243ˆ n n

n r s rs rsN
g gRMSE



     , is a standard indicator, 

where  1ˆrs
ng   is the predicted flow swapping rate based on the calibrated parameter value(s). Since RMSE is not 

intuitive in explaining the accuracy of prediction, we further define indicator AE-x (x=10 or 20) as the proportions 

of those samples which satisfy    1 1ˆ n n
r rf f x    in the total 72 samples, where  1ˆ n

rf
  is the predicted path flow 

based on the calibrated parameter value(s).  
 
The values of RMSE, AE-10 and AE-20 are calculated based on the calibrated parameter values in Section 3.2 and 
given in  
Table 13. Before discussing them, we have to emphasize that our conclusion given below is very rough. The 
heteroscedasticity and autocorrelation may not be corrected in some cases, and sometimes the WLS replaced the 
OLS for tackling heterogeneity. However, different WLS forms are used in different places, the WLS does not 
necessarily have the same sample set as that of OLS, and the OLS minimizes the RMSE but the WLS does not. All 
of these affect the numbers listed in  
Table 13. The comparisons are made below. 
(1) Regarding RMSE, FIFO>PSAP>XYY>ETFD>SGFD (where “>” means “better than”), but the gaps between the 

first three models are small. Regarding AE-10 and AE-20, FIFO~PSAP~XYY>ETFD>SGFD (where “~” means 
“similar to”). 

(2) Altering the function form of the day-to-day models does not necessary improve the prediction power, compared 
with the original form.  

(3) The WLS does not necessary improve the prediction power, compared with OLS. 
(4) Compared with the original day-to-day models, the forms incorporating nonlinear effects unsurprisingly reduce 

the RMSE, and the AE-20 is also better off but the AE-10 is worse off. 
(5) Considering the time-varying parameter or learning behavior ought to reduce the RMSE value (but not 

necessarily AE-10 and AE-20) than without considering them; however, the WLS counteracts such 
improvement, and even when OLS is used, such improvement is very mild.  
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4. Conclusions and future research directions 

In this paper, we adopted regression analysis to investigate the existing day-to-day models based on a virtual route 
choice experiment. We identified some issues (such as heterogeneity and autocorrelation) to which attentions should 
be paid in such qualitative research; we also observed some interesting properties of the day-to-day model that can 
be considered in both empirical and theoretical research. The heterogeneity and autocorrelation found in regression 
could be a hint for missing features in a day-to-day model. Modifying the model form can help tackle the 
heterogeneity and autocorrelation; however, it may deprive the key mathematical properties of a day-to-day model 
including steady states and stability. Alternatively, we adopted the WLS method that keeps the model forms intact. 
Various assumptions on participants’ route choice behaviors are examined. The findings include: 
(1) It is suggested that the influence of path cost difference on route swapping rate is increasing and concave in 

PSAP, FIFO, XYY and ETFD; however, the influence of path flow varies. 
(2) The path preference was not detected, which might be due to the experiment setting. The participants are 

encouraged to achieve the minimum travel time, so they have no reason to prefer one path to the other. 
(3) It is found that the parameter is time-varying in SGFD but not in PSAP, FIFO, XYY or EGFD, while an altered 

form of FIFO showed a time-varying parameter. This implies that the time-varying property of the parameter 
might be model-dependent.  

(4) The learning-like behavior was found only in SGFD, which is consistent with the autocorrelation found in the 
original SGFD form. Such observation links the autocorrelation in an econometric analysis with the cognitive 
assumption in decision-making. The failure to detect the learning behavior in most models may attribute to the 
fact that we did not explicitly provide the historical travel times when the participants were making choices, or 
that their cognitive behaviors during the decision-making are much more complex than the simple learning 
process assumed. 

(5) The comparison between ETFD and SGFD illustrated how the modification of model forms can lead to distinct 
conclusions on time-varying parameter and learning behavior.  

(6) PSAP, FIFO and XYY showed similar prediction power with acceptable accuracy for the path flow prediction, 
while ETFD and SGFD are falling not too far behind. 

(7) The assumption of rational behavior adjustment process is well satisfied. 
(8) The four Lyapunov functions used in the literature for stability analysis evolve similarly and exhibit the same 
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Figure 6. Verification of RBAP. 

3.5. Perspective of Lyapunov function 

Lyapunov’s second theorem is widely used in the literature for proving the stability and convergence of a day-to-day 
model, with reliance on strictly decreasing Lyapunov functions. As pointed out by Xiao et al. (2016), the Lyapunov 
functions can represent the energies of the transportation networks, and conversely, energies of the transportation 
networks, once defined, can be used as the Lyapunov functions to investigate the stability of a day-to-day model. In 
this subsection, we examine the evolution of different Lyapunov functions previously used in the literature. 
 
The most widely-used Lyapunov function is the Beckmann’s transformation given as 
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where *
av  is the DUE flow on link a A , as in Guo et al. (2013), Han and Du (2012), Jin (2007), Peeta and Yang 

(2003) and Smith and Mounce (2011). Other forms of Lyapunov function include the following one in Smith (1984) 

         2n n n n
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V f c c

 

     (33) 

and the Euclidean distance between the non-DUE and DUE path flows (Nagurney and Zhang, 1997) or link flows 
(Guo et al., 2015), i.e., 
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   (35) 

where *
rf  is the DUE flow on path r R . Notably, the original forms of all these four Lyapunov functions are used 

for continuous-time day-to-day models. When being used for the discrete-time models here, they may not be strictly 

decreasing anymore. To compare these Lyapunov functions, we plot    maxn n
nV V  against n  in Figure 7. The 

evolution of the four different forms in Eqs. (32)-(35) is quite similar, which all gradually approach to zero with 
obvious fluctuation. An unexpected peak appears on the 9th day, consistent with the peak of flow on Path 2 on the 
same day (see Figure 2), which is mainly caused by the massive flow switch from Paths 1 and 3 to Path 2 without 
explicable reasons.  
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tendency to approaching zero. 
Among the findings are some unsolved questions, such as the assumptions of participants’ path preference and 
learning behavior, as well as whether and how the flows will affect the flow swapping, although intuitively they 
should be related to each other. Answering these questions requires richer data either from the virtual experiments 
under more practical settings or from real urban road networks.  
 
Due to the experiment settings, we are only able to examine the DUE-based day-to-day models. For future research, 
we are also interested in investigating those day-to-day models based on broader behavioral settings, such as 
stochastic UE and boundedly rational UE. Also, it is good to explore via the virtual experiments, how the day-to-day 
models perform for modelling the scenarios under traffic disruption or with the provision of traffic information. The 
demand can be well fixed in a laboratory experiment; however, in the real world the demand is always varying. 
Thus, another interesting extension is to consider a varying-demand environment, which could be either elastic with 
respect to cost and/or varying with departure time. Interestingly, there are less elastic-demand day-to-day models 
rather than fixed-demand models in the literature; therefore, the empirical studies may help enrich the 
elastic-demand models in a bottom-up manner. Moreover, incorporating departure time choice (Mahmassani, 1990; 
Mahmassani et al., 1986; Xiao and Lo, 2016) would add another dimension together with the route choices 
considered in a general network context.   
 
We are also enlightened by another idea of revealing individual-level characteristics by investigating aggregate-level 
models. It would be particularly interesting to develop a methodology for incorporating individual heterogeneity in a 
model based on aggregate-level observations (such as flows), and detecting such heterogeneity from empirical data. 
Also, as some day-to-day models are built upon the assumption of travelers’ perceiving behavior on travel times, 
and such perception is generally difficult to measure, it would be valuable to figure out a way to calibrate such 
models based on measurable variables such as flows and travel times. Finally yet importantly, quantitative analysis 
at the individual level, being the conventional way of studying the route changing behavior, could provide valuable 
information for the analysis at a macroscopic level as we did. Unlike the above-mentioned idea of detecting 
individual-level heterogeneity in an aggregate model, the microscopic analysis could conversely provide reference 
for the macroscopic level analysis. 
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Jin, W., 2007. A dynamical system model of the traffic assignment problem. Transportation Research Part B 41 (1), 32-48. 
Li, X., Yang, H., 2016. Dynamics of modal choice of heterogeneous travelers with responsive transit services. Transportation Research Part C 68, 

333-349 
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tendency to approaching zero. 
Among the findings are some unsolved questions, such as the assumptions of participants’ path preference and 
learning behavior, as well as whether and how the flows will affect the flow swapping, although intuitively they 
should be related to each other. Answering these questions requires richer data either from the virtual experiments 
under more practical settings or from real urban road networks.  
 
Due to the experiment settings, we are only able to examine the DUE-based day-to-day models. For future research, 
we are also interested in investigating those day-to-day models based on broader behavioral settings, such as 
stochastic UE and boundedly rational UE. Also, it is good to explore via the virtual experiments, how the day-to-day 
models perform for modelling the scenarios under traffic disruption or with the provision of traffic information. The 
demand can be well fixed in a laboratory experiment; however, in the real world the demand is always varying. 
Thus, another interesting extension is to consider a varying-demand environment, which could be either elastic with 
respect to cost and/or varying with departure time. Interestingly, there are less elastic-demand day-to-day models 
rather than fixed-demand models in the literature; therefore, the empirical studies may help enrich the 
elastic-demand models in a bottom-up manner. Moreover, incorporating departure time choice (Mahmassani, 1990; 
Mahmassani et al., 1986; Xiao and Lo, 2016) would add another dimension together with the route choices 
considered in a general network context.   
 
We are also enlightened by another idea of revealing individual-level characteristics by investigating aggregate-level 
models. It would be particularly interesting to develop a methodology for incorporating individual heterogeneity in a 
model based on aggregate-level observations (such as flows), and detecting such heterogeneity from empirical data. 
Also, as some day-to-day models are built upon the assumption of travelers’ perceiving behavior on travel times, 
and such perception is generally difficult to measure, it would be valuable to figure out a way to calibrate such 
models based on measurable variables such as flows and travel times. Finally yet importantly, quantitative analysis 
at the individual level, being the conventional way of studying the route changing behavior, could provide valuable 
information for the analysis at a macroscopic level as we did. Unlike the above-mentioned idea of detecting 
individual-level heterogeneity in an aggregate model, the microscopic analysis could conversely provide reference 
for the macroscopic level analysis. 
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