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-Diketonate Titanium Compounds Exhibiting High In Vitro 

Activity and Specific DNA Base Binding 
Dr. Rianne M. Lord,*[a] Dr. James J. Mannion,[b]  Dr. Benjamin D. Crossley,[b] Dr. Andrew J. Hebden,[b] 

Max W. McMullon,[b] Dr. Julie Fisher,[b] Prof. Roger M. Phillips[b] and Prof. Patrick C. McGowan*[b] 

This publication is dedicated in the memory of Dr. Julie Fisher. 

Abstract: Herein, we report 31 new -diketonate titanium 
compounds of the type [Ti(O,O)2X2], whereby O,O = asymmetric or 
symmetric -diketonate ligand and X = Cl, Br, OEt or OiPr. Thirteen 
new crystal structures are discussed and show that these octahedral 
species all adopt cis geometries in the solid state. These compounds 
have been tested for their cytotoxicity using SRB and MTT assays, 
showing several of the compounds are as potent as cisplatin against 
a range of tumour cell lines. Results also show the [Ti(O,O)2Br2] 
complexes are more potent than [Ti(O,O)2Cl2], [Ti(O,O)2(OEt)2] and 
[Ti(O,O)2(OiPr)2]. Using a simple symmetrical heptane-3,5-dione 
(O,O) ligand bound to titanium, we observed more than a 50-fold 
increase in potency with the [Ti(O,O)2Br2] (28) when compared to 
[Ti(O,O)2Cl2] (27). One of the more potent compounds (6) has been 
added to three different sixmers of DNA, in order to analyse the 
potential DNA binding of the compound. NMR studies have been 
carried out on the compounds, in order to understand the structural 
properties and the species form in solution during the in vitro cell 
assays. 

Introduction 

Titanium is widely used in many applications, including pigments 
and coatings, aerospace, nuclear waste storage, catalysts and 
medical treatment.[1–5] Titanium itself is non-toxic and not 
rejected by the body, and due to its biocompatibility, the medical 
industry has embraced its use as implants in hip and joint 
replacements.[1] Even though there are many advantages for the 
uses of titanium as pro-drugs, very little work has been 
undertaken to optimize their potential in cancer therapy. Recent 
studies by Zhou et al. have shown the effects of titanium 
nanoparticles (n-TiO2) on the bioavailability, metabolism and 
toxicity in zebra fish.[6] Treatment with n-TiO2 did not induce lipid 
peroxidation, DNA damage or the generation of reactive oxygen 
species (ROS). The low toxicities observed in vivo show the 
promising effects of titanium for further research into potential 

titanium based pro-drugs. 

The discovery of the therapeutic effects of titanocene dichloride 
(Figure 1) by Köpf and Köpf-Maier et al. in 1979 led to further 
research into titanium compounds as potential anti-cancer 
drugs.[7,8] Köpf and Köpf-Maier et al. synthesised functionalised 
metallocenes with differing ancillary ligands, and showed 
replacement of the chloride ligand with other groups had little 
effect on the activity of the compounds against Ehrlich ascites 
tumors in mice.[8,9] The activity of these compounds is thought to 
be due to the lability of the Ti-X bond, and the less labile the 
bond, the slower the rate of hydrolysis and this subsequently 
leads to the inability to form the active species in solution.[10] 
Tacke et al. reported the synthesis of the benzyl-substituted 
titanocene dichloride ‘Titanocene Y’ (Figure 1) with in vitro 
studies showing moderate IC50 values. Against xenograft A431 
tumors in mice, Titanocene Y saw a 40% inhibition of tumor 
growth in comparison to control mice.[11] The oxalate derivative, 
‘Oxali-Titanocene Y’ was more potent and caused a 38% 
inhibition in tumor growth in the xenograft A431 mouse model, 
and was also found to have an anti-angiogenic effect on 
tumors.[12]  

Tacke et al. have recently shown drug uptake and DNA assays 
of Titanocene Y against HCT-8 cells (ileocecal colorectal 
adenocarcinoma). High DNA-adduct levels were obtained at IC50 
concentrations, indicating DNA is a target for these metallocene 
drugs.[13] Computational studies of Titanocene Y with double-
stranded DNA have since shown, that after the loss of the two 
chloride ligands, the dicationic Titanocene Y coordinates 
strongly to a phosphate group.[14] In addition, hydrolysis and 
DNA studies of Cp2TiCl2 and Titanocene Y, with bis(4-
nitrophenyl) phosphate (BNPP) have been studied (Figure 1).[15] 
They show that Cp2TiCl2 solutions promoted the hydrolysis of 
the activated phosphate di- and mono-esters, BNPP and NPP. 
However, no phosphate di-ester hydrolysis was observed in 
solutions containing the Titanocene Y species. Their results 
suggest that Cp2TiCl2 is not able to cleave the phosphate di-
ester linkages of DNA, but that coordination to DNA leads to 
titanocene-induced apoptosis.  

Shortly after the discovery of titanocene dichloride, Keppler et al. 
discovered the therapeutic effects of budotitane.[16–18] The in vivo 
results highlighted this compound as an attractive therapeutic 
drug due to its high activity against a range of transplantable 
tumors, with no known evidence of mutagenicity. However, the 
clinical trials were terminated at Phase I due to severe adverse 
side effects.[19] These compounds can exist as five different 
isomers (Figure 2), and even though budotitane has been 
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Figure 1 Structures of Titanocene dichloride (Cp2TiCl2), Titanocene Y and 
BNPP, by Tacke et al. 

Figure 2 Five possible isomers of compounds of the type [M(O,O)2X2] 

crystallised by Dubler et al., the solid state structure is only 
present in 19% concentration when considering the solution 
studies. It is postulated that overcoming this isomer issue in 
solution could prevent the side effects observed with this 
compound.[20]  

Work has since continued in this area, with promising results 
from Huhn et al. and Tshuva et al., using salan type ligands 
(Figure 3).[21] Huhn et al. have synthesised sulfonamide 
functionalised TiIV-salan dipic bis-chelates and the preliminary in 
vitro evalutions reveal they are cytotoxic in the sub micromolar 
range, and 7 times more cytotoxic than cisplatin.[22] Tschuva et 
al. have carried out the in vitro assays with Ti(OiPr)4 and 
TiCl4(THF)2, two labile TiIV compounds, and reported both as 
being inactive against colon and ovarian cells. It is thought this 
inactivity is due to the rate of hydrolysis towards unreactive 
aggregates being too fast for any DNA binding to occur, and 
thus the need for inert ligands for anti-cancer activity is 
confirmed.[23] Consequently a new class of TiIV anti-cancer drug 

was reported containing amine-phenolato (salan) ligands, 
designed to provide relatively high hydrolytic stability.[23–25] In 
vitro testing against HT-29 and OVCAR-1 cell lines were very 
promising, and values are much lower than titanocene dichloride 
and are significantly lower than cisplatin.[24]  

Figure 3 Examples of TiIV salan compounds by Huhn et al.[21] and Tshuva et 
al.[25] 

We have been interested in the synthesis of group IV 
compounds, including both metallocenes and coordination 
compounds. We reported metallocenes containing functionalised 
Cp (cyclopentadiene) substituents, which increased solubilities 
and in vitro cytotoxicities.[26] These compounds have good 
activity against a range of cancer cell lines, in particular against 
the cisplatin-resistant cell line A2780cis, where one of the 
compounds is 10 times more active than its non-functionalised 
equivalent.[27] Recently, we reported a series of  functionalised 
budotitane analogues, showing a general increase in cytotoxicity 
from Ti < Zr < Hf. We showed the first cytotoxic seven 
coordinate hafnium acac complexes, in which the complexes 
with symmetrical acac ligands are > 8-fold more potent than the 
asymmetric -diketonate ligands.[28] Herein, we report a series of 
asymmetric and symmetric titanium compounds incorporating 
functionalised -diketonate ligands, with thirteen new crystal 
structures discussed. Their cytotoxicity values using the SRB 
assay has been evaluated in order to gain structure-activity-
relationships (SARs). We have further enhanced the SARs by 
the synthesis of titanium compounds with varying ancillary 
ligands (Cl, Br, OEt and iOPr). As a possible target, DNA binding 
studies were undertaken for one of the more potent compounds, 
to determine if DNA binding occurs and contributes to the drugs 
mode of action. In order to assess the consistency of the IC50 
values, a 5 day MTT assay was carried out on selected 
compound and mechanistic studies are discussed in order to 
determine the lability of these compounds during in vitro solution. 

Results and Discussion 

Synthesis and Characterization 
Compounds 1-31 were all synthesised according to Scheme 1a), 
b) and c) and isolated as analytically pure samples. Scheme 1a) 
shows the synthesis of functionalised asymmetric ligands with 
titanium chloride and titanium bromide. Scheme 1b) shows the 
synthesis of titanium compounds with different ancillary ligands; 
chloride, bromide, ethoxide and isoproxide. Scheme 1c shows 
symmetric ligands with different titanium starting precursors. 
Compound 5 was previously reported,[28] and all other 
compounds have been fully characterised by 1H NMR 
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Scheme 1 Synthetic pathway a), b) and c) for bis(-diketonate)titanium compounds 1-31 and Budotitane.[16] 

spectroscopy, 13C{1H} NMR spectroscopy and microanalysis. X-
ray crystallographic data has been obtained for compounds 1, 3, 
4, 9-12, 14, 16, 17, 19, 20 and 3.  

Orange-red single crystals were obtained and the compounds 
crystallized in a triclinic (1), orthorhombic (3, 9, 19 and 20) or 
monoclinic (4, 10, 11, 12, 14, 16, 17, and 30) cell. The molecular 
structures are shown in Figure 4 and the structures adopt a mix 
of geometries either cis-trans-cis or cis-cis-trans with half or one 
molecule in the asymmetric unit cell. The crystallographic data is 
presented in Table S1-S2 (see SI). Selected bond lengths are 
presented in Table S3, and the cis bond angles around the 
titanium center are all in the range 83.17(19)-98.02(16)° ( Table 
S4, SI). The single crystal structure of budotitane has previously 
been reported by Dubler et al. and showed that in solid state this 
analogous compound also adopts a cis-cis-trans geometry, 
showing a similarity to the structures presented here.[20] 

SRB Chemosensitivity Studies 
In the first instance compounds were chosen to be tested using 
the SRB assay, these were selected according to previous 
cytotoxicity results we have obtained.[16] Compounds 5, 6, 9-14, 
19-23, 25 and 26, and cisplatin were incubated with A2780 
(human ovarian carcinoma), A2780cis (cisplatin-resistant human 
ovarian carcinoma), CaSki (human cervical carcinoma), HT-29 
(human colorectal adenocarcinoma), LoVo (human colorectal 
adenocarcinoma), MCF-7 (human breast adenocarcinoma) and 
PC3 (human prostate cancer) cell lines, and results are 

presented in Table 1. The results show a general trend that the 
-diketonate titanium bromide compounds are more cytotoxic 
than their corresponding -diketonate titanium chloride 
compounds. The most promising result was observed for 
compound 6, which is as active as cisplatin against the HT-29 
cell line. The 4-fluoro--diketonate ligand was tested and 
showed no cytotoxicity, with IC50 values > 100 M, meaning the 
activity seen for compound 6 is due to the titanium complex. 
Compound 6 appears to be selective in its activity against HT-
29, as when tested against other cell lines this compound is only 
moderately active. Compounds 13 and 14 show the highest 
cytotoxicity against all cell lines tested, and increasing the 
number of electron withdrawing substituents increases the 
potency. This can be seen when comparing IC50 values against 
A2780, the mono-substituted 4-chloro compounds 9 (X = Cl) and 
10 (X = Br) have IC50 values of 15.84 M and 11.77 M, 
whereas the 2’,4’-dichloro compounds 13 (X = Cl) and 14 (X = 
Br) have IC50 values of 2.3 M and 2.6 M respectively. Up to a 
6.8-fold increase in potency was observed upon addition of 
another electron withdrawing substituent. 

The ancillary ligand is thought to be significant for the 
cytotoxicity of a compound, and this ligand is usually hydrolysed 
in vivo and replaced by -OH2/-OH. Therefore size and lability of 
the ligands can affect the rates of hydrolysis.[5] It is essential to 
choose the correct ligand to make sure hydrolysis occurs only 
once the drug has entered the cell. We synthesised a library of 
compounds to compare the IC50 values when ancillary ligand 
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Figure 4 Molecular structures of compounds 1, 3, 4, 9-12, 14, 16, 17, 19, 20 and 30. Hydrogen atoms and solvent molecules are omitted for clarity and 
displacement ellipsoids are at the 50% probability level 
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Table 1 IC50 values (M) for the SRB assay for cisplatin, compounds5, 6, 9-13, 19-23, 24, 25 and budotitane against a range of cell lines. 

Compound A2780 A2780cis CaSki HT-29 LoVo MCF-7 PC3 

Cisplatin 0.38 2.74 1.66 2.29 0.63 0.62 0.3 

5 42.12 40.68 44.7 >100.0 42.25 40.05 36.32 

6 15.06 17.65 24.16 2.61 19.56 23.51 21.81 

9 15.84 20.83 23.97 23.14 19.61 19.27 19.16 

10 11.77 20.91 23.12 23.73 20.7 20.61 17.57 

11 13.09 31.8 15.11 10.44 30.97 24.35 35.82 

12 12.27 18.41 13.51 >25.0 12.54 17.71 16.71 

13 2.3 13.0 - - 4.2 6.2 - 

14 2.6 9.5 - - 4.7 6.8 - 

19 16.51 40.95 29.47 41.17 30.62 18.49 36.12 

20 11.28 12.73 12.92 >25.0 13.41 15.66 13.9 

21 38.45 49.75 33.69 23.51 26.85 43.68 41.45 

22 1.64 1.87 20.57 23.48 7.11 8.9 4.25 

Budotitane 3.9 3.17 3.64 42.19 4.65 5.49 5.34 

23 >25.0 19.43 >25.0 >25.0 >25.0 21.62 >25.0 

25 >12.5 7.34 8.67 >12.5 >12.5 11.68 >12.5 

26 11.81 11.29 9.08 >25.0 11.23 9.58 11.59 

X = Cl (21), Br (22), OEt (Budotitane) and OiPr (23). The results 
show that budotitane, which is the current leading compound of 
this type, has high activity against all cell lines. However, 
compound 22 which has a bromide ancillary ligand, shows a 2-
fold increase in activity against A2780 (1.64 M) and A2780cis 
(1.87 M) cell lines, when compared to budotitane (3.9 M and 
3.17 M respectively). The unsubstituted -diketonate ligand 
was also tested and shows no cytotoxicity, having IC50 values 
>100 M. 

MTT Chemosensitivity Studies 
To allow us to make comparisons with our previously published 
work, cisplatin compounds 1-4, 7-10, 15-31 and budotitane 
were tested using the MTT assay. The compounds were tested 
against A2780, HT-29 and MCF-7, and additionally using a one 
hour exposure time against MCF-7 (Table 2). The results are 
not in the same magnitude as those seen from the SRB assay 
(Table 1), however the trends are still consistent. When 
comparing the titanium chloride compound 9 (23 ± 2 M) with 
the corresponding titanium bromide compound 10 (9 ± 2 M), 
the trend shows again that the bromide compound is the most 
cytotoxic, with up to a 2.5-fold increase in IC50 against MCF-7. 
When comparing the unsubstituted -diketonate ligand on 
titanium chloride (21) and titanium bromide (22), the same trend 
is seen with that of the SRB assay, whereby the bromide 
ancillary ligand is consistently more active against all cell lines 
tested. 

The compounds were also tested against MCF-7 using a one 
hour exposure time. In order to assess how potent the 
compounds are upon initial exposure and determine the rate at 
which cytotoxicity is attained. The results (Table 2) show that 
after a one hour incubation with compound 10, the IC50 value of 
18 ± 5 M is lower than that seen for cisplatin, 53 ± 8 M. 
Compound 10 has a bromide ancillary ligands, which as stated 
previously has lower IC50 values than its chloride analogue, 
compound 9. On comparing compounds 9/ 10 and 21/ 22, there 
is an 8.1 and 9.9-fold increase in potency observed on changing 
the ancillary ligands from chloride to bromide. The high in vitro 
cytotoxicity seen after just one hour exposure highlights these 
compounds as attractive candidates for further assays. 

When comparing the IC50 values of the symmetric -diketonate 
compounds, the most significant result was seen for 27 and 28. 
These two compounds have a simple symmetrical heptane-3,5-
dione ligand bound to either titanium chloride (27) or titanium 
bromide (28). Compound 27 is inactive against all cell lines 
tested, whereas upon changing the ancillary ligand to bromide, 
the compound becomes active against all cell lines with up to a 
50-fold increase observed against MCF-7 (27 > 500 M versus 
28 = 10 ± 2 M). Also when considering the 1 hour exposure for 
compound 28 (46 ± 6 M), it can be seen to be as active as 
budotitane (64 ± 19 M) and cisplatin (53 ± 8 M). Against MCF-
7, the isopropoxide compound 29 (22 ± 4 M) is also over 22.7-
fold more cytotoxic than the analogues chloride compound 27 



FULL PAPER    

 
 
 
 
 

Table 2 IC50 values (M) for the MTT assay for  cisplatin compounds 1-4, 7-10, 15-31 and Budotitane against a range of cell lines. 

Compound A2780 HT-29 MCF-7 MCF-7, 1 hr exp 

Cisplatin 2.2 ± 0.5 10 ± 3 3 ± 1 53 ± 8 

1 13 ± 3 30 ± 5 24 ± 5 346 ± 46 

2 9 ± 2 20 ± 8 19 ± 3 278 ± 77 

3 9 ± 2 25 ± 9 24 ± 5 353 ± 28 

4 6 ± 1 10 ± 2 11 ± 4 53 ± 29 

7 5.4 ± 0.7 25 ± 4 19 ± 1 350 ± 16 

8 5 ± 2 18 ± 5 12 ± 1 290 ± 48 

9 13 ± 4 29 ± 6 23 ± 2 147 ± 37 

10 5.8 ± 0.7 12 ± 6 9 ± 2 18 ± 5 

15 9 ± 2 14 ± 6 16 ± 5 273 ± 29 

16 6 ± 1 10 ± 2 11 ± 4 233 ± 25 

17 12 ± 3 14 ± 4 23 ± 4 364 ± 21 

18 10.3 ± 0.4 14 ± 4 21 ± 2 330 ± 44 

21 19.0 ± 0.8 61 ± 16 42 ± 5 458 ± 42 

22 12 ± 1 38 ± 12 33 ± 12 46 ± 18 

26 - - 18 ± 3 - 

24 - - 12 ± 1 - 

Budotitane 9 ± 2 26 ± 4 22 ± 6 64 ± 19 

27 93 ± 46 >500 >500 - 

28 18 ± 4 17 ± 5 10 ± 2 46 ± 6 

29 - 32 ± 10 22 ± 4 100 ± 21 

30 169 ± 31 346 ± 30 353 ± 19 440 ± 38 

31 175 ± 13 175 ± 11 45 ± 9 376 ± 41 

 

(>500 M), showing the ancillary ligand can affect the observed 
toxicity and further highlighting the compounds with ancillary 
bromides as attractive compounds for future studies. 

DNA Binding Studies 
To gain further understanding regarding the mode of action of 
these compounds, DNA binding experiments were carried out. 
Using a cGMP machine, three sixmers were synthesised 
(Figure 5), incorporating adenosine/thymine (Strand 1), a 
mixture of all four bases (Strand 2) or cytosine/guanine (Strand 
3). Compound 6 was incubated with the individual strands and 
the HPLC data analysed of the strand alone and then further 
after a period of 1 and 2 weeks incubation with compound 6 
(Figure S1-S3, SI). 

Compound 6 was incubated with Strand 1 and after one week 
no significant changes were observed and the major starting 
material peak was still present. However, after a period of two 
weeks this major peak disappears and a new peak at 16.69 
minutes can be identified as a cleaved section of Strand 
1.Compound 6 was incubated with Strand 2 and after a period of 

Strand 1: 5’-ATATAT-3’ 
Strand 2: 5’-ATGCAT-3’ 
Strand 3: 5’-GCGCGC-3’ 

Figure 5 Three different sixmers of DNA synthesised using cGMP. 

one week there was a significant decrease in the amount of 
starting strand present and a second peak was observed. After a 
further week, the peak corresponding to the parent strand was 
essentially non-existent, with a new major peak now occurring at 
7.39 minutes and a secondary peak occurring at 16.29 minutes. 
This again suggests the DNA strand is cleaved into smaller 
portions; however in this case it suggests that there are two 
portions of differing sizes produced with the larger of these being 
converted to the smaller by further cleavage. Lastly, compound 
6 was incubated with Strand 3, and the chromatograms show 
how after a period of 1 week incubation there is a decrease in 
the amount of starting strand present in solution, corresponding 
to the peak at 20.47 minutes. There is the appearance of one 
cleavage product at 9.60 minutes, and after two weeks this 
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cleavage product appears to be the major product, 
corresponding to the peak at 7.76 minutes. These DNA binding 
studies suggest that the mode of action of this class of 
compound is different to that of cisplatin in that they appear to 
cleave the DNA sequence as opposed to performing cross-
linking.[29–31] Also the presence of the guanine base in the DNA 
chain appears to help facilitate the compounds action but is not 
a necessity. 

NMR Studies 
We have previously shown preliminary results on the 
displacement of the ancillary ligands when compounds are 
incubated with dimethylsulfoxide (DMSO), this was to mimic the 
MTT assay, and showed a new DMSO-titanium compound.[16] 
Further mechanistic studies have been carried out to understand 
the solvolysis of these titanium compounds with DMSO and 
water, in particular compound 10 which contains a bromide 
ancillary ligand. It is thought that determining the mechanism of 
action of these drugs in the MTT assay should help to gain an 
understanding of the behavior of titanium drugs in the body. 
NMR studies were conducted using compound 6 and addition of 
two equivalents of DMSO, then the 1H NMR spectra recorded 
after 20 minutes, 1 day, 2 days and then 2 weeks. Changes 
were observed in the aromatic region, a decrease in the 
diketonate resonances and new signals corresponding to free 
ligand and free DMSO area now visible (Figure S4, SI). It is 
postulated that the labile ancillary chloride ligands are 
substituted for DMSO solvent. Equimolar solutions of both 
compounds 9 and 10 in d6-DMSO were prepared and 1H NMR 
spectra were recorded after 5 minutes, 1 hour, 5 hours and 1-5 
days, to investigate changes on the same time scale as the MTT 
assay. After 5 minutes, the majority of compound 10 appears to 
have dissociated, with the major resonances all corresponding 
to free diketonate ligand [(O,O)] and additional resonances for 
the complex [Ti(O,O)2(DMSO)2][2Br] (10-DMSO) (Figure S5, SI). 
Integration of the signals in the diketonate region shows after 5 
minutes a ratio of 0.6:1:4.2 is observed for [Ti(O,O)2Br2] : 
[Ti(O,O)2(DMSO)2][2Br] : [(O,O)]. The NMR spectra for 
compounds 9 and 10 in d6-DMSO show clear differences in 
rates of reaction (Figure S6-S7, SI). For compound 9, after five 
minutes there is [Ti(O,O)2Cl2] remaining, indicating that reaction 
with DMSO or ligand dissociation has given a solution containing 
only [Ti(O,O)2(DMSO)2][2Cl] (9-DMSO) and free diketonate 
ligand. For compound 10, the [Ti(O,O)2Br2] is observed until one 
day after dissolution, indicating the rate of reaction with DMSO 
or the rate of ligand dissociation is much slower than for 
compound 9. Once there is no original compounds left, there is 
more 10-DMSO present in solution than 9-DMSO. If the DMSO 
compounds are the active species, as hypothesized, this 
observation offers a possible explanation for the increased 
activity of the titanium bromide compounds over the 
corresponding chlorides. 

Compound 10 was dissolved in d6-DMSO and 4-chloro--
diketonate ligand was added, the 1H NMR spectra recorded after 
10 minutes, 1 hour, 1 day and 7 days. Ten minutes after the 
addition of free ligand, resonances for both free ligand and 10 
were observed. Addition resonances were also observed at 8.06, 
6.62 and 2.24 ppm, which match the signals seen in the 
previous study, thought to correspond to 10-DMSO. Integrating 
the diketonate peaks at 6.58 and 6.62 ppm gives a ratio of 

1:14.8 for compound: free ligand. After 7 days, this increased to 
1:13.7, this experiment offers proof that there exists an solution 
equilibrium between compound and free diketonate ligand. 

Two equivalents of water were added to a solution of compound 
10 in anhydrous CDCl3, and the 1H NMR spectrum was recorded 
after 20 minutes, 1 day and 2 weeks (Figure S8-S9, SI). The 
spectra showed that all the diketonate ligand had dissociated 
from the compound and only free ligand was observed. A broad 
water peak is visible at 1.83 ppm, and a second broad peak is 
visible at 4.85 ppm, which after 1 day both they have decreased 
in intensity significantly and furthermore after 2 weeks. The 
13C{1H} NMR spectrum recorded after 2 weeks also shows only 
free diketonate ligand present in solution, with no titanium 
compound visible.  

Conclusions 

A library of titanium bis(-diketonate) compounds of the type, 
[Ti(O,O)2X2], have been synthesised and characterised using 
both asymmetric and symmetric ligands. X-ray crystallography 
analysis shows that they adopt cis geometries in the solid state. 
Selective compounds were tested against several cell lines 
using the SRB assay, and when comparing the same 
compounds for titanium chloride and titanium bromide, the 
bromides always gave an increase in cytotoxicity. An increase in 
potency was observed upon addition of more electron 
withdrawing substituents to the b-diketonate ligand. Compounds 
were also tested against the MTT, to allow comparisons with 
literature results and even thought different assays were 
conducted and the magnitude of activity is different between the 
two, the general trends are similar for both the SRB and MTT 
assays. 

Compound 6 was potent against HT-29 but had only relatively 
mild toxicity against other cell lines. Therefore we tested the 
possible binding of this compound by incubating it with three 
different sixmers of DNA and the results suggest that the mode 
of action of this class of compound differs to that of cisplatin, as 
that they appear to cleave the DNA sequence as opposed to 
cross-linking. Also the presence of the guanine base in the DNA 
chain appears to help facilitate the compound and therefore it is 
possible these compounds could interact with this base and that 
DNA is a potential target. 

The NMR studies have shown that in the presence of a small 
amount of DMSO, compounds 9 and 10 react to form new 
titanium compounds in which the ancillary halides are 
substituted for dimethylsulfoxide, [Ti(O,O)2(DMSO)2][2Cl] (9-
DMSO) and [Ti(O,O)2(DMSO)2][2Br] (10-DMSO) respectively. It 
is suggested that these new compounds are the cytotoxic 
species. In solution, there is an equilibrium between the titanium 
compounds (9 and 10) and their DMSO analogues (9-DMSO 
and 10-DMSO). As the equilibrium of the titanium bromides lies 
further towards the active DMSO species, it is postulated that 
this is the reason the bromide compounds exhibit greater in vitro 
cytotoxicity than the chlorides.  
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Supplementary Information 

The supplementary information contains the experimental details 
and characterization data for compounds 1-31. Experimental 
procedures are also detailed for both the SRB and MTT assays. 
X-ray crystallographic data tables and tables of important bond 
lengths and angles are provided. HPLC chromatograms for the 
incubation of compounds 6 with Strands 1, 2 and 3 are 
discussed. The document also contains NMR time-dependent 
spectra are provided for compounds 9 and 10 in both d6-DMSO 
and CDCl3. All crystal structures have been submitted to the 
CCDC, with depository numbers 1495265-1495277. 
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This report presents 31 new -
diketonate titanium compounds of the 
type [Ti(O,O)2X2], where O,O = an 
asymmetric or symmetric -diketonate 
ligand and X = Cl, Br, OEt or OiPr. X-
ray crystallography is discussed for 
thirteen crystal structures, which all 
adopt a cis arrangement. Cytotoxic 
studies have been carried out against 
a range of cell lines, showing 
compounds of the type [Ti(O,O)2Br2] 
are up to 50 times more potent than 
[Ti(O,O)2Cl2]. 
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