
This is a repository copy of Search-Based Energy Optimization of Some Ubiquitous
Algorithms.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/117916/

Version: Published Version

Article:

Brownlee, A. E. I., Burles, N. orcid.org/0000-0003-3030-1675 and Swan, J. (2017) Search-
Based Energy Optimization of Some Ubiquitous Algorithms. IEEE Transactions on
Emerging Topics in Computational Intelligence. pp. 188-201.

https://doi.org/10.1109/TETCI.2017.2699193

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

188 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 1, NO. 3, JUNE 2017

Search-Based Energy Optimization of Some
Ubiquitous Algorithms

Alexander Edward Ian Brownlee, Nathan Burles, and Jerry Swan

Abstract—Reducing computational energy consumption is of
growing importance, particularly at the extremes (i.e., mobile de-
vices and datacentres). Despite the ubiquity of the Java virtual ma-
chine (JVM), very little work has been done to apply search-based
software engineering (SBSE) to minimize the energy consumption
of programs that run on it. We describe OPACITOR, a tool for mea-
suring the energy consumption of JVM programs using a bytecode
level model of energy cost. This has several advantages over time-
based energy approximations or hardware measurements. It is
1) deterministic, 2) unaffected by the rest of the computational
environment, 3) able to detect small changes in execution profile,
making it highly amenable to metaheuristic search, which requires
locality of representation. We show how generic SBSE approaches
coupled with OPACITOR achieve substantial energy savings for three
widely used software components. Multilayer perceptron imple-
mentations minimizing both energy and error were found, and en-
ergy reductions of up to 70% and 39.85% were obtained over the
original code for Quicksort and object-oriented container classes,
respectively. These highlight three important considerations for
automatically reducing computational energy: tuning software to
particular distributions of data; trading off energy use against
functional properties; and handling internal dependencies that can
exist within software that render simple sweeps over program vari-
ants sub-optimal. Against these, global search greatly simplifies the
developer’s job, freeing development time for other tasks.

Index Terms—Energy, Java, search based software engineering.

I. INTRODUCTION

E
NERGY consumption related to program execution is of
growing importance at all scales, from mobile and embed-

ded devices through to datacentres [1]–[3]. For mobile appli-
cations, battery life is a critical aspect of user experience and
while several factors (such as the display, wifi and GPS) have a
large impact on power consumption, CPU usage is still a major
factor [4]. For example, the maximum CPU power of a Samsung
Galaxy S3 is 2,845 mW, 2.53× the maximum power consump-
tion of the screen and 2.5× that of the 3G hardware [5]. At the

Manuscript received November 5, 2016; revised April 10, 2017; accepted
April 13, 2017. Date of current version May 23, 2017. This work was sup-
ported by UK Engineering and Physical Sciences Research Council under
Grant EP/J017515/1 (DAASE). (Corresponding author: Alexander Edward Ian

Brownlee.)

A. E. I. Brownlee is with the Division of Computing Science and Mathematics,
University of Stirling FK9 4LA, U.K. (e-mail: sbr@cs.stir.ac.uk).

N. Burles is with the IBM United Kingdom, Ltd., York YO10 5GA, U.K.
(e-mail: nathan.burles@york.ac.uk).

J. Swan is with the York Centre for Complex Systems Analysis, University
of York, York YO10 5DD, U.K. (e-mail: jerry.swan@york.ac.uk).

Digital Object Identifier 10.1109/TETCI.2017.2699193

other end of the scale, the repeated execution of specific subrou-
tines by server farms offers the potential for considerable energy
saving via the identification of energy-intensive ‘hotspots’ in the
code. The electricity consumption by servers was estimated at
between 1.1 and 1.5% of global electricity production in 2010
[6], with energy consumption reaching 50-100% of the purchase
cost of the hardware over its lifetime [7]. These facts motivate
the use of automated methods to reduce the energy consump-
tion attributable to software, allowing computational search to
relieve developers of the burden of finding energy-optimal soft-
ware implementations. Predictive ‘decision support’ metrics,
recently shown to be of little practical use [8] can then be re-
placed with automatic tuning and refactorings that demonstrably
reduce energy consumption. The ultimate goal is to obtain gen-
eral methods that can reduce energy consumption, analogously
to the familiar process of automatic compiler optimization for
execution time. This is an ideal application for Search-Based
Software Engineering (SBSE), the use of search based optimi-
sation for software engineering problems [9], with initial work
in this area showing promising results [2], [10]–[14].

Given the prevalence of the Java Virtual Machine (JVM)1, it
is surprising that there has been little previous work on energy
optimization of Java applications. In this paper, we describe
OPACITOR, a tool implementing a new approach to measuring
the energy consumption of applications running on a JVM. Pre-
viously, run time [15] or system calls [16], [17] have been used
as proxies for energy use, but it has been shown [18] that, in-
dependent of the total number of CPU cycles, there can be
large differences in the energy consumed by different opcodes.
An alternative, high-level hardware measurements [19], [20],
are non-trivial to implement and subject to noise that hinders
a search process. In contrast, OPACITOR uses a predefined cost
model of the energy consumed by each JVM opcode, thereby
providing a deterministic (and so noise-free) approximation of
the total energy consumption. It also has the advantage of being
unaffected by the rest of the computing environment, and can
detect small changes in execution profile, down to opcode level.

We use OPACITOR to measure the effectiveness of three dis-
tinct SBSE [9] approaches for minimising energy consumption
of some very widely-used algorithms, and highlight three impor-
tant aspects of SBSE applied to energy consumption. The focus
is on Java implementations, but the techniques are general and

1Users are reminded at each installation that over 3 billion devices use Java:
http://www.java.com/en/about/ , and Java is regularly reported as the most pop-
ular programming language: https://www.tiobe.com/tiobe-index/

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

BROWNLEE et al.: SEARCH-BASED ENERGY OPTIMIZATION OF SOME UBIQUITOUS ALGORITHMS 189

are applicable across a wide range of programming languages.
The three approaches are:

1) Genetic Programming (GP) to obtain better pivot func-
tions for Quicksort, a ubiquitous algorithm for in-place
sorting of a sequence in random access memory, high-
lighting that energy consumption can be tuned to the
specific application of the code – the datasets in this
case – motivating automated methods to perform this
tuning.

2) Hyperparameter search over the efficiency/accuracy
tradeoff of Multi-Layer Perceptrons, a popular neural net
architecture for classification, incorporating novel activa-
tion functions via Automatic Differentiation, demonstrat-
ing that energy consumption can be traded-off against a
functional property – classification accuracy in this case.

3) Genetic Algorithms (GA) using the constraints of Object
Oriented Programming for Guava and Apache Commons
collection classes (OO-GI), library implementations of
well-known data structures, revealing that different soft-
ware components can exhibit subtle interactions with re-
spect to energy, vastly increasing the search space and
justifying the use of SBSE to reduce developer effort.

The first two of these approaches are applicable to any lan-
guage, further extending their potential impact. OO-GI is ap-
plicable to any OO code beyond the collections classes that we
have chosen as our focus and, more generally, wherever program
behaviour is specified via ‘Design by Contract’ [21].

This work makes four major contributions. Firstly, we de-
scribe and demonstrate OPACITOR, a new tool for measuring
the energy consumption of Java programs. Secondly, we extend
work from two earlier papers [22], [23] (respectively, proposing
evolution of pivot functions for Quicksort and introducing OO-
GI) with more extensive experiments and analysis, demonstrat-
ing the wider applicability of both approaches. Thirdly, we pro-
pose a combination of automatic-differentiation and topology
parameterisation to allow search-based improvement of multi-
layer perceptrons. Finally, we show that the energy consumption
of three very widely-used software components can readily be
improved. The results demonstrate that global search methods
allow improvements in energy to be targeted to specific datasets,
be traded off against other functionality, and can accommo-
date hard-to-determine interactions within the code. All three of
these would otherwise result in lengthy, repetitive exploration
through large spaces of alternative designs. The importance to
industry of these results is that automated search methods re-
duce the required developer effort: the SBSE approaches we
describe can achieve significant reductions in energy use for lit-
tle development cost. Given the ubiquity of these components, it
demonstrates the potential energy savings for a very wide range
of applications.

We begin by summarising related work in Section II. We
describe OPACITOR in Section III. Sections IV–VI describe the
experiments with each of the three studied algorithms (Quick-
sort, MLP and OO collections), each including implementation
details, results and discussion. We consider possible threats to
the validity of the work in Section VII before drawing our con-
clusions and suggesting future work in Section VIII.

II. RELATED WORK

The energy consumption attributable to software is becoming
increasingly important to software developers [1], particularly
as software development moves away from the ‘mid-range’ of
the desktop (and the relatively homogeneous architectural con-
figuration of PCs) to the extremes of both large- and small- scale
computing [2].

A variety of approaches have been described for measuring
the energy consumption due to software. Often, CPU time is
used as a proxy for energy use [15], but it has been found that
this can be inaccurate, particularly because this omits CPU idle
states [24]. As one alternative, both [16] and [17] used a re-
gression model built on the number of a system calls made
by a running program. Static or dynamic analysis of program
paths with respect to known power consumption of hardware
components can also be used [25]. Several pieces of research
have measured power consumption directly using instrumenta-
tion hardware. This can be in terms of the overall system power
[26], which can be measured by the current drawn from the
battery on mobile devices, such as in [19] and in the “Green
Miner” platform [20]. Power consumption due to the CPU can
also be determined via the Intel Power Gadget API [2], [27]. It
is possible to make such high-level measurements with a fre-
quency high enough that energy use patterns can be matched to
particular source code lines [28], to the use of particular libraries
[29], or specific API calls [30]. Obvious issues with hardware
measurements are the need for support from the existing system
components, or the non-trivial task of adding physical probes to
existing circuitry. Furthermore, hardware solutions are typically
course-grained, measuring the consumption of the whole sys-
tem. Background processes and changing environmental condi-
tions then lead to noisy, non-repeatable measurements. These
must then be handled by the SBSE algorithm, often by repeat-
ing the measurements, extending run-times and reducing con-
fidence in the results. A deterministic measurement of energy
consumption would avoid this issue. One such approach is the
static analysis of energy consumption attributable to specific
instructions [31], in this case targeted to intermediate compiler
representations of a program in the LLVM toolchain. While this
is similar in concept to OPACITOR, the latter measures energy
consumption due to each bytecode at runtime, which may be
more useful where the execution pathway is highly dependent
on the input. Also, to the best of our knowledge, OPACITOR is
the only broadly comparable tool that is targeted at the JVM.

There are currently only a few publications which use SBSE to
reduce energy consumption. One of the earliest applied multi-
objective GP for generating random number generators [10].
More generally, Genetic Improvement (GI) has been applied
the C source code of the boolean satisfiability solver MiniSAT
[2], with energy measured by the Intel Power Gadget. The solver
was specialised to three different application domains with re-
ductions in energy consumption of 5 to 25%. GI has also been
applied to x86 assembly code with a fitness function using hard-
ware performance counters (special hardware registers available
on most modern CPUs) [11], achieving energy reductions of up
to 20%. Code perforation (finding parts of the code that can

190 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 1, NO. 3, JUNE 2017

be skipped, such as some loop iterations) was applied to the
open source C implementation of the h.264 codec in [12]. A
speed up of 2-3 times was achieved, with a corresponding re-
duction in energy consumed by the CPU. More recently, Carte-
sian GP was applied to an assembly-code implementation of
a median-finding algorithm [13], reducing energy consumption
in micro-controllers for a small, fixed number of inputs, using
execution time as a proxy for energy. Another application con-
sidered parameter tuning to find the multi-objective trade-offs
between energy and packet loss ratio in Internet-of-Things de-
vices [14]. General trade-offs between energy and performance
are discussed by Banerjee et al. [3]. Recently, a framework based
on a regression model connecting Java source code operations
to energy, and code refactoring rules has been proposed [32]:
our approach broadly aligns with this framework, although our
model is more fine-grained, working at the level of bytecodes.

Transforming the static configuration parameters of an ap-
plication into variables that can be tuned dynamically has also
resulted in programs that consume substantially less energy with
little reduction in functional performance [33]. Exhaustive ex-
ploration of alternative subtypes of container classes, with re-
placements substituted into bytecode of Java applications, was
shown to reduce energy as measured in hardware [34]. A subse-
quent study proposing “Object-Oriented Genetic Improvement”
using a GA [23] is extended as part of the present paper. Some
interesting approaches optimize colour schemes used by appli-
cations with the goal of reducing the energy consumption due
to the screen of mobile devices rather than the CPU [35], [36].

With the exceptions of [32], [34], none of the above work
is concerned with the JVM. Furthermore, most current work
applies SBSE to specialised algorithms for niche applications,
limiting the potential benefits. In contrast, our work focuses
on three very widely-used software components: Quicksort, the
Multi-Layer Perceptron and collection classes (such as lists,
sets, and maps).

III. OPACITOR

The fitness function used by the evolutionary algorithms in
our experiments is the energy consumption as measured using
the OPACITOR tool. This is designed to make measurements de-
terministically. This ensures that results are repeatable, but can
also help to reduce experimental time as OPACITOR can distin-
guish between very similar execution traces without needing
repeats for reliability. OPACITOR traces the execution of Java
code, using a modified version of OpenJDK 82, generating a
histogram of executed opcodes. This is combined with a model
of the energy cost of each opcode, created and verified by Hao
et al. [18], by multiplying the number of times an opcode was
executed by its cost in Joules. These energy costs per opcode
are then summed together, in order to obtain a total energy cost
of the execution in Joules.

This opcode model-based approach allows distinctions to be
made between very similar programs: this is vital to the ef-
fectiveness of the evolutionary process, which is predicated on

2http://openjdk.java.net

Algorithm 1: Pseudocode for Quicksort With Variant Pivot
Function.
double []
qsort (double [] input,
Function < double [], double >
pivotFn) {
double pivot = pivotFn.apply(input);
// pivotFn can be varied generatively

return qsort(input.filter(< pivot),
pivotFn)
++ input.filter(== pivot)
++ qsort(input.filter(>
pivot),pivotFn);

}

the ability to create mutant programs very similar to their pro-
genitors [37]. As the Just-In-Time compilation (JIT) feature of
the Java Virtual Machine (JVM) is non-deterministic, it is dis-
abled during evolution. Similarly, Garbage Collection (GC) is
non-deterministic and so the JVM is allocated enough memory
to avoid GC. During the final testing, after evolution has com-
pleted, these features are re-enabled for the final fitness mea-
surements to ensure that the results remain valid under realistic
conditions on an unmodified JVM.

A significant benefit of OPACITOR, compared to approaches
requiring timing or physical energy measurement, is that it is
unaffected by anything else executing on the experimental sys-
tem. This means that it can be parallelised, or executed simul-
taneously with other programs. Previous work has successfully
used OPACITOR to optimize and reduce the energy consump-
tion of Google Guava’s3 IMMUTABLEMULTIMAP class [23], as
well as OpenTripPlanner4 [38]. In each of these cases, a com-
parison was made with an alternative timing-based estimation
tool JALEN [15] in order to corroborate the assertion that the
technique used by OPACITOR is effective and generates reliable
measurements.

IV. QUICKSORT

The Quicksort algorithm for in-place sorting [39] has prob-
ably accounted for the greatest volume of executions of any
sorting algorithm and remains popular [40]. For many years it
was the default |qsort| implementation in most ‘C’ libraries
[41]. Quicksort enjoys average case behaviour of θ(n log n) but
worst case behaviour of θ(n2). Crucially, Quicksort’s behaviour
depends on the ‘pivot function’: a heuristic to choose the ‘pivot’
value to partition the input for subsequent divide-and-conquer
recursion, as given in Algorithm 1.

A. Implementation

It is well-known that taking the median of the input array
provides the Oracular choice of pivot and also yields worst case
θ(n log n) behaviour, but the associated O(n) algorithm for

3Version 18: https://github.com/google/guava/wiki/Release18
4http://www.opentripplanner.org

BROWNLEE et al.: SEARCH-BASED ENERGY OPTIMIZATION OF SOME UBIQUITOUS ALGORITHMS 191

doing this leads to an unacceptably large overhead. In previous
work [22], we used GP to provide an automatically-generated
variant of this scheme. This allows the algorithm to be tuned
for an input data set, for good performance on unseen data
with a matching distribution. The approach uses the TEMPLAR

library, a software framework for customising algorithms via
the generative technique of the template method. This allows
an algorithm to be customised with little development effort
by specifying one or more ‘variation points’, each of which is
permitted to express a family of behaviours, constrained merely
by the types of its function signature. In this specific case there
is a single variation point, the pivot function, which returns
the median of r random samples from the input array, with
r = f(l, d), where l is input array length and d is the current
recursion depth. Here, f is a bivariate rational function generated
by GP, i.e. with function set {+, −, *} and (protected) divide.
As this approach is a hyper-heuristic (i.e. it ‘searches the space
of heuristics’), we named the algorithm hyper-quicksort.

B. Experiments

During evolution, the training set in our experiment con-
sists of the ‘pipeorgan’ distribution, in which the values in
the input array increase monotonically until some randomly-
specified index, then decrease monotonically. This distribution
can be seen as approximating the worst case behaviour of Quick-
sort (which arises on pathological distributions such as almost-
sorted/reverse-sorted inputs [42]). Quicksort is known to behave
poorly against data drawn from this distribution, so this case
study could be also considered as an example of ‘hardening’
software against a denial-of-service attack.

In previous work [22] we used Java’s reflection to generate
the bytecode of each generated pivot function, so that JALEN

could record the execution time and provide an estimate for the
energy consumed. OPACITOR measures the energy consumed by
running a program in an external JVM, and so this method is
not suitable. Instead we generate the full source code of the new
pivot function and allow OPACITOR to compile and execute each
candidate solution externally.

The earlier results were also limited in that, although show-
ing Quicksort with the evolved pivot function to be more energy
efficient when applied to the ‘pipeorgan’ distribution, they did
not test performance on randomly generated arrays. We now ad-
dress this shortcoming, using OPACITOR to compare the evolved
pivot function against commonly-used pivots on both ‘pipeor-
gan’ inputs and randomly generated arrays.

The experiments used GP to evolve a pivot function for a
program implementing Quicksort, which is run on a target array
of numbers. As explained in Section IV-A, the terminals (in-
put variables) for the generated programs are ‘array size’ and
‘recursion depth’. The template for the evolved GP function is
configured as follows: the Oracular pivot value of an array of
values is its median. GP is then used to generate the function:

GP : N × N → N

GP : (arraySize, recursionDepth) �→ numSamplePoints

and take as pivot the median of numSamplePoints randomly-
chosen array elements. Although Quicksort is defined on any-
thing with a partial order, note that this particular method only
works when the array values are numeric.

The experimental setup used GP configured with a population
size of 100, 200 generations per run, an initial tree depth of 2
and a maximum tree depth of 4. These values were determined
empirically as a reasonable trade-off between solution quality
and execution time. All other GP parameters and operators were
the EpochX 1.4 defaults [43]. The training set contained 70
cases, where each case consisted of 100 arrays to be sorted,
each with size 100. The fitness function to be minimized was the
energy used to perform the Quicksort on the training set, using
OPACITOR to provide a deterministic, repeatable measurement.
Evolution was repeated 30 times to obtain a range of possible
pivot functions.

C. Results and Discussion

A number of different functions were generated across dif-
ferent runs of the GP, however commonly-observed among the
fitter functions was one that simply returned recursionDepth.
This suggests that as the recursion depth increases (and array
size decreases), performance is improved by increasing the num-
ber of samples. Near the beginning of a sort, with a large array,
there is a low probability of randomly selecting suitable ele-
ments from which an ideal median may be estimated — as the
array size decreases, this probability increases, with the overall
effect that maximum recursion depth is reduced.

In Table I, the performance is compared with three well-
known pivot functions: ‘Middle index’, ‘Random index’, and
‘Sedgewick’ (the latter returning the median of the first, middle
and last elements). In this test, OPACITOR was used to calculate
the energy required to sort 1000 ‘pipeorgan’ arrays of vary-
ing lengths using each pivot function. This was repeated 100
times, the mean results being shown in Fig. 1, as well as the p-
values and effect size measures calculated when comparing the
GP result to each of the other pivot functions. Hyper-quicksort
outperforms the Sedgewick pivot in all cases, with a signifi-
cant energy saving. In several cases using the ‘Sedgewick’ and
‘Middle index’ pivots the sort resulted in a stack overflow due to
the recursion depth. For the smallest arrays (up to 16 elements)
hyper-quicksort needs more energy than the random and middle
index pivot functions. This is due to the overhead of finding the
median value for n randomly selected elements. As array size
increases this overhead is mitigated by the associated reduction
in recursion depth, allowing hyper-quicksort to outperform all
the alternative pivot functions for array sizes of 32 elements or
greater.

In order to verify that the results are significant, we used
the ASTRAIEA statistical framework [44] to perform the non-
parametric Mann-Whitney U-test and the Vargha-Delaney Ef-
fect size test. The use of the latter is motivated by a trend
within software engineering to augment significance tests for
stochastic algorithms with effect size measures, with Vargha-
Delaney being specifically recommended for this [45]. For each
array length, 23 − 218 , we ran the U-test and effect size test

192 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 1, NO. 3, JUNE 2017

TABLE I
ENERGY (J) REQUIRED TO SORT 1000 ‘PIPEORGAN’ ARRAYS OF VARYING LENGTHS USING EACH OF THE PIVOT FUNCTIONS (MEAN OF 100 RUNS, AS WELL AS

THE P-VALUES (P) AND EFFECT SIZE MEASURES (E) COMPARING THE GP RESULT TO EACH OF THE OTHER PIVOT FUNCTIONS)

Array size GP Random Sedgewick Middle

J σ J σ p e J σ p e J σ p e

8 2.19 0.18 1.93 0.07 < .001 0.06 5.22 0.09 < .001 1.00 1.80 0.02 < .001 0.00

16 2.34 0.10 2.18 0.08 < .001 0.10 5.38 0.12 < .001 1.00 2.26 0.09 < .001 0.24

32 2.34 0.12 2.43 0.08 < .001 0.77 5.50 0.14 < .001 1.00 2.50 0.14 < .001 0.94

64 2.51 0.12 2.75 0.15 < .001 0.95 5.65 0.12 < .001 1.00 2.89 0.06 < .001 1.00

128 2.60 0.14 2.93 0.10 < .001 0.98 5.80 0.13 < .001 1.00 3.10 0.11 < .001 1.00

256 2.69 0.14 3.23 0.15 < .001 1.00 5.97 0.15 < .001 1.00 3.46 0.17 < .001 1.00

512 2.93 0.16 3.71 0.26 < .001 1.00 6.40 0.10 < .001 1.00 4.43 0.53 < .001 1.00

1024 3.69 0.57 4.26 0.70 0.01 0.71 6.68 0.13 < .001 1.00 5.53 0.64 < .001 0.96

2048 3.60 0.52 4.78 1.21 < .001 0.88 6.78 0.10 < .001 1.00 6.36 1.16 < .001 0.98

4096 3.37 0.27 6.01 1.72 < .001 1.00 7.31 1.39 < .001 1.00 6.96 1.88 < .001 1.00

8192 3.72 0.31 6.09 1.36 < .001 1.00 7.20 0.19 < .001 1.00 5.64 0.78 < .001 1.00

16384 4.58 0.39 8.18 1.71 < .001 0.99 8.07 0.20 < .001 1.00 9.61 1.39 < .001 1.00

32768 6.11 0.97 18.99 8.41 < .001 1.00 - - - - 20.37 2.88 < .001 1.00

65536 8.72 2.56 24.22 10.46 < .001 0.95 - - - - 12.88 6.62 < .001 0.82

131072 14.67 5.21 23.06 13.38 0.05 0.65 - - - - - - - -

262144 13.74 4.60 24.21 12.55 < .001 0.73 - - - - - - - -

In a number of cases the sort resulted in a stack overflow, these results are therefore excluded from the table. Bold values highlight the lowest energy use for

each array size.

Fig. 1. Energy (J) required to sort 1000 ‘pipeorgan’ arrays of varying lengths
using each of the pivot functions. The lines with no points after a particular
array size show where the sort was unsuccessful (recursion limit reached).

comparing the set of results obtained using hyper-quicksort to
each of the alternative pivots in turn. In all cases the distributions
of the results were significantly different (p < 0.05). According
to Vargha and Delaney [46], an effect size of 0.56 indicates a
small difference, 0.64 indicates a medium difference, and 0.71
indicates a large difference. Given this scale, in almost all cases
the evolved pivot function has provided a large energy reduction.

Further than this, as the array size was increased to 32,768,
the recursive algorithm caused a stack overflow in the JVM
when using the Sedgewick pivot function. This also occurred
with array sizes of 217 when using the Middle Index pivot func-
tion. It is possible to increase the JVM’s stack, however this
serves to emphasise that hyper-quicksort has helped to harden
the algorithm against a denial-of-service attack.

To determine how the same evolved pivot function performs
on non-‘pipeorgan’ arrays, similar testing was performed—this
time calculating the energy required to sort 1000 randomly gen-
erated arrays of varying lengths. This test was also run 100 times,
with the mean results presented in Table II and Fig. 2, as well
as the p-values and effect size measures when comparing the
GP result to each of the other pivot functions. Notably, although
hyper-quicksort was trained specifically to sort ‘pipeorgan’ in-
put arrays, the evolved pivot function is also very successful at
sorting randomly generated input arrays.

Except for the Sedgewick pivot function, which was outper-
formed by hyper-quicksort for all array sizes, the pivot functions
are statistically inseparable with an array size of less than 4096
elements. At this point, the evolved pivot function is consistently
more energy efficient than the alternatives, with p < 0.05 and
in general a large effect size.

Although it might be expected that the energy required to sort
an array will increase with array size, as the arrays in both ex-
periments were randomly generated (either randomly selecting
the point at which the value begins decreasing, or generating
all the data at random) this is not guaranteed. All four pivot
functions sorted the same arrays, but it is not possible to ensure
the ‘difficulty’ of sorting each input array is the same across all
array sizes. As such, some otherwise unexplained outliers exist,
for example the middle index pivot function sorting arrays of
size 65,536 displays a significant decrease in energy required
compared to size 32,768 where the other pivot functions all
show an expected increase.

These experiments also demonstrate that energy use is de-
pendent on the dataset that the final algorithm is applied to. Of
course, this is hardly surprising, but what is important here is
that deploying SBSE to the task of tuning an algorithm for a
particular distribution of data relieves the developer from hav-
ing to consider these issues explicitly. As long as the developer
selects a representative collection of data to tune the algorithm

BROWNLEE et al.: SEARCH-BASED ENERGY OPTIMIZATION OF SOME UBIQUITOUS ALGORITHMS 193

TABLE II
ENERGY (J) REQUIRED TO SORT 1000 RANDOMLY GENERATED ARRAYS OF VARYING LENGTHS USING EACH OF THE PIVOT FUNCTIONS (MEAN OF 100 RUNS, AS

WELL AS THE P-VALUES (P) AND EFFECT SIZE MEASURES (E) COMPARING THE GP RESULT TO EACH OF THE OTHER PIVOT FUNCTIONS)

Array size GP Random Sedgewick Middle

J σ J σ p e J σ p e J σ p e

8 2.06 0.20 1.83 0.06 < .001 0.15 5.20 0.09 < .001 1.00 1.81 0.07 < .001 0.14

16 2.27 0.14 1.99 0.08 < .001 0.04 5.28 0.11 < .001 1.00 1.99 0.11 < .001 0.06

32 2.27 0.11 2.21 0.10 0.01 0.30 5.38 0.13 < .001 1.00 2.19 0.06 < .001 0.20

64 2.33 0.06 2.42 0.14 < .001 0.83 5.45 0.07 < .001 1.00 2.40 0.09 < .001 0.79

128 2.44 0.09 2.62 0.17 < .001 0.95 5.66 0.09 < .001 1.00 2.58 0.11 < .001 0.90

256 2.58 0.16 2.81 0.14 < .001 0.90 5.90 0.11 < .001 1.00 2.88 0.17 < .001 0.97

512 2.98 0.26 3.31 0.06 < .001 0.90 6.24 0.12 < .001 1.00 3.28 0.08 < .001 0.90

1024 4.30 1.41 3.82 0.53 0.09 0.37 6.41 0.12 < .001 0.96 3.64 0.07 0.01 0.31

2048 4.30 2.18 3.94 0.40 0.05 0.65 6.58 0.14 < .001 0.89 4.00 0.50 0.02 0.68

4096 3.36 0.27 5.24 1.18 < .001 0.98 6.71 0.13 < .001 1.00 5.15 0.86 < .001 0.98

8192 3.72 0.31 6.09 1.36 < .001 1.00 7.20 0.19 < .001 1.00 5.64 0.78 < .001 1.00

16384 4.45 0.59 7.05 1.04 < .001 0.98 7.90 0.31 < .001 1.00 6.63 0.92 < .001 0.96

32768 5.88 0.91 14.96 7.59 < .001 0.96 9.50 0.95 < .001 1.00 13.09 6.43 < .001 0.92

65536 9.52 3.18 14.81 7.62 < .001 0.75 14.55 3.36 < .001 0.84 14.78 6.61 < .001 0.76

131072 13.12 4.35 21.18 11.44 0.03 0.67 16.98 2.60 < .001 0.72 18.82 8.01 < .001 0.73

262144 10.36 3.41 20.75 10.37 < .001 0.90 16.14 3.74 < .001 0.89 18.50 7.61 < .001 0.89

Bold values highlight the lowest energy use for each array size.

Fig. 2. Energy (J) required to sort 1000 randomly generated arrays of varying
lengths using each of the pivot functions.

for, the search process will take care of the rest. The algorithm
can then be easily retuned for new target datasets.

V. MULTILAYER PERCEPTRON

We now consider application to the training and validation
phases of a very popular [47] neural net architecture — the
Multi-Layer Perceptron (MLP). The MLP is a modification of
the standard linear perceptron with ‘hidden’ layers of neurons
with nonlinear activation functions. can distinguish data that
are not linearly separable and are often applied to classification
tasks like image recognition. They have seen renewed interest
recently with the advent of deep learning.

We focus on two objectives for optimization. The first is the
energy use ǫ, of the training and validation phases of the MLP,

as determined by OPACITOR. The second is the mean square
error E of the trained MLP on validation data. The goal is to
realise Harman et al.’s Pareto Program Surface [48], comprising
program variants spanning the trade-off between a functional
property of the software, in this case error rate, against a non-
functional property like energy. It can be envisaged that the
user of a mobile device might trade-off some accuracy in an
app using classification if it would extend battery life. Here we
show how a multi-objective metaheuristic can easily explore
this trade-off.

MLPs consist of input and output layers, with one or more
‘hidden’ layers. The multiple inputs to each neuron are subject to
thresholding via an activation function — typically a sigmoidal
expression in terms of tanh(x) or ex . It is well-known that
a MLP with only a single hidden layer is capable of universal
function approximation [49] and this, together with relative ease
of use for practitioners, has led to decades of prevalence in
machine learning for the MLP, both in academia and industry.

The operation of back-propagation is dependent on the ability
to take the derivative of the activation function (AF). Histori-
cally, the emphasis was on fixed AFs with well-known deriva-
tives. Recently, interest has grown in alternative AFs [50], which
has motivated the application of Automatic Differentiation (AD)
to obtain their derivatives. One means of performing AD is via
the use of dual numbers [51]. Analogous to the extension of
the reals to the complex plane, in which every real number x is
generalized as x + i y, dual numbers are represented as x + εy,
where ε is an infinitisimal (which can be considered as a ma-
trix expression, rather than a real number) with ε2 = 0 [52]. By
changing the implementation of any smooth real-valued func-
tion f to instead use dual numbers, it is possible to automatically
obtain derivatives of f from the initial terms of its Taylor series
expansion. AD has the same computational complexity as f and
is not subject to the roundoff error of numerical approximations
to the gradient via finite differences, nor does it suffer from

194 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 1, NO. 3, JUNE 2017

TABLE III
PARAMETERS OF MLP VARIED DURING OPTIMIZATION

Param. Explanation Type Range (inclusive)

a AF parameter 0 Continuous (0, 1)

b AF parameter 1 Continuous (0, 1)

c AF parameter 2 Continuous (0, 1)

d AF parameter 3 Continuous (0, 1)

h Neuron count in hidden layer Integer (2, 30)

l Backpropogation learning rate Continuous (0, 1)

α Backpropogation momentum Continuous (0, 1)

the expression bloat of symbolic methods. In this section, we
describe the novel application of AD to the online generation
of AFs in order to explore the tradeoff between accuracy and
energy efficiency.

A. Implementation

A wide range of alternative AFs have been explored in the
literature, including logistic, Gaussian (e−x2

) trigonometric and
radial basis functions [53]. Previous work on online adaptation
of a piecewise linear AFs can be found in Agostinelli et al. [54].
The AF we use here is a parametric generalization of the popular
logistic function 1/(1 + e−x), given by:

f(x) =
a

1 + b ecx
+ d (1)

The real-valued parameters {a, b, c, d} define the family of AFs
to be explored by search. AD has two operation modes, ‘for-
ward’ and ‘reverse’. The latter is more efficient for machine
learning scenarios such as we are concerned with here, in which
the derivative of the AF is required for multiple fitness cases
at each fitness evaluation. Hence, the derivative of the AF was
obtained via the application of reverse mode AD.

Three parameters controlling training and topology are also
included, so a particular network is specified by the 7 parameter
values in Table III. For each dataset, instances were divided at
random into 2/3 training and 1/3 validation data.

As we have already seen, ǫ varies depending on a wide range
of factors. E varies depending on the seed for the random num-
ber generator (used to set MLP starting weights) and the specific
training/validation datasets chosen. This means that both objec-
tives are noisy, so evaluations were repeated 5 times with the
mean value used to guide the search (the 5 repeats counted as
one evaluation in the experiments).

B. Experiments

The popular multi-objective evolutionary algorithm NSGA-II
[55] as implemented in JMetal 4.5 [56] was used to conduct the
search. For all data sets, the parameters were the same: popula-
tion size 10; termination after 400 evaluations; SBX crossover
with rate 0.9 and distribution index of 20.0; polynomial real mu-
tation with rate 1/7 and distribution index of 20.0; and binary
tournament selection.

The experiments covered 4 UCI datasets (Table IV) in-
cluded with the WEKA machine learning library [57]. The

TABLE IV
UCI DATASETS USED

Dataset Instances Attributes

Pima Indians Diabetes 768 8

Glass Identification 214 10

Ionosphere 351 34

Iris 150 4

metaheuristic searched for solutions having specific values for
each of the 7 parameters in Table III, seeking to minimise ǫ and
E objectives for a given training dataset. ‘Error’ in the results is
the mean square error for classification on the validation dataset.
Two separate runs were performed for each dataset, measuring
energy for:

1) t: training only.
2) tv: training and 1,000 repeats of the validation phase.
In the latter, the validation phase was repeated 1000 times

so that it would impact on total energy, because its run time is
much smaller than the training phase. In practice, training will be
performed far less frequently than validation/classification, so
energy gains for the latter will be of most benefit. These exper-
iments are focused on the trade-off between objectives in terms
of the application, rather than comparison of performances, so
no repeat optimisation runs were performed. Statistics related
to the repeats of the objective function are reported in the next
section.

C. Results and Discussion

Fig. 3 shows all 400 solutions visited by the search on the
Glass data set, plotted in the objectives (energy vs. error). Plots
for the other three data sets have been omitted here to save space,
but showed similar distributions of the solutions. For most data
sets, there is little conflict between energy and error, so it is
possible to minimize both. Energy is reduced to around 20%
of the worse-case solutions for all data sets. For Glass, when
measuring energy for training only, there is a Pareto front, albeit
limited to two solutions. Energy use can be reduced from 1724 J
to 1559 J (about 10%) by accepting an increase in mean square
error from 2.08 to 2.11. All the results show essentially discrete
steps in energy use, corresponding to the number of hidden
layer neurons h. However, the search process is worthwhile
because there is not always a simple linear relationship between
h and energy. This was particularly true for the training phase on
Diabetes, Glass and Ionosphere (Fig. 4 shows the relationship
for Ionosphere).

Analysis of values taken by the variables in the optimal and
near-optimal solutions found that a, d and α took similar values
for both tv and t runs, but differed per dataset. In contrast, b, c
and l varied depending on both dataset and t/tv.

The variation between repeat runs within evaluations was
notably higher for the error objective than for energy. We con-
sidered the coefficient of variation (cov – the ratio of standard
deviation to the mean) for the 5 repeats within each of the
400 evaluations in each run. Energy measurements were consis-
tent: cov(ǫ) was never higher than 0.01% for all evaluations. In

BROWNLEE et al.: SEARCH-BASED ENERGY OPTIMIZATION OF SOME UBIQUITOUS ALGORITHMS 195

Fig. 3. All evaluations for the Glass dataset, plotted in objective space: energy
(J) vs. mean square error. “t” are runs where the energy measurement included
training only, “tv” runs measured energy for both training and validation. Dia-
betes, Ionosphere and Iris showed similar distributions. (a) Glass training. (b)
Glass training & validation.

Fig. 4. Energy (J) vs. hidden layer size for Ionosphere, measuring energy for
the training stage only.

contrast, cov(E) for error varied from zero to 42%, with a
mean of 2%. Applying t-tests to the objective values found
p � 0.005 for the difference in means between the original and
optimal configurations on all energy runs. For error, p < 0.05
with diabetes-v, glass-v, glass-nv, and iris-nv. Differences in
error were non-significant for the other runs.

These experiments have demonstrated that SBSE allows the
developer to easily explore the trade-off between functional and
non-functional properties (in this case, accuracy and energy).
Such relationships are not always clear: here, one might have
expected there to be a conflict between the objectives, yet often
there was none. Moving the burden of exploring such a relation-
ship to an automated search means that it becomes much simpler
to tune the balance between these objectives for a particular sit-
uation. In this case, the approach achieved the ideal result of
minimising energy and error for the MLP on four well-known
datasets. This could be fine-tuned per-dataset and with a bias
towards improvement in the training or validation/classification
phases, depending on end application. It would allow multiple
configurations to be generated and stored that could be switched
on-the-fly: for example, on a mobile device so that classification
accuracy decreases as battery charge is exhausted.

VI. GUAVA AND APACHE COMMONS COLLECTIONS

We now consider Object-Oriented Genetic Improvement
(OO-GI), a technique for improvement specific to Object-
Oriented programs, applied to optimization of container classes.
These are implementations of well-known data structures like
maps, sets, and lists. The choice of implementations for col-
lections classes dramatically impact on energy consumption
[58]. Our approach uses metaheuristic search to find seman-
tically equivalent programs with reduced energy consumption.
Semantics-preserving transformations are achieved by confor-
mance to the behavioural equivalence that is central to object-
orientation. OO-GI was first proposed in [23], and demonstrated
using an earlier version of OPACITOR, as applied to a single class
in the Google Guava framework. This earlier work is here ex-
tended with a more thorough experimental study, covering a
range of classes in Google Guava5 and the Apache Commons
Collections library.6

Although several existing approaches in GP and Grammati-
cal Evolution (GE) claim to be ‘Object Oriented’ [59]–[63], we
are not aware of any concerned with the central pillar of Object
Orientation, the Liskov Substitution Principle (LSP) [64] as ex-
emplified via subtype polymorphism. When designed according
to the LSP, subtype polymorphism permits the implementation
of frameworks according to the ‘Open Closed Principle’, i.e.
both framework implementers and their client programmers can
be assured that their code can interoperate without unexpected
behaviour. It is this principle that allows OO software to scale
more effectively than purely object-based approaches. ‘Design
by contract’ (DbC) is the explicit codification of the LSP via
preconditions, postconditions and invariants [65]. DbC is widely
understood to be a vital adjunct to methods such as Test-Driven
Development, since the above conditions serve to capture a wide
range of required behaviours. It was first natively supported in
Meyer’s Eiffel language in 1986 and is now natively supported
by a number of popular programming languages, including ADA
2012, Clojure, D and Racket. The closest search-based work of

5Version 18: github.com/google/guava/wiki/Release18
6V4.0: commons.apache.org/proper/commons-collections/release_4_0.html

196 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 1, NO. 3, JUNE 2017

TABLE V
CLASSES CHOSEN FOR MODIFICATION BY OO-GI, WITH THE NUMBER OF VARIATION POINTS AND SIZE OF THE RESULTING SEARCH SPACE FOR EACH

Class for modification Variation points Search space

com.google.common.collect.ArrayListMultimap 3 2 738

com.google.common.collect.ImmutableMultimap 5 674 325

com.google.common.collect.LinkedListMultimap 6 7 513 072

org.apache.commons.collections4.map.PassiveExpiringMap 3 50 653

org.apache.commons.collections4.set.ListOrderedSet 4 38 416

org.apache.commons.collections4.bidimap.DualHashBidiMap 6 2 565 726 409

which we are aware is the SEEDS framework [34], in which al-
ternative subtypes of container classes are substituted into byte-
code in order to minimize power consumption. SEEDS uses
separate exhaustive search at each object allocation location. In
contrast, OO-GI uses a genetic approach, applicable to any code
following DbC, to assign subclasses to all constructor invoca-
tions simultaneously. The benefit is to catch any situation where
dependencies exist between variation points. It is difficult to de-
termine when this might be the case by simple code inspection,
meaning that simply combining results from separate searches
at each variation point may be suboptimal.

A. Implementation

The improvement process is as follows:
1) Parse the source file to be improved into an Abstract

Syntax Tree (AST). Identify variation points: i.e., source
nodes in the AST corresponding to the creation of con-
tainer classes from Java 8 util, Guava, or Apache
collections. These comprise three types of syntax frag-
ment: constructors (e.g. new HashMap<>()); factory
classes (e.g. Maps.newHashMap()); and static creator
methods (e.g. ImmutableList.of()).

2) Obtain the complete set of possible target substitutions
T (i.e. all container classes in Guava, Apache and Java
Collections. For each variation point Si in the AST, deter-
mine the most specific abstract supertype of the created
object, by checking whether it inherits from one of the
following (always choosing the most specific type - the
one appearing earliest in the list):

a) java.util.SortedMap
b) java.util.Map
c) java.util.SortedSet
d) java.util.Set
e) java.util.List
f) com.google.common.collect.Multimap
g) com.google.common.collect.Multiset
h) java.util.Collection
3) For each Si , find the subset of possible target substi-

tutions t(Si) ⊆ T which are valid (i.e., are concrete,
and implement the same abstract supertype as the
original class at Si).

4) Given a sequence of the k variation points
[S1 , . . . , Sk] from the AST, the search space is given
by all combinations from [t(S1), . . . , t(Sk)]. The
solution representation is an assignment i �→ s ∈

t(Si), 1 ≤ i ≤ k, represented as an element r ∈ Z
k ,

with constraints 0 ≤ ri < |t(Si)|.
5) Given such an assignment, the AST node for each

Si is replaced with its target substitution and the
resulting mutated source file is written to disk.

6) The program containing the mutated source is com-
piled and its energy consumption evaluated by
OPACITOR. By this means, combinatorial search is
performed in the space of these representations by
a GA to find the substitutions that minimize energy
consumption.

Source file parsing and subsequent re-generation was
completed automatically with an open-source library
com.github.javaparser.JavaParser. A modified
version of JavaParser’s SourcePrinter made the required
source code substitution at each variation point.

A careless programmer might depend on functionality not
guaranteed by the LSP, such as assuming that a collection is
sorted, despite this not being part of the superclass type spec-
ification actually visible at the point at which this assumption
is made. This is a logical error by the programmer and, strictly
speaking, requires rewriting of the code. We do not cater explic-
itly for such programming errors in our experiments. In practice,
the best that can be done is to include, as we do, any existing
unit tests as a constraint on the search.

B. Experiments

The open-source Java frameworks Google Guava and Apache
Commons Collections implement a variety of concrete sub-
classes of java.util.Collection. There are well-known
tradeoffs in performance characteristics between different col-
lection subclasses: for example, finding a specific element in a
linked list is O(n) but in a hash-set it is O(1).

An exhaustive search over all top-level concrete collections
classes in Google Guava and Apache Commons Collections
found 14 with 3 or more variation points. After ruling out those
where some variation points were instantiations of the class
itself, or used specialised classes where functionality would
likely be broken by replacement with a generic container, 6
classes were chosen for closer consideration (Table V).

Energy was measured for each class over 10,000 repeat runs
of a test program. This called all unit tests (from the Google
Guava or Apache Commons source trees as appropriate) for the
class. In addition, because (in some cases) the unit tests did not
exercise all methods, a call was also made to every method in

BROWNLEE et al.: SEARCH-BASED ENERGY OPTIMIZATION OF SOME UBIQUITOUS ALGORITHMS 197

TABLE VI
ENERGY (J) REQUIRED TO EXERCISE THE UNIT TESTS FOR EACH CLASS 10,000 TIMES (MEAN OF 100 RUNS, AND STANDARD DEVIATION σ), MEASURED BY

OPACITOR WITHOUT (EXCL.) AND WITH (INCL.) JIT AND GC

The p-values (p) and effect sizes (e) compare the GA result to the original or the result of IES (in two cases the GA and IES found the same set of substitutions). Also

given are the number of evaluations (evals) required by the GA to reach the best fitness found, and the percentage reduction that this represents compared to an exhaustive

search of the entire space. Bold values highlight the lowest energy use for each class.

the class using randomly-generated data. Programs failing the
unit tests were rejected by the search as invalid.

The first experiment used a GA to search for a solution
with reduced energy consumption. The Apache Commons Math
library7 GA implementation was used. The solution represen-
tation used was a vector of integers r ∈ Z

k . The representa-
tion itself was constrained such that 0 ≤ ri < |t(Si)|. The GA
parameters were chosen empirically to yield good results in
reasonable run time (evaluations taking 5–30 s on a 3.25 GHz
CPU). These were: population size 500; termination at 100 gen-
erations; single-point crossover with a rate of 75%; one-point
mutation with a rate of 50%; binary tournament selection; 5%
elitism. 30 repeat runs using different random number generator
seeds were completed for each target class.

A second experiment ran an exhaustive search on the entire
search space for each class (except LinkedListMultimap
and DualHashBidiMap due to their large size) to determine
how close the GA came to finding the optimal solution.

A final experiment ran an exhaustive search on each variation
point, following the example of [34] but on source code instead
of bytecode. Each variation point is examined in turn, finding the
best substitution independently of the other variation points. The
set of candidate results then constitutes one program for each
of these separate substitutions. Added to this set of candidates

7commons.apache.org/proper/commons-math/userguide/genetics.html

is a program containing all of the independent substitutions
combined together, and the original program. The program from
this set requiring the least energy is the final result—this may
not be the combined candidate, if the variation points are not in
fact independent. We refer to this experiment as an Independent

Exhaustive Search (IES).

C. Results and Discussion

Statistical testing was carried out using the ASTRAIEA [44]
Wilcoxon/Mann Whitney U and Vargha-Delaney Effect size
tests. Results were obtained with 100 samples in each dataset.
In all cases except DualHashBidiMap, each GA run found
an identical result, so this solution was used thereafter. For
DualHashBidiMap, due to the large search space, 3 different
results were found. The best and worst were each compared
statistically to the original code and the result from IES.

For the four classes where an exhaustive search was per-
formed, the best set of substitutions were the same as those
found by the GA. The GA therefore reduced the search time
by between 10% (ArrayListMultimap) and 98.5% (Im-
mutableMultimap). Using alternative parameters for the
evolution would likely improve this further—particularly in the
cases with the smallest search spaces.

The results are shown in Table VI. The measurements us-
ing OPACITOR without JIT and GC are deterministic and so no

198 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 1, NO. 3, JUNE 2017

statistical tests are necessary. When using OPACITOR with JIT
and GC enabled, the fitness was evaluated 100 times—the table
shows the mean and standard deviation, as well as the p-values
and Vargha-Delaney effect size measures comparing the results
of the GA to the original and the results of IES.

Reductions in energy consumption were achieved for all six
classes. An interesting result is that, without JIT and GC, the
best result found by the GA for four of the classes was only
marginally better than the original programs. Once JIT and GC
were enabled for final testing the improvement becomes signifi-
cant with a medium or large effect size. Deeper analysis revealed
that, in these cases, the substitutions included a class from an
alternative collection (Google Guava or Apache Commons) to
the original class. This results in a large number of additional
classes which must be imported by the JVM. When JIT is re-
enabled the importing is optimized, resulting in a significant
energy reduction compared to the original.

As the energy measurement during the final testing with JIT
and GC is not deterministic, p-values and effect sizes vary ac-
cordingly. The p-values are all near-zero, with effect sizes all
at least 0.74, which Vargha and Delaney suggest indicates a
large difference. Although in some cases the improvement was
marginal when measured with JIT and GC disabled, in the more
realistic scenario of having these enabled, 2.16–13.13J were
saved over the original implementations. These represent en-
ergy reductions of 9.23%–39.85% over the original.

During final testing, the GA also matched or further improved
upon the lowest-energy solutions found by IES. This reflects the
presence of some dependency between the variation points for
some of the classes: if the points were independent then IES
would find the optimal solution by combining the best value
for each variation point. The possibility of such dependencies
increases the search space to the product of all values at all varia-
tion points, necessitating a global search like the GA. For exam-
ple, in ImmutableMultimap one variation point is within
a nested subclass that is privately declared, which is instanti-
ated at another variation point. IES requires a number of fitness
evaluations approximately equal to the count of possible substi-
tutions over each of the variation points, and so is significantly
faster than the GA, however this speed is a trade-off with the
quality of the final result. This highlights that there can be subtle
interactions between sections of the code that influence energy
consumption and may not be obvious to a developer. An SBSE
approach is able to accommodate these interactions where they
exist without the developer needing to specify where they are,
achieving better performance without additional developer ef-
fort.

VII. THREATS TO VALIDITY

There are several potential threats to the validity of this work.
The results are dependent on the accuracy of the model: while
this cannot be completely eliminated, two factors mitigate this
threat. The bytecode level estimates of energy use were taken
from Hao et al. [18], where hardware measurements found the
model to be within 10% of the ground truth for a set of mobile
applications from the Google Play store. In our previous work

[23], [38], we also validated the model by comparing against
run-time based models of energy use. Additionally, in practice
energy use is likely to follow a conditional distribution rather
than remaining constant per-bytecode. A stochastic model is a
major consideration for future study on this topic. In particu-
lar, (as per [66]) energy consumption is affected by contextual
factors such as opcode prefetching and cache hits. There is a
clear tradeoff between the generality of a static model such as
used by OPACITOR and the device-specific labour required for
dynamic measurement. It would however be possible to extend
the static model with further contextual features. For example,
the current model can be seen as a Markov chain of order 1, in
which the energy cost of each opcode is independent. Another
useful direction for future work is to use machine learning to
build predictive models with more contextual features.

Since OPACITOR is implemented for the JVM, our major re-
sults are limited to that platform. Despite the popularity of Java,
we cannot be sure that the results obtained would be repro-
ducible in another context.

The general conclusions of our results are supported by the
three examples to which we have applied SBSE. While the ap-
proaches may seem application-specific, they are simply specific
examples of general techniques. The search-based generation of
a custom Quicksort pivot function was rapidly prototyped (via
the generic method of ‘template method hyper-heuristics’ [67])
using an existing publicly-available library TEMPLAR. The only
application-specific aspect was selection of the variation point
(the pivot function) and its signature definition, with GP doing
the rest. The HyperMLP implementation is a specific instance
of hyperparameter tuning, in this case determining the network
topology and (via our application of automatic differentiation)
the specific activation functions in the network. OO-GI applies
to any well-designed OO system, i.e. those featuring multiple
concrete subclasses. Further applications of the tools we have
developed will doubtless help improve confidence in the gen-
eral applicability for SBSE in tuning to data sets, trading off
functional and non-function properties, and dealing with depen-
dencies with little developer intervention.

In all data-driven applications, energy consumption might be
expected to vary between runs, dependent on the specific execu-
tion paths followed. Thus, a threat lies in the choice of scenarios
made for our experiments. We have tried to mitigate this where
possible (e.g. Quicksort experiments explicitly include patho-
logical inputs; we have many repeats of classification for the
MLP). With OO-GI, the unit tests are targeted towards code
coverage rather than typical use: in practice it would be impor-
tant to target a series of tests closely aligned to envisaged usage
patterns.

In a similar way, while we have used existing unit tests
and public benchmark data, a potential threat lies in the se-
lection of the particular data we considered. We could look at
still larger array sizes for Quicksort, some of the larger UCI
data sets for MLP, or different test scenarios for the collec-
tions classes. Practicality requires that we draw the line some-
where: with considerable additional computational cost, wider
data sets of varying scales could be considered to reduce this
threat.

BROWNLEE et al.: SEARCH-BASED ENERGY OPTIMIZATION OF SOME UBIQUITOUS ALGORITHMS 199

VIII. CONCLUSION

Given the widespread use of Java, it is surprising that so
little has been done to to apply the power of search-based soft-
ware engineering (SBSE) to minimize the energy consumption
programs written for the Java Virtual Machine (JVM). We pre-
sented OPACITOR, a new tool to measure the energy consumption
of programs running on the JVM and used three different search
based techniques to optimize the energy efficiency of Quick-
sort, Multi-Layer Perceptrons and popular suites of collection
classes. OPACITOR has several advantages over time-based en-
ergy approximations or hardware measurements. It is determin-
istic: it will always produce the same energy measurement for
a given program’s compiled bytecode. This avoids the need for
averaging across multiple runs that is required by other energy
measurement approaches. It is unaffected by the rest of the
computing environment: the energy measurements are not in-
fluenced by other applications that are running. This means that
optimization runs making use of OPACITOR can be distributed
across multiple threads or CPUs, in parallel on the same ma-
chine, without inadvertently affecting the results. The consis-
tency in the energy measurements and the bytecode-level model
used also mean that OPACITOR is able to detect small changes
in execution profile, right down to the level of single opcodes.
These characteristics make the energy measurements of OPACI-
TOR highly amenable to metaheuristic search. We demonstrated
how the energy measurements from OPACITOR can be used by
three different SBSE approaches to achieve substantial energy
savings for three widely-used software components:

1) GP was used to find better pivot functions for the Quick-
sort algorithm. Energy reductions of up to 70% were
achieved against common alternative pivot functions.

2) Multi-objective hyperparameter search was applied to
Multi-Layer Perceptrons, incorporating dynamically-
generated activation functions via automatic differenti-
ation. For four benchmark datasets, we found a MLP con-
figuration that minimized both energy consumption and
mean square error.

3) Object-Oriented Genetic Improvement was applied to six
container classes in the Google Guava and Apache Com-
mons libraries. An energy reduction of up to 39.85% was
achieved against original code.

Existing SBSE approaches have mainly tackled only spe-
cialised applications. The first two approaches we describe,
are applicable to any language, and are specific examples of
generic methods (application of the template method, and hyper-
parameter tuning). The third is applicable to any code developed
in accordance with ‘Design by Contract’, further widening ap-
plicability. This work demonstrates that SBSE is not only suit-
able for the specialist applications already tackled in the liter-
ature, but also much more frequently used code, where it will
have a much greater real-world impact. We have shown that the
metaheuristics we applied in each setting were able to match or
better alternative methods: furthermore in general metaheuris-
tics can be expected to scale to larger problems better than
alternative search methods, with good results being reported for
very large problems indeed [68].

The work has also highlighted the strength of SBSE in accom-
modating three aspects of energy optimisation without extensive
developer effort. All that is required is the identification of varia-
tion points in the code and a suitable representation for possible
replacements. Algorithms can be tuned to specific distributions
of data; energy use can be traded off against other functionality;
and the search can handle subtle interactions within the code
that might otherwise be missed.

New directions for future research have been opened up.
It would be interesting to explore alternative applications for
OOGI, particularly where several public libraries implementing
common interfaces exist. The model could also be extended to
consider uncertainty in the energy attributed to each bytecode,
and consider contextual features such as opcode prefetching and
cache hits for improved accuracy.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their helpful
feedback and suggestions.

Data Access Statement: This work made use of several
existing libraries and data sets, freely available at the lo-
cations cited. Data generated in this work is available at
http://hdl.handle.net/11667/88.

REFERENCES

[1] P. Marks, “Let’s cut them some slack,” New Scientist, vol. 230, no. 3067,
pp. 36–39, 2016.

[2] B. R. Bruce, J. Petke, and M. Harman, “Reducing energy consumption us-
ing genetic improvement,” in Proc. Genetic Evol. Comput. Conf. Madrid,
Spain: ACM, 2015, pp. 1327–1334.

[3] A. Banerjee and A. Roychoudhury, “Future of mobile software for
smartphones and drones: Energy and performance,” in Proc. IEEE/ACM

Int. Conf. Mobile Softw. Eng. Syst. Buenos Aires, Argentina, 2017,
https://www.comp.nus.edu.sg/∼abhik/pdf/MOBILESoft17.pdf

[4] A. Carroll and G. Heiser, “An analysis of power consumption in a
smartphone,” in Proc. USENIX Tech. Conf. Berkeley, CA, USA, 2010,
p. 21.

[5] A. Carroll and G. Heiser, “The systems hacker’s guide to the Galaxy:
Energy usage in a modern smartphone,” in Proc. 4th Asia-Pacific Workshop

Syst. New York, NY, USA: ACM, 2013, pp. 5:1–5:7.
[6] J. G. Koomey, “Growth in data center electricity use 2005 to 2010, USA,

CA, Oakland: Analytics Press, Jul. 2011.
[7] A. Hindle, “Green software engineering: the curse of methodology,” PeerJ

PrePrints, vol. 3, 2015, Art. no. e1832.
[8] C. Sahin, L. Pollock, and J. Clause, “How do code refactorings affect

energy usage?” in Proc. ACM/IEEE Int. Symp. Empirical Softw. Eng.

Meas. NY, USA: ACM, 2014, pp. 36:1–36:10.
[9] M. Harman, P. McMinn, J. T. de Souza, and S. Yoo, “Search based soft-

ware engineering: Techniques, taxonomy, tutorial,” Empirical Software

Engineering and Verification. Berlin, Germany: Springer-Verlag, 2012,
pp. 1–59.

[10] D. R. White, “Genetic programming for low-resource systems,” Ph.D.
dissertation, Computer Science, University of York, York, U.K., 2009.

[11] E. Schulte, J. Dorn, S. Harding, S. Forrest, and W. Weimer, “Post-compiler
software optimization for reducing energy,” in Proc. Conf. Architectural

Support Program. Lang. Operating Syst. New York, NY, USA: ACM,
2014, pp. 639–652.

[12] H. Hoffmann, S. Misailovic, S. Sidiroglou, A. Agarwal, and M. Rinard,
“Using code perforation to improve performance, reduce energy con-
sumption, and respond to failures,” Massachusetts Institute of Technology,
Cambridge, MA, USA, Tech. Rep. MIT-CSAIL-TR-2009-042, 2009.

[13] V. Mrazek, Z. Vasicek, and L. Sekanina, “Evolutionary approximation
of software for embedded systems,” in Proc. Companion Proc. Genetic

Evol. Comput. Conf. Madrid, Spain: ACM, 2015, pp. 795–801.

200 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 1, NO. 3, JUNE 2017

[14] X. T. Nguyen, H. T. Tran, H. Baraki, and K. Geihs, “Optimization of non-
functional properties in internet of things applications,” J Netw. Comput.

Appl., Mar. 2017, doi: 10.1016/j.jnca.2017.03.019.
[15] A. Noureddine, A. Bourdon, R. Rouvoy, and L. Seinturier, “Runtime

monitoring of software energy hotspots,” in Proc. IEEE/ACM Int. Conf.

Automated Softw. Eng. Essen, Germany, 2012, pp. 160–169.
[16] K. Aggarwal, A. Hindle, and E. Stroulia, “GreenAdvisor: A tool for an-

alyzing the impact of software evolution on energy consumption,” in
Proc. IEEE Int. Conf. Softw. Maintenance Evol. Bremen, Germany, 2015,
pp. 311–320.

[17] S. A. Chowdhury et al., “A system-call based model of software energy
consumption without hardware instrumentation,” in Proc. Int. Green Sus-

tain. Comput. Conf. Las Vegas, NV, USA, 2015, pp. 1–6.
[18] S. Hao, D. Li, W. G. Halfond, and R. Govindan, “Estimating mobile

application energy consumption using program analysis,” in Proc. Int.

Conf. Softw. Eng. San Francisco, CA, USA: IEEE, 2013, pp. 92–101.
[19] A. Banerjee, L. K. Chong, S. Chattopadhyay, and A. Roychoudhury,

“Detecting energy bugs and hotspots in mobile apps,” in Proc. 22nd ACM

SIGSOFT Int. Symp. Found. Softw. Eng. Hong Kong: ACM, 2014, pp. 588–
598.

[20] A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow, J. C. Campbell, and
S. Romansky, “GreenMiner: A hardware based mining software reposi-
tories software energy consumption framework,” in Proc. Mining Softw.

Repositories. Hyderabad, India: ACM, 2014, pp. 12–21.
[21] B. Meyer, “Applying ‘design by contract’,” Computer, vol. 25, no. 10,

pp. 40–51, Oct. 1992.
[22] J. Swan and N. Burles, “Templar: A framework for template-method

hyper-heuristics,” in Proc. Eur. Conf. Genetic Program. Copenhagen, Den-
mark: Springer-Verlag, vol. 9025, Apr. 8–10, 2015, pp. 205–216.

[23] N. Burles, E. Bowles, A. E. I. Brownlee, Z. A. Kocsis, J. Swan, and
N. Veerapen, “Object-oriented genetic improvement for improved energy
consumption in Google Guava,” in Proc. Symp. Search-Based Softw. Eng.,
2015, pp. 255–261.

[24] C. Zhang, A. Hindle, and D. M. German, “The impact of user choice on
energy consumption,” IEEE Softw., vol. 31, no. 3, pp. 69–75, May./Jun.
2014.

[25] A. Banerjee, L. K. Chong, C. Ballabriga, and A. Roychoudhury, “Energy-
patch: Repairing resource leaks to improve energy-efficiency of android
apps,” IEEE Trans. Softw. Eng., 2017, doi: 10.1109/TSE.2017.2689012.

[26] M. Rashid, L. Ardito, and M. Torchiano, “Energy consumption analysis
of algorithms implementations,” in Proc. ACM/IEEE Int. Symp. Empirical

Softw. Eng. Meas. Beijing, China, 2015, pp. 82–85.
[27] H. Field, G. Anderson, and K. Eder, “EACOF: A framework for providing

energy transparency to enable energy-aware software development,” in
Proc. 29th Annu. ACM Symp. Appl. Comput. Gyeongju, South Korea,
2014, pp. 1194–1199.

[28] D. Li, S. Hao, J. Gui, and W. G. J. Halfond, “An empirical study of the
energy consumption of Android applications,” in Proc. IEEE Int. Conf.

Softw. Maintenance Evol. Victoria, BC, Canada, Sep. 2014, pp. 121–130.
[29] A. Gupta, T. Zimmermann, C. Bird, N. Nagappan, T. Bhat, and S. Emran,

“Detecting energy patterns in software development,” Microsoft Research,
Tech. Rep. MSR-TR-2011-106, Redmond, WA 98052, Nov. 2011.

[30] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto, M. Di
Penta, and D. Poshyvanyk, “Mining energy-greedy API usage patterns in
Android apps: An empirical study,” in Proc. Work. Conf. Mining Softw.

Repositories. Hyderabad, India: ACM, 2014, pp. 2–11.
[31] N. Grech, K. Georgiou, J. Pallister, S. Kerrison, J. Morse, and K. Eder,

“Static analysis of energy consumption for LLVM IR programs,” in Proc.

Int. Workshop Softw. Compilers Embedded Syst. Sankt Goar, Germany:
ACM, 2015, pp. 12–21.

[32] X. Li and J. P. Gallagher, “A source-level energy optimization framework
for mobile applications,” in Proc. IEEE Int. Work. Conf. Source Code

Anal. Manipulation. Raleigh, NC, USA, Oct. 2016, pp. 31–40.
[33] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and

M. Rinard, “Dynamic knobs for responsive power-aware computing,” in
Proc. Int. Conf. Archit. Support Program. Lang. Operating Syst. Newport
Beach, CA, USA: ACM, 2011, pp. 199–212.

[34] I. Manotas, L. Pollock, and J. Clause, “SEEDS: A software engineer’s
energy-optimization decision support framework,” in Proc. Int. Conf.

Softw. Eng. Hyderabad, India: ACM, 2014, pp. 503–514.
[35] M. Linares-Vásquez, G. Bavota, C. E. B. Cárdenas, R. Oliveto, M. D.

Penta, and D. Poshyvanyk, “Optimizing energy consumption of GUIs in
android apps: A multi-objective approach,” in Proc. 2015 10th Joint Meet.

Found. Softw. Eng, Bergamo, Italy: ACM, 2015, pp. 143–154.
[36] D. Li, A. H. Tran, and W. G. J. Halfond, “Optimizing display energy

consumption for hybrid Android apps,” in Proc. Int. Workshop. Softw.

Develop. Lifecycle Mobile, Bergamo, Italy: ACM, 2015, pp. 35–36.

[37] S. Luke, Essentials of Metaheuristics, 2nd ed. Raleigh, NC, USA: Lulu,
2013.

[38] N. Burles, E. Bowles, B. R. Bruce, and K. Srivisut, “Specialising Guava’s
cache to reduce energy consumption,” in Proc. Symp. Search-Based Softw.

Eng., Bergamo, Italy: Springer-Verlag, 2015, pp. 276–281.
[39] C. A. R. Hoare, “Quicksort,” Comput. J., vol. 5, no. 1, pp. 10–16, 1962.
[40] M. Atallah and M. Blanton, Algorithms and Theory of Computation Hand-

book, Second Edition, Volume 1: General Concepts and Techniques. Boca
Raton, FL, USA: CRC Press, 2009, pp. 3–10.

[41] P. J. Plauger, The Standard C Library. Upper Saddle River, NJ, USA:
Prentice-Hall, 1992.

[42] M. D. McIlroy, “A killer adversary for quicksort,” Softw.: Pract. Experi-

ence, vol. 29, no. 4, pp. 341–344, 1999.
[43] F. Otero, T. Castle, and C. Johnson, “EpochX: Genetic Programming in

Java with statistics and event monitoring,” in Proc. Annu. Conf. Compan-

ion Genetic Evol. Comput., Philadelphia, PA, USA: ACM, 2012, pp. 93–
100.

[44] G. Neumann, J. Swan, M. Harman, and J. A. Clark, “The executable exper-
imental template pattern for the systematic comparison of metaheuristics,”
in Proc. Companion Publ. Annu. Conf. Genetic Evol. Comput., Vancouver,
BC, USA, 2014, pp. 1427–1430.

[45] A. Arcuri and L. Briand, “A practical guide for using statistical tests to
assess randomized algorithms in software engineering,” in Proc. Int. Conf.

Softw. Eng., Honolulu, HI, USA: ACM, 2011, pp. 1–10.
[46] A. Vargha and H. D. Delaney, “A critique and improvement of the CL

common language effect size statistics of McGraw and Wong,” J. Educ.

Behav. Statist., vol. 25, no. 2, pp. 101–132, 2000.
[47] S. Haykin, Neural Networks and Learning Machines (Neural networks and

learning machines), vol. 10. Englewood Cliffs, NJ, USA: Prentice-Hall,
2009.

[48] M. Harman, W. B. Langdon, Y. Jia, D. R. White, A. Arcuri, and J. A.
Clark, “The GISMOE challenge: Constructing the Pareto program surface
using genetic programming to find better programs,” in Proc. IEEE/ACM

Int. Conf. Automated Softw. Eng. Essen, Germany: ACM, 2012, pp. 1–14.
[49] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”

Math. Control, Signals Syst., vol. 2, no. 4, pp. 303–314, 1989.
[50] S. K. Sharma and P. Chandra, “An adaptive slope sigmoidal function cas-

cading neural networks algorithm,” in Proc. Int. Conf. Emerg. Trends Eng.

Technol. Berlin, Germany: Springer-Verlag, Nov. 2010, vol. 87, pp. 105–
116.

[51] Clifford, “Preliminary sketch of biquaternions,” Proc. London Math. Soc.,
vol. s1-4, no. 1, pp. 381–395, 1871.

[52] J. Bell, A Primer of Infinitesimal Analysis. Cambridge, U.K.: Cambridge
Univ. Press, 1998.

[53] B. DasGupta and G. Schnitger, “The power of approximating: A com-
parison of activation functions,” Adv. Neural Inf. Process. Syst., vol. 5,
pp. 615–622, 1992.

[54] F. Agostinelli, M. Hoffman, P. Sadowski, and P. Baldi, “Learning activa-
tion functions to improve deep neural networks,” arXiv:1412.6830, 2014,
http://adsabs.harvard.edu/abs/2014arXiv1412.6830A

[55] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[56] J. Durillo and A. Nebro, “jMetal: A Java framework for multi-objective
optimization,” Adv. Eng. Softw., vol. 42, no. 10, pp. 760–771, 2011.

[57] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The WEKA Data Mining Software: An Update,” SIGKDD Ex-

plorations Newslett., vol. 11, no. 1, pp. 10–18, 2009.
[58] S. Hasan, Z. King, M. Hafiz, M. Sayagh, B. Adams, and A. Hindle,

“Energy profiles of Java collections classes,” in Proc. Int. Conf. Softw.

Eng. Austin, TX, USA: ACM, 2016, pp. 225–236.
[59] R. Abbott, “Object-oriented genetic programming, an initial implementa-

tion,” in Proc. Int. Conf. Comput. Intell. Natural Comput. NC, USA, 2003,
pp. 26–30.

[60] W. S. Bruce, “Automatic generation of object-oriented programs us-
ing genetic programming,” in Proc. 1st Annu. Conf. Genetic Program.

Cambridge, MA, USA: MIT Press, 1996, pp. 267–272.
[61] S. M. Lucas, “Exploiting reflection in object oriented genetic program-

ming,” in Genetic Programming, Berlin, Germany: Springer-Verlag, 2004,
pp. 369–378.

[62] Y. Oppacher, F. Oppacher, and D. Deugo, “Evolving Java objects using
a grammar-based approach,” in Proc. Genetic Evol. Comput. Conf. NY,
USA: ACM, 2009, pp. 1891–1892.

[63] T. White, J. Fan, and F. Oppacher, “Basic object oriented genetic program-
ming,” in Modern Approaches in Applied Intelligence (LNCS 6703), K.
Mehrotra, C. Mohan, J. Oh, P. Varshney, and M. Ali, Eds. New York, NY,
USA: Springer-Verlag, 2011, pp. 59–68.

BROWNLEE et al.: SEARCH-BASED ENERGY OPTIMIZATION OF SOME UBIQUITOUS ALGORITHMS 201

[64] B. Liskov, “‘Data abstraction and hierarchy’ (keynote address),” ACM

SIGPLAN Notices, vol. 23, no. 5, pp. 17–34, Jan. 1987.
[65] B. Meyer, Object-Oriented Software Construction, 1st ed. Upper Saddle

River, NJ, USA: Prentice-Hall, 1988.
[66] N. Burles, J. Swan, E. Bowles, A. E. I. Brownlee, Z. A. Kocsis, and N.

Veerapen, “Embedded dynamic improvement,” in Proc. Companion Publ.

Annu. Conf. Genetic Evol. Comput. Conf., 2015, pp. 831–832.
[67] J. R. Woodward and J. Swan, “Template method hyper-heuristics,” in

Proc. Companion Publ. 2014 Annu. Comput. Vancouver, BC, Canada:
ACM, 2014, pp. 1437–1438.

[68] D. M. Cabrera, “Evolutionary algorithms for large-scale global optimisa-
tion: A snapshot, trends and challenges,” Progr. Artif. Intell., vol. 5, no. 2,
pp. 85–89, 2016.

Alexander Edward Ian Brownlee is currently a Se-
nior Research Assistant in the University of Stirling,
Stirling, U.K., previously worked as a Software En-
gineer in the industry. He has published more than 40
papers in international journals and conferences. His
research interest focuses on value-added optimiza-
tion: Combining metaheuristics and related methods
with machine learning to both find optimal solutions
and reveal insights into the problem, helping people
make better decisions.

Nathan Burles is currently a Software Engineer at
IBM York, York, U.K., previously worked as a Re-
search Associate at the University of York, York, U.K.
He has published a number of papers in international
journals and conferences, as well as refereeing for in-
ternational conferences and workshops. His research
interests include neural networks, metaheuristic op-
timization, and machine learning.

Jerry Swan spent nearly 20 years, before entering
academia, as a Systems Architect and software com-
pany owner. He has published more than 70 papers
in international journals and conferences, has lec-
tured and presented his research worldwide, and has
run international workshops and tutorials on the au-
tomated design of algorithms. His research interests
include metaheuristic optimization, symbolic com-
putation, and machine learning.

