
This is a repository copy of Mereotopology and Computational Representations of the 
Body.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/117837/

Version: Accepted Version

Article:

Stell, JG (2017) Mereotopology and Computational Representations of the Body. 
Computational Culture, 6. ISSN 2047-2390 

This is an author produced version of a paper published in Computational Culture. 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


 1 

Mereotopology and Computational Representations of 
the Body 

John G. Stell, School of Computing, University of Leeds 

Abstract 

Mereotopology is a philosophically motivated approach to space 
originating in the work of A. N. Whitehead. Instead of taking space to 
be constructed from infinitesimally small points, mereotopology starts 
with regions which can experienced by humans. The most common 
computational models of space, in particular coordinate geometry, are 
however essentially based on points, which raises the question of their 
suitability for computational representations of the phenomenological 
body or for computational representations of experiential space. An 
alternative to these models is the computational representation of 
mereotopology, known as Qualitative Spatial Representation (QSR). 
This essay considers whether QSR could be used to provide a 
computational representation of the body which is closer to the body as 
experienced rather than the body as an object of scientific observation. 
A review of the origins of mereotopology is provided together with an 
explanation of the need to distinguish it from topology in its usual 
mathematical sense of point-set topology. The computational 
counterpart of mereotopology is introduced in the form of the Region-
Connection Calculus. This contrasts with the ‘mereotopological lens’ 
used by Stamatia Portanova in her analysis of `virtual choreographic 
objects’. The question of how computation and some form of 
mereotopological lens might combine to represent the body is explored 
using ideas from the qualitative treatment of time as well as space. Iris 
Young described how, in the context of female experience, the lived-
body leaves evidence of subjective experience through the way it 
moves in the world. This raises the possibility of using QSR to 
represent this experience and the essay concludes with the possibility 
of combining qualitative and quantitative computation to explore this. 

 

Introduction 
 
Husserl scholar Donn Welton asks [1] “how does one understand the 
relationship between a natural scientific description of the body and a 
phenomenological one?” In this essay I take this question in a computational 
context. This means asking for an understanding of the relationship between 
computational descriptions of the body from the natural sciences and 
computational descriptions from a phenomenological viewpoint. It is not clear 
at first that phenomenology could lead to computation at all. However, I aim to 
show that this is a possibility by using computational ways of thinking that 
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have developed from mereotopology, a philosophical account of space 
developed by Alfred North Whitehead [2]. 
 
Tensions between the space of scientific things and the space of the lived-
body have been theorised by several generations of phenomenological 
writing, including Husserl, Heidegger, Merleau-Ponty [3], but it is the 
possibility of computation within these tensions that is at issue here. The 
natural scientific body is frequently subject to computational representation, 
and this is an aspect of its scientific description, but how might computation 
help in understanding the lived-body as opposed to the objective one?  
 
The body, however conceived or experienced, moves or at least observes 
motion in space. Mereotopology arose in the context of a number of scholars, 
including Poincaré [4] and de Laguna [5] who were aware of a mismatch 
between the prevailing mathematical theories of space and the bodily 
experience of space. One issue here was that mathematical space started 
with the concept of a point, something in its idealization as an infinitesimally 
small entity that is outside human experience. Whitehead advanced a theory 
of space in which the primary components were not points but ‘regions’. Here, 
the term region should be understood as simply a portion of space that might, 
depending on the context, be two-dimensional or three-dimensional. This 
predated digital computation, and was not developed as a mathematical 
theory by Whitehead.  
 
Today’s representations of space that typically underlie computational 
descriptions of the body are overwhelmingly based on co-ordinate geometry. 
This is especially true of systems that capture the motion of individual bodies 
in detail down to the level of movement of particular joints as well as of 
systems that represent the movement of bodies in space on a larger scale 
such as within a city during the course of a day. These computational 
representations are well suited to Welton’s “natural scientific description of the 
body” but are not the only computational representations available. One of the 
alternatives, that is well established within Artificial Intelligence (AI), originates 
directly from Whitehead’s mereotopology. This alternative is known in 
computer science as the qualitative approach to the representation of space 
[6]. It is qualitative in the sense I will explain in the next paragraph. The 
qualitative approach is often referred to as Qualitative Spatial Representation 
(QSR), although the significance of logic within this framework is sometimes 
highlighted in the terminology Qualitative Spatial Reasoning. The intimate 
connection between space and time means that some authors add ‘temporal’ 
as well to the name. In this essay I will use QSR to refer to include all of these 
aspects of the qualitative approach. 
 
One of the motivations for QSR is the need for what in the AI setting is known 
as ‘commonsense’ spatial knowledge. When describing bodily configurations 
and movements we use qualitative terminology: ‘outstretched arms’, ‘hunched 
up’, ‘ambling along’, instead of specifying that the arms are at some numerical 
angle to the line of the spine or that the distances between finger tips and 
shoulders exceed some quantitative threshold. Giving the location of one 
body part relative to another is done in terms of qualitative spatial 
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relationships such as ‘touching’, ‘close to’, ‘crossing’, ‘enclosing’ and so on. 
These are ‘commonsense’ terms in that they form part of everyday spatial 
discourse and do not depend on specialized knowledge of geometry. QSR 
provides a way of representing aspects of the spatial knowledge expressed in 
terms of this kind in a computational way.  
 
I will explore in more detail below the content of QSR. At this point, the idea of 
representing qualitative spatial knowledge computationally already suggests a 
question: could QSR have a role in computing with subjective corporeal 
experience? As Iris Young argues [7] in the specific context of the female, 
the lived-body leaves traces of subjective experience through the way it 
moves in the world. Could QSR be used to compute qualitative types of 
movement and from these understand ways of being-in-the- world? 
 
This essay has started with two observations: the first that mereotopology 
arose from a mismatch between the space of bodily experience and the 
available mathematical representations of space, and the second that 
mereotopology has a computational realization. These two observations raise 
the central question of the article: the question of whether the computational 
formulation of mereotopology might provide a computational realization of 
bodily experience, a way of computing with the phenomenological aspect of 
the body as opposed to the natural scientific one. I proceed by examining next 
the nature of mereotopology and of its computational realization, QSR. This 
leads to a consideration of the use of mereotopology in the work of Stamatia  
Portanova and the question of how computational mereotopology might relate 
to this work. However, it appears that computation of bodily experience is 
more likely to arise not directly from the pure application of mereotopology but 
from the combination of the qualitative and the quantitative. In particular, 
qualitative relations can be used computationally as abstractions from 
quantitative data instead of being seen as an alternative and separate 
representation. This leads in the conclusion of the essay to a potential 
computational realization of Young’s proposal that the lived-body leaves 
traces of subjective experience through the way it moves in the world. 

Mereotopology as opposed to co-ordinate Geometry 
 
To understand the relationship of computational mereotopology, or QSR, to 
bodily computation it is necessary to consider what mereotopology is and how 
its origins lie in a philosophical critique of the mismatch between the spatial 
world as conventionally represented mathematically and the spatial world as 
corporeal experience. I start with geometry, its computational representation, 
and the distinction between geometry and topology. This enables the 
introduction of mereotopology and the understanding that some of its content 
is opposed to key aspects of the theory of topological spaces. Thus 
mereotopology is seen to be at variance with the conventional approach to 
topology.  
 
Euclidean geometry has a familiar computational representation in co-ordinate 
geometry. What is less well-known is that mereotopology, despite having no 



 4 

quantitative content, can also be represented computationally. We examine 
this representation in the form of the Region-Connection Calculus (RCC). The 
RCC is just one part of the field of QSR.  
 
Euclidean Geometry is rigid. Two triangles in the plane where one can be 
transformed into the other by rigid motions that do not change lengths or 
angles are essentially the same triangle, that is Euclidean geometry cannot 
distinguish them. Topology is more flexible. A triangle and a circle are 
topologically indistinguishable because the bending of the triangle’s sides to 
become the circumference of the circle is a continuous transformation, more 
precisely an invertible, or reversible, continuous transformation that does not 
change the topological properties of the triangle. The distinction between 
Euclidean geometry and topology is exploited by De Landa [8] in expounding 
Deleuze’ use of difference. Euclidean geometry has more differences than 
topology, as in the example of the circle and the triangle. However, we shall 
see that topology, in the mathematically conventional sense of ‘point-set 
topology’ still makes distinctions that appear to have no part in bodily 
experience. 
 
Euclidean geometry is not inherently quantitative. To measure a distance 
between two points and arrive a number is not part of the geometry itself. 
Purely geometric notions only allow the comparison of one length with 
another, not the assignment of quantitative values. The introduction of co-
ordinate geometry by Descartes opened up the way to computational 
representations of Euclidean geometry. This co-ordinatisation allows for 
efficient calculation and underlies most of the models of space used when 
dealing with geographical space and with bodily movement in motion capture 
systems to give just two examples. One of the features of co-ordinate 
geometry is that everything is reduced to points. The volume of a body is a 
collection of points, the surface of a body is a collection of points, a line such 
as the trajectory of a hand moving through the air is again a collection of 
points. The tension between points being the key components of a co-
ordinate geometry model of space and points being quite outside direct 
human experience is just one facet of a mismatch between space as 
experienced and space in common mathematical models.  
 
This mismatch is not between experienced space and computational 
representations but between experienced space and the underlying 
mathematical models themselves. Indeed, the mismatch surfaces well before 
the advent of digital computation. It did not originate with the philosophical 
and mathematical work of Alfred North Whitehead but his contribution is 
central to the current investigation. Whitehead’s work later became known as 
mereotopology, from its combination of mereology (the study of parts in 
relation to wholes) with topological aspects of the description of space. 
However, there are significant differences between mereotopology and the 
theory of topological spaces, so much so that the conception of 
mereotopology as a species of topology is potentially misleading.  
 
The enterprise of constructing space from points has long been questioned. 
The questioning arises directly from considerations of bodily experience. We 
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do not experience points; they are mathematical idealizations. Nicod [9], after 
introducing classical geometry, invites the reader to speculate: “Might the 
point not be the indispensable element of geometry?” He shows that, indeed, 
points are not essential, and that we “can conceive systems which posit the 
point as complex, and which are composed of terms that are easier to 
interpret in nature.” Being easier to interpret in nature can be understood as 
being related to bodily experience. 
 
Philosophically, mereotopology provides an account of space in which regions 
rather than points are the primary elements of the theory. The term ‘region’ 
simply means a portion of space or of space-time. The key aspect of regions 
is that they arise from bodily experience; we can imagine moving through a 
three-dimensional region, a surface of finite extent can be correlated with the 
experience of moving the hand over a physical surface. Such regions exist as 
surfaces or volumes of experience without being constructed out of 
infinitesimal points as in a topological space. Whitehead used a binary relation 
of ‘extensive connection’ between regions. Following contemporary usage, 
‘connection’ will be simpler and need not be distinguished from ‘extensive 
connection’. That connection is a binary relation means that given any two 
regions it is the case that they are connected or that they are not connected. 
Conceptually, it is simplest to imagine two-dimensional regions, and in this 
case two regions being connected would entail that either they overlap or that 
they share some portion of their respective boundaries. In a geographical 
example, neighbouring federal states or counties would be connected without 
overlapping while a constituent county would overlap the country as a whole. 
In the case of a physical body, regions have no such neat demarcations, but it 
could be argued that the thumb is connected, as a three-dimensional spatial 
region, to its corresponding palm without overlapping it, and the palm overlaps 
the hand as a whole. In another three-dimensional example, two objects in 
contact, such as a glass resting on a table, would be connected. 
 
Whitehead [10] credits de Laguna [11] with the basic idea of taking connection 
as the fundamental primitive relation between regions and also with showing 
how parthood could be defined in terms of connection. Saying that one region 
is a part of a second is just shorthand for saying that every region whatsoever 
connected to the first region is also connected to the second. This is, as 
Simons has it, not the “theoretically most satisfactory way to proceed” [12]. It 
combines pure mereology, the theory of parts and wholes pioneered in its 
rigorous development by Lesniewski [13], with the conceptually subsequent 
topological notion of connection. Mereotopology is a topological account of 
space in the sense that if all we know about a region is the totality of other 
regions with which it is connected then we cannot tell what particular 
geometric shape a region has. However, there is a danger in thinking that the 
topological rather than geometric content provides the key to a model of 
space that is more suitable for computing with the body.  
 
Topological spaces are themselves based on points and the distinction 
between open and closed sets in a topological space does not reflect any 
aspect of the physical world that is open to bodily experience. This distinction 
depends on ‘open’ and ‘closed’ having very specific technical meanings within 
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topology in a way that can conflict with everyday terminology. The issue has 
already been discussed by Randell, Cui and Cohn [14] but, in order to 
emphasize the distinction between topology and mereotopology, I will expand 
on what is involved here  

 
I am seated at a desk. I rest my hand on the desk, experiencing a slightly cool 
sensation until the wooden desktop acquires heat from my hand. Qualitatively 
my hand is clearly on the desktop. There is no space between the two to 
interpose even the thinnest possible sheet of paper. This appears 
unproblematic, but how can this be modelled out of points? More precisely, 
given all the infinitely many coordinate locations in three-dimensional space, 
which ones belong to the desk and which to my hand? The problem comes at 
the boundary. We might agree that the upper surface of the desktop is 72cm 
above the floor. Take a point with height coordinate exactly representing this 
72 centimetres, and with its other two coordinates placing it within the region 
of contact between my hand and the desk. Does such a point belong to the 
desk, or to my hand, or to both, or to neither? Distinguishing these options is 
essentially what is at stake in modelling each of the desk and my hand as an 
open or a closed set.  
 
Without being mathematically precise, and just thinking of space as three-
dimensional Euclidean space, the key idea is that a closed set includes its 
boundary points while an open set excludes them. The choice between 
modelling the desk as an open or a closed set only involves the coordinate 
locations exactly 72cm above the floor. If we choose the open option then 
these do not belong to the desk; if the closed option, then they do. This choice 
has no physical meaning in bodily experience – an infinitesimally thin layer of 
points has no physical thickness to experience unlike a sheet of paper or even 
the thinnest possible sheet of gold leaf.  In topology, however, the difference 
between including and excluding this physically intangible layer is important in 
the mathematical theory. 
 
There is more at stake here than the topological boundary having no 
thickness. The sensation of contact between my hand and the desk suggests 
we should not find points which are between my hand and the desk yet 
belong to neither. As physical experience it is clear that if my hand touches 
the desk then there is no intervening space. If both hand and desk include the 
points on their boundaries, that is are closed sets, then this denial of 
intervening space forces the surfaces to share points. This suggests that the 
desk and my hand are actually fused together, whereas we know 
experientially that they can be moved apart without any rupture to their 
physical boundaries. Alternatively, if they are open sets, then their boundary 
points belong to neither. Further options exist, such as one hand being 
modelled as an open set and the other closed, or both being neither open nor 
closed.  
 
These considerations do not demonstrate that modelling the body as subsets 
of the conventional topological model of everyday three-dimensional space is 
impossible. What they do show is that such a topological model will be 
problematic in encouraging distinctions that do not exist in the body itself. The 
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topological model provides an elaborate and sophisticated language allowing 
us to talk about points and to distinguish open and closed sets and to have 
sets that are neither open nor closed. To use this language, via some 
computational representation, to calculate with the body means a 
considerable overhead in translating back from the topological language to 
the body as experienced. The possibility of having a computational model that 
does not encourage a plethora of phenomenologically meaningless 
distinctions has been a significant motivation in developing ways of 
representing the commonsense world in which such distinctions are not 
available. One of these ways is the computational representation not of (point-
set) topology but of mereotopology. Thus we move next to the examination of 
the Region-Connection Calculus as a computational representation of 
mereotopology. 

Computational Mereotopology: the Region-Connection Calculus 
 
While Whitehead was notable as a mathematician, his work on extensive 
connection, which led to mereotopology, was never developed by him as a 
detailed mathematical theory. Certain properties of connection were noted but 
there was no attempt by Whitehead to provide a set of axioms, such as we 
have for topological spaces for example. In fact, as Simons points out [15], 
Whitehead's account “is not only not formally presented, but actually 
inconsistent”, a defect identified by Clarke [16] who also proposed an 
encoding of the account in a formal mathematical logic. The details of Clarke’s 
work [17], and subsequent logical developments of formulation are not 
important here; what is important is that Randell and Cohn and later Randell 
et al., developed a formulation [18] that was not only rendered in a formal 
logic, but was also in a form suited for computational representation. The 
Region-Connection Calculus (RCC), as this formulation became known, is a 
logical system which posits the existence of entities, called regions, which 
have between them a relation called connection. Many practically useful 
qualitative spatial notions including ‘overlaps’, ‘touches only at the boundary’, 
and ‘is equal to’ can be expressed logically just in terms of the relation of 
connection. 
 
One feature of the RCC that is common to other forms of qualitative spatial 
and temporal representation is that it leads to a categorisation of ways that 
the entities it deals with can relate to each other. In the case of the RCC a 
number of different categorisations are possible. The simplest is just whether 
two regions are connected or not. A more useful set is the eightfold 
categorisation known as RCC-8. These are illustrated in Figure 1. 
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Figure 1: Eight possible relations between regions in RCC, one shaded vertically and one 
horizontally. 

What does it mean to have a computational representation of spatial 
relationships such as these? If there are no lengths or distances, no shapes 
or angles associated with regions, no numerical values, of what does 
computation consist? The data in such a computation are statements, for 
example that two specific objects have a certain spatial relationship to each 
other, or that one object is not spatially connected to any other objects. One 
aspect of computation is then the derivation of further statements from these. 
In a very simple and purely mereological example, from B being a part of A 
and from C being a part of B, we can derive the statement that C is a part of 
A. More generally if we know which one of the RCC-8 relations holds between 
B and A and which one between C and B then we can compute what the 
possibilities are for the relationship between C and A. 

Mereotopology as a lens 
 
Mereotopology was partly motivated by the discrepancy between bodily 
spatial experience and point-based mathematical representations of space. 
We have seen that mereotopology has produced a computational counterpart 
in the Region-Connection Calculus. While logic allows computation in the 
RCC, it is by no means clear that basing a theory of space on regions 
automatically means that it will support human spatial thinking more 
effectively than Cartesian co-ordinate geometry. Indeed the value of 
computational mereotopology in this respect has been called into question. 
From a psychological perspective, the cognitive plausibility of certain aspects 
of qualitative spatial relations has been examined [19], and the question of 
whether the spatial ontologies arising from region-based accounts of space 
are actually simpler than the conventional mathematical approaches was 
considered by Pratt and Lemon [20]. 
 
Having introduced computational mereotopology and traced its origin in 
spaces of bodily experience, it remains unclear how it might actually be used 
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in a concrete scenario of bodily computation. To examine one possibility we 
turn to a use of mereotopology where it functions as a conceptual lens to view 
and relate ways of thinking about movements of the body in dance. Topology 
itself as a form of spatial discourse also appears widely elsewhere in the 
social sciences, in cultural studies, and in human geography as Martin and 
Secor [21] show in their consideration of  “post-mathematical topology”. 
Perhaps surprisingly mereotopology does not figure in this account, but as we 
have already stressed, a mereotopological model of a spatial situation is not a 
topological space. Mereotopology is not a kind of topology in the usual 
mathematical (point-set) sense. 
 
Stamatia Portanova uses “the mereotopological lens”  [22] to view the 
dissemination and repetition of popular dance movements such as Michael 
Jackson's Thriller and Psy's Gangnam Style. This work makes use of 
mereotopology as a way of thinking that relates “movement ideas” and the 
imitable motions that constitute dance forms. The “virtual choreographic 
objects” in Portanova’s theory relate to the sequences of movements that can 
be represented by data derived from motion capture systems. The 
understanding that results from this theorisation comes through the use of 
mereotopological terminology and concepts rather than through the use of 
formal logic [23]. However, we shall see that as the relationship of logic to 
language is more fundamental than that of logic to number, the representation 
of statements as logical propositions allows mereotopological description in 
language to have a computational representation. 
 
 To speak of “when the regions of neck turning and shoulder raising are 
connected … ” provides a clear conceptual identification of spatio-
temporal regions, but how could these regions be identified in a specific 
instance of the “Thriller choreographic design” being discussed? Could a 
practical computational mereotopology be applied in this setting? Just 
concentrating on the spatial, as opposed to spatio-temporal aspects, neck and 
shoulder are spatial regions but where do they end? Whilst tracing a route 
down my neck to my shoulder can I detect when my finger leaves the neck 
region or enters the shoulder region? Are bodies equipped with neat 
demarcations, like the boundaries between joints of meat in diagrammatic 
renderings of cattle, pigs, etc in cookery books?  
 
It is even less clear that an arbitrary gesture, a spatio-temporal rather than a 
purely spatial region, could be identified and made an object of computation. 
Of course systems already exist that recognise a specific range of gestures 
that have been learned in advance, but the extraction of meaningful 
movements as spatio-temporal regions from an unconstrained movement of a 
body is quite another matter. Of all the possible regions of space time that 
could be identified as regions, why should certain ones be counted as 
important? Mereotopology is unlikely to help make such decisions and this 
does not appear the best route to lead to mereotopological computation in the 
context of dance. 
 
An alternative possibility lies in the way that computational mereotopology 
uses logical statements and not numerical values. Although it is challenging to 
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see how a ‘neck turning’ could be extracted as a spatio-temporal region in a 
four-dimensional space-time and then have its connection with other regions 
calculated automatically without already knowing that this gesture was 
significant, we can conceive the processing of discourse about such regions. 
That is, a computational representation of the “virtual choreographic objects” 
identified by Portanova might consist of a list of the various spatio-temporal 
regions involved and a list of which of them were connected to which. Such 
data, could be augmented by a logical encoding of the properties of the 
connection relation and the properties of the purely spatial arrangement of the 
body, in terms of what is joined to what. Assembling such data for a number 
of virtual choreographic objects opens the prospect of computation over the 
space of these virtual objects. For example, what similarities are there within 
this space? What fragments of the sequences of gestures in one object 
appear in which other objects? Such a representation could play a role 
analogous to the representations of movements in the languages of Laban 
[24] or Benesch but in a significantly more qualitative manner.  

Differentiated experience revealed in movement 
 
Computation can be a means of categorizing the world, of measuring 
(associating numbers to things); of distinguishing one thing from another — 
whether individuals are the same or not, whether something counts as large 
or small. Computation can also be a tool to understand the world, not in a 
scientific determination, but by virtue of a lens through which the body can be 
viewed and from where an understanding of embodied space (as well as the 
distinctions marked by one body in relation to another) can be conveyed. 
Could this theoretical characterisation work in practice? Could a 
mereotopological computation determine whether a body is black, female, 
gay, handicapped, obese? What does it mean to compute such a thing? How 
might the distinctive category of a specific body manifest itself through an 
aspect of the body open to computational representation? And could 
mereotopology have a role in constructing this representation? 
 
One possible source for such a representation lies in the way that movement 
and outward behaviour in the world reflects individuals’ inner experiences. Iris 
Young reported [25] a number of distinctions between feminine and masculine 
modes of bodily movement and further interpreted what these differences 
reveal about underlying structures in the society some women inhabit. Young 
starts from a study by Straus [26] of differences between boys and girls in 
ways of throwing a ball. Her analysis expands from this specific task to 
consider other bodily movements directed to specific ends. This restriction is 
 

“… based on the conviction, derived primarily from Merleau-Ponty, that 
it is the ordinary purposive orientation of the body as a whole toward 
things and its environment which initially defines the relation of a 
subject to its world. Thus focus upon ways in which the feminine body 
frequently or typically conducts itself in such comportment or 
movement may be particularly revelatory of the structures of feminine 
existence.” [27] 
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Thus, the identification of differing modes of movement is used to uncover 
structures within encompassing societies. Modes of being-in-the-world are 
manifested through manners of bodily movement that are apparent to others, 
and possibly — in different ways — apparent to the individual herself. In a 
subsequent re-examination of the essay, Young [28] finds value in the way 
her framework helps construct “the modalities of women's body comportment 
and spatiality as contradictory”. The analysis Young provides depends on 
qualitative distinctions in movement. For example, “free motion”, “open reach”, 
“ fluid and directed motion”, “motion concentrated in one body part” are 
identified as styles of bodily motion that do not appear to have precise 
numerical definitions. Similarly, terms including “reach, extend, lean, stretch 
…” describe movements that are typically recognizable but are very much 
qualitative. 
 
Young shows how traces of inner experience — ways of being-in-the-world — 
can be read from the outward movement of particular bodies in everyday 
tasks. Similar kinds of inner experience would be expected to leave similar 
kinds of traces. This should apply in Young's case of feminine and masculine 
ways of moving but also, and more speculatively, in other categories of body 
such as black, white, gay, straight, disabled, obese, young, old, and so on. 
Underlying categories interact with transient inner worlds such as happy, sad, 
tired, anxious, hopeful, and so on. We can imagine these interactions as 
complex interweavings of bodily expressions that might be read as messages 
by others.  
 
Deconstructing such messages, or signals, in a quantitative way — a 
sophisticated kind of Fourier analysis splitting the movements into 
combinations of atomic constituents like neat sine waves — seems a 
hopelessly unrealistic idea. But perhaps mereotopology could lead to a 
computational representation of these signals in a qualitative way? If so what 
would the regions be, and how might they be extracted from the world and 
represented as data? This seems even more difficult to imagine in practical 
terms of a digital implementation than extracting the regions of gestures I 
considered in Portanova’s analysis in the previous section. In that case I 
suggested that discourse might provide the raw material that computation 
could manipulate. This possibility arises because discourse and analysis of 
choreographic movement necessarily refers explicitly to spatial configurations, 
even if the lens is not the mereotopological one used by Portanova [29]. In the 
case of experience as revealed by the body, however, the correlation of 
spatial configurations and changing gestures with inner worlds is not often 
explicitly formulated as discourse by the individual. Analyses, such as that by 
Young might be used as a source of discourse for these sub-conscious 
gestures but these are likely to be much less detailed than in the case of the 
deliberate and explicit gestures of choreography.  
 
While Young’s terminology is clearly qualitative in examples such as “free 
motion” cited above, it is unclear how such a generic type of movement leads 
to computable mereotopological regions for the motion of an individual body. 
Seeking a discourse yielding terms representable via a logical representation 
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is likewise not an obvious possibility at the level of individual bodies. The role 
of computational mereotopology here, however, may lie not in the direct 
application of region-based models of space, but instead in the use of 
computational representations of spatio-temporal phenomena that use the 
relational approach to deal with the qualitative. Computational mereotopology 
based on spatial regions is only one aspect of the more general qualitative 
approach to both space and time which we examine next. 

Qualitative Representation of Space and Time 
 
Whitehead’s mereotopology, and its computational representation in the 
Region-Connection Calculus, focuses on relations between regions. For 
example, given two regions they fall into exactly one of the eight relations 
described earlier. Although we need have no numerical information about the 
location of the regions, we can still represent the qualitative spatial 
relationship computationally through the ability of the computer to encode 
logic just as readily as quantitative data.  
 
The use of qualitative relations as a computational representation of the world 
is by no means restricted to the representation of space conceived as regions 
alone. As a first example consider not regions of space but intervals of time. 
In what ways can such intervals be related qualitatively? Some possibilities 
are readily seen: one interval may occur wholly within another, one interval 
may end before another starts, one interval may end at the same time as 
another starts, and so on. In terms of bodily movement an event, such as 
raising the left hand from touching the left thigh to being above the head, can 
have one of these temporal relationships to the event of raising the right hand 
in a similar way. 
 
A set of thirteen possible relationships between time intervals in this fashion 
has been determined by Allen [30]. This is similar to the eightfold classification 
in the Region-Connection Calculus in that the collection of entities, spatial 
regions on the one hand and temporal intervals on the other, has exactly one 
of the relations between every pair of the entities. It is also similar that the 
entities have boundaries and we may speak of connection between temporal 
intervals in exactly the same way as between spatial regions. That is, two 
intervals are connected when they either overlap, sharing a common sub-
interval, or when they touch at a boundary, or in other words, meet at an 
endpoint. However, a key feature of the Region-Connection Calculus is the 
way that the relation of connection alone can be used to define other 
relations. Saying that one region is “a non-tangential part” of another is simply 
a shorthand for a logically equivalent, but to humans far less comprehensible, 
statement in which the only relation mentioned at all is connection. This ability 
to reduce everything to a simple primitive relation of connection is not found in 
Allen’s calculus of intervals. The fact that two intervals touch at their boundary 
but do not overlap does not tell us which interval is earlier than the other. 
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Figure 2. Twelve of the thirteen Allen Relations between temporal intervals. The thirteenth is that 
the intervals are equal 

Allen’s intervals provide us with a qualitative language of thirteen relations. 
The Region-Connection Calculus leads to (but is not the same as) a 
qualitative language of eight relations. The significance of this from a 
computational point of view lies in the mechanism this provides for dealing 
with qualitative knowledge about the world rather than in the connections with 
the mereotopological view of space itself. Systems of qualitative relations are 
commonplace in knowledge representation. The many examples include 
cardinal directions, but one further case is needed here. Consider relations 
between trajectories in space as explored by Kurata and Egenhofer [31]. Here 
the entities being related are lines in two-dimensional space – imagine traces 
of bodily movement, the path taken by a person across a public space for 
example. Just as with the thirteen Allen relations and the eight RCC relations 
we can consider how one trajectory relates qualitatively to another.  
 
In Figure 3, the first diagram shows two arrows starting at the same point, 
crossing over once and ending in different places. The lengths of the arrows, 
their directions, and exactly where they cross are all irrelevant, although any 
specific instance will have particular values for all these things. Similarly, in 
the last example in Figure 3, the key qualitative feature is that the solid arrow 
meets first the body of the other arrow, and then the end of it and then the 
starting point of the other arrow before finally reaching its own end. Any two 
arrows having an arrangement that fits this description stand in the same 
qualitative relationship to each other. 

 
Figure 3. Example relations between arrows in the head-body-tail calculus of Kurata and 
Egenhofer. 

 
The field of Qualitative Spatial Representation is thus much broader than just 
the computational counterpart of Whitehead’s mereotopology evidenced by 
the Region-Connection Calculus. It is this wider field that may well offer the 
most immediate route to forms of computing with the body that are capable of 
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including representations of the phenomenological experience revealed in 
bodily movement as considered by Young. In the final section I examine one 
way in which QSR has found practical application in artificial intelligence. This 
involves the re-introduction of co-ordinate geometry, not in opposition to 
mereotopology but in collaboration with the more general QSR. This will lead 
finally to a concluding vision of how phenomenological experience could be 
introduced into a computational representation.  

Co-Ordination with Geometry 
 
QSR with a combination of space and time has been used in computing 
activities from video observations [32]. This work aims to tell from purely 
visual evidence what activity is being observed. This might be unloading an 
aircraft or a simpler domestic scenario such as making a hot drink. In this 
work a sequence of frames is given which is then processed by computer 
vision techniques to obtain objects that are tracked through time. Objects 
considered in the specific setting include, for example, planes, air-
bridges, and vehicles involved in activities at an airport. In an individual video 
frame each object is reduced to its bounding box, the smallest rectangle 
drawn in the space of the video frame that encloses the object. The 
interaction between these rectangles in each frame is assigned one of three 
qualitative spatial relations: the boxes overlap, they are separate, or one is 
inside the other (including their equality). These interactions are computed for 
each pair of objects in each frame and the temporal relationships between 
these spatial relationships are also computed.   
 
This computational representation of objects moving in space uses two QSR 
calculi: the temporal interval calculus of Allen and a simplified form of the 
RCC-8 calculus where only three spatial relationships are possible. However, 
the spatial relationships are not between the actual objects themselves but 
between rectangles in the co-ordinate space of each video frame which are 
tied to the objects. The mechanism by which spatial and temporal 
relationships is combined is too sophisticated to review in detail here. 
However a bodily example should help to clarify the idea. Seen from a certain 
viewpoint, say in observing a particular choreography, a performer’s left hand 
clenched in a fist might be in front of their face and this configuration is 
maintained while in a shorter interval the right hand is raised above the head. 
Imagining the bounding boxes in a video we would see the box corresponding 
to the face contains within it the box corresponding to the fist and this 
relationship would persist for a number of frames. For a sequence of frames 
within the ones showing the fist in front of the face, we can also see that the 
boxes corresponding to the head and the right hand remain separate. The 
computational representation describes for each pair of objects in a spatial 
relationship the temporal relationship between the intervals in which the 
spatial relationship between those two objects was maintained. 
 
Whitehead’s mereotopology arose from a mismatch between experience and 
point-based spatial thinking. Philosophically in opposition to point-based 
geometry, and in particular to the computational representation of co-ordinate 
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geometry, the practical application of computational mereotopology has been 
found not as an alternative to this geometry but as a component of a lens 
through which the geometry is viewed. This is the lens of abstraction, of taking 
a less-detailed view; it replaces the quantitative data of where exactly in the 
frame-space each bounding box is located with the qualitative description of 
how each pair of bounding boxes is spatially related. At the temporal level, the 
lens replaces quantitative information about the precise frames for which 
spatial relationships are maintained which qualitative statements about 
relationships between the intervals in which this happens. In this setting the 
practical role of QSR does not lie in an independent way of computing with 
space and time. Instead QSR provides a way of abstracting from the 
geometric information; a way of avoiding the problem of not being able to see 
the wood for the trees. 
 
Having seen how QSR can be co-ordinated with geometry, we return to the 
question of the possibility of a computational representation of some aspects 
of phenomenological bodily experience. 

Relational computation and the body 
 
In the extraction of knowledge about activities from purely visual evidence just 
described, two particular sequences of events in the world are recognised as 
instances of the same abstract activity when the lens provided by QSR for 
viewing the detailed geometric representation detects no difference in the two 
sequences. Although the application of these techniques has been, so far, in 
the practical domain of knowledge extraction from video in artificial 
intelligence, it is possible to envisage how they might play a role in a type of 
computational representation of phenomenological experience. 
Consider the description of Steinbock: 
 

“Moving down the street, I exhibit a style of walking, a gait that is 
recognizable to others as “my style,” “my gait.” Each step recuperates 
the sedimented past; my intention towards the future … . I carve out a 
world through this habitual body … .” [33] 

 
This recognizable gait expresses the author’s way of being in the world and is 
an example of the way that bodily movement reveals intentions, past 
experiences, and understandings as in the analysis Young makes of what she 
calls “feminine experience”. But can we use QSR to represent this 
phenomenological experience in a computational way? We have already seen 
that discerning regions, whether as spatio-temporal gestures or as purely 
spatial parts of the body, from visual evidence appears to be extremely 
challenging. The problem lying in the difficulty of deciding how to demarcate 
these regions and also in deciding what regions should be significant. If 
however we think not in terms of region-based space, but look for the 
application of qualitative representations from the wider field of QSR there 
seems to be a way forward.  
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The lens of QSR is used by Sridhar et al. [34] to cluster changing spatial 
arrangements of objects which differ geometrically but which correspond to 
the same activity taking place. The same approach seems feasible with 
movements of the body in the specific case of walking. That is, QSR could be 
used to abstract from the kind of geometric data obtained from motion-capture 
systems for example. As the body walks locations on it trace out trajectories, 
lines in three-dimensional space of where the location has moved. Using 
these lines, the one-dimensional traces of movement instead of extensive 
regions of space or space/time avoids the difficulties highlighted earlier with 
these regions. The general approach is still within QSR although it is arguably 
not a computable form of mereotopology in Whitehead’s sense.  
 
Consider trajectories over a fixed interval of time from just two locations of the 
body, say the two wrists to be specific. Recall that in the case of activity 
analysis from video data the spatial relationship between pairs of objects is 
not considered in three-dimensional space but in the space of each frame in 
the video. This restricted view is a projection into two-dimensional space 
which itself introduces some of the relationships. That is, two objects which 
move so as always to be separate in three-dimensional space can, when 
seen from the camera’s viewpoint, move so that their outlines touch and then 
overlap and then become so that one outline lies wholly within the other. In 
the work on activity analysis, the representation only uses this two-
dimensional flattening but clearly events such as objects touching in three-
dimensional space will result in their two-dimensional outlines touching from 
any point of view.  
 
In the case of the two wrists as the body walks, observing the two trajectories 
from a fixed viewpoint will typically reveal a complex pattern of interaction 
between the trajectories. Taking a fixed interval of time and looking at our two 
trajectories we can consider their qualitative relationship from the chosen 
viewpoint. Maybe the two lines we see are separate, maybe they cross just 
once, maybe one contains a loop which intersects the other twice. There are 
different possibilities for what the qualitative lens allows to be seen from the 
geometric data. Maybe we only consider whether one line crosses the other 
or not, or maybe we take the lines together with their direction, giving us 
arrows as in the qualitative calculus of Kurata and Egenhofer mentioned 
earlier.  
 
QSR is not a fixed body of techniques that have to be applied unchanged to 
new situations. Systems of qualitative relations can evolve to meet the needs 
of new questions such as what features of two-dimensional traces of bodily 
movement are characteristic of particular categories of body or, more simply, 
of styles of walking. These systems cannot be constructed without extensive 
practical experiments but what these considerations indicate is that such 
experiments would be worth making. Having started with mereotopology as a 
philosophical alternative to point-based geometry, we have reached a view in 
which the computational relevance of mereotopology is found by expanding 
from a purely regional view of space to other types of qualitative relations and 
by using the qualitative as an abstraction from geometric data instead of as an 
alternative to it. By using QSR in this way there might be a computational 
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representation of the body in which quantitative data about precise 
movements is abstracted to a representation capable of revealing something 
of inner experience through commonalities of ways of moving. This possibility, 
that being in the world might be evidenced computationally through qualitative 
ways of moving, brings us back to Young’s proposal that the lived-
body leaves traces of subjective experience through the way it moves in the 
world. Implementing this proposal could lead to a novel lens through which to 
explore the interaction between phenomenological experience and objective 
bodily movement. 
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