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Abstract

Hard real-time (HRT) video systems require ad-

mission control decisions that rely on two fac-

tors. Firstly, schedulability analysis of the data-

dependent, communicating tasks within the appli-

cation need to be carried out in order to guaran-

tee timing and predictability. Secondly, the alloca-

tion of the tasks to multi-core processing elements

would generate different results in the schedulabil-

ity analysis. Due to the conservative nature of

the state-of-the-art schedulability analysis of tasks

and message flows, and the unpredictability in the

application, the system resources are often under-

utilised. In this paper we propose two blocking-

aware dynamic task allocation techniques that ex-

ploit application and platform characteristics, in

order to increase the number of simultaneous, fully

schedulable, video streams handled by the system.

A novel, worst-case response time aware, search-

based, static hard real-time task mapper is intro-

duced to act as an upper-baseline to the proposed

techniques. Further evaluations are carried out

against existing heuristic-based dynamic mappers.

Improvements to the admission rates and the sys-

tem utilisation under a range of different workloads

and platform sizes are explored.
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1 Introduction

Current multiprocessor System-on-Chip (MPSoC) platforms (many-cores) have tens or hundreds

of processing elements (PEs) and often need to support an increased number of applications

simultaneously. Network-on-chip (NoC), interconnects have emerged as the promising solution

for communication infrastructure of such systems, due to its efficiency and scalability [7]. Future

technologies with streaming multimedia applications form a large portion of the application space

that exploit these highly distributed on-chip architectures [33]. The processing load imposed by

computation-intensive applications such as video decoding can be partitioned into tasks and dis-

tributed among multiple PEs on the many-core platform, to improve metrics such as performance,

utilisation, energy and to meet timing constraints.

This work looks at the resource-aware embedded systems design problem from the software

perspective. Modern MPSoCs have many on-chip resources, such as PEs, communication chan-

nels and main memory controllers, which have to be allocated to applications to optimise on

high-level metrics such as latency, utilisation and power consumption. Efficient task allocations

can reduce NoC usage, and network contention; thereby reducing the response time of the task

set and communication energy consumption. These allocations are generally performed at the

software level, by a resource manager. On the other hand, from a hardware viewpoint, the NoC

communication bandwidth can be reduced (e.g. reducing the link width or frequency) to maximise

the NoC utilisation and save area and power consumption. However, this work focuses solely on

© Hashan R. Mendis, Neil C. Audsley and Leandro Soares Indrusiak;
licensed under Creative Commons License CC-BY

Leibniz Transactions on Embedded Systems, Vol. XXX, Issue YYY, pp. 1–25
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany



2 Dynamic and Static Task Allocation for Hard Real-time Video Stream Decoding on NoCs

software-based runtime task mapping optimisation, as it assumes the hardware implementation

platform is fixed and it also offers a less costly and more flexible solution.

The nature of allocating and scheduling application tasks to PEs is considered an NP-hard

problem. Design-time (offline/static) mapping techniques that have a global view of the system

and workload, can be used to optimize the task mapping process at system design-time, such that

system resources are efficiently utilised. The complexity and workload characteristics of video

decoding applications depend greatly on the temporal and spatial variations in the video stream;

hence, the workload is highly dynamic and unpredictable. When dealing with live video processing

applications, certain critical application properties are unknown at design-time. Therefore, these

highly varying workloads require runtime (online/dynamic) mapping techniques, based on light-

weight heuristics to allocate and schedule the tasks to PEs whilst the system is operational.

Live video decoding systems have hard timing constraints that need to be guaranteed before

admitting into the system for decoding. These systems often use deterministic video admission

control strategies, which use worst-case timing behaviour of the tasks, resulting in under-utilised

systems [24]. In [23], the authors show that by employing efficient dynamic, application and

platform aware task to PE mapping strategies, the utilisation levels of hard-real time video

decoding systems could be improved. In this work, the mapping approaches in [23] are further

evaluated by comparing against an offline mapper and under different platform and workload

conditions.

Violation of timing constraints in video processing systems can lead to degraded quality, but

the system will continue to operate; hence multimedia systems are generally considered soft real-

time (SRT). However, there exists a range of systems that depend on video streams that need

to be processed with hard real-time (HRT) guarantees. For example, in vision-based robot con-

trol systems, accuracy and functionality of the feedback control systems depend on processing

video frames with tight timing restrictions. Another example is in the telesurgery/teleoperation

industry [14], where a doctor performs surgery on a patient without physically being in the same

location. These safety-critical systems require responsive and reliable communication technology

as well as hard real-time guarantees from the video processing systems to function safely. Further-

more, next generation automated video surveillance systems, will require processing and tracking

objects in hundreds of video streams in real-time; missing deadlines in these systems would lead

to reduced security and delayed response to threats.

Contributions: In order to address the aforementioned issues, we present the following novel

contributions:

A more precise definition of the application model [23, 24] used to represent decoding of mul-

tiple MPEG-2 video streams is presented, including its execution and communication char-

acteristics (Section 3.1). Very few other work consider data parallel video decoding using a

scalable, distributed memory, message-passing based communication model.

A response-time analysis (RTA) based, application-aware, deterministic admission controller

(D-AC) is presented in [24]. This work (in Section 4) describes, the underlying D-AC process

algorithmically. Formal definitions of taking into account task graph precedence constraints

within the RTA is also presented.

We present new evaluations (Section 7) of the two application-specific, blocking-aware heuristic

based runtime mapping approaches introduced in [23]:

We present an upper-baseline for evaluation - a genetic algorithm (GA) based static/design-

time task mapping optimisation approach (Section 6), with a novel fitness function that

considers video stream schedulability. This design-time mapper is compared against our

proposed dynamic mappers and other existing runtime mappers.
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We present new experimental treatments: varying both the platform size and workload

computation-to-communication ratio, which gives new insight to the strengths and weak-

nesses of each evaluated mapping approach.

The rest of this paper is organized as follows. Section 2 presents related work in task mapping

and scheduling. Section 3 introduces the system models. Section 4 presents the deterministic ad-

mission controller. The proposed heuristic based runtime task mapping algorithms are described

in Section 5, followed by the design-time static mapper in Section 6. Section 7 presents the

experimental design and discusses the results. Section 8 concludes this paper.

2 Related work

Mapping of tasks onto PEs broadly falls under two categories: static and dynamic mapping.

Static mappers (executed at design time) have a complete view of the application, workload

and platform and attempt to find a suitable task to processor placement to optimise for different

metrics such as execution time, throughput, resource utilisation and energy consumption [29]. For

example, Butazzo et al. [6] proposes a static mapper that uses a branch-and-bound algorithm to

partition and map a taskset with precedence constraints, to reduce the computational resources.

However, they assume negligible communication cost between the tasks. Simulated-annealing

based, offline, task and memory mapping for mixed-criticality NoCs have been introduced by

Giannopoulou et al. [13]. Their optimisation technique accounts for the interferences on the shared

memory and the NoC, however they assume a time-triggered NoC with static routes regulated

at the source, which is contrary to our priority-based wormhole switching NoC architecture. The

static mapper presented in this work uses a RTA and points-based fitness function which evaluates

the schedulability of a video stream.

Dynamic mappers (executed at runtime) use heuristics to optimise certain metrics such as

application execution time, energy consumption, temperature, reliability and resource utilisation

[29]. Carvalho et al. [8] exploit the hop-distance and path load between cores, as a dynamic

mapping heuristic to reduce communication packet latency, energy and channel occupation. This

work was later extended by Singh et al. [30] to include PEs that can accommodate multiple tasks.

Kaushik et al. [21] adapts these heuristics to balance both computation and communication, by

using a pre-processing stage to achieve a balanced and reduced task-graph. There also exist hybrid

mapping approaches (e.g. [27]), where design-time computed mapping templates are merged with

runtime heuristic based decisions to reduce average power dissipation. This work focuses on

dynamic mapping strategies that exploit both the application and architecture characteristics.

Ditze et al. [9] presents an extension to the least-laxity-first scheduling algorithm to schedule

the MPEG decoding tasks and an admission controller that enforces QoS constraints of paral-

lel video streams. However, their feedback based admission controller does not fully guarantee

the schedulability of admitted video streams, but attempts to reduce over-reservation of system

resources. Bamakhrama et al. [4] presents an analytical framework to determine the minimum

number of processors required to schedule a set of streaming applications with given I/O rates,

while guaranteeing the maximum achievable throughput. Similarly, in [1] the critical-paths of

task-graphs are mapped onto the PEs first, to reduce the average end-to-end worst-case exe-

cution time of a set of streaming applications, such as MP3 and H.263 decoders. They use

utilisation tests to determine mapping feasibility and consider the inter-core communication cost

as a constant cost per hop on the 2D mesh interconnect. Contrarily, we model the interference

patterns of the task communication message flows on a predictable, pre-emptive interconnect.

Utilisation based schedulability tests, have been used to guarantee timing properties of stream-

ing applications, when using a contention-free TDMA based communication interconnect [15].
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However, inefficient resource reservation in TDMA interconnects lead to unused bandwidth and

connection setup overheads limits scalability [12]. In recent work by Dziurzanski et al. [10], RTA

based schedulability tests have been used to determine if a taskset is schedulable on a processor.

RTA tests take into account the interference caused by higher priority tasks and flows. However,

using RTA based tests online, is expensive and in [10], they perform approximate tests to reduce

the overhead and use a feedback-based control-theoretic approach to reclaim slack in order to

improve admission rates. Similarly, in [25], tasks have been mapped to PEs that have the highest

amount of average slack, where the PE slack values are periodically monitored and sent to a

global manager. They state that a trade-off has to be made between NoC communication load

imposed by slack monitoring and the monitoring frequency which can affect mapping results.

Contrary to many of the discussed related work, in our study we model a homogeneous

multicore platform connected via a scalable, network interconnect with priority-based arbitration

(similar to QNoC [5]); which makes it easier to predict worst-case network contention scenarios.

Furthermore, unlike in existing approaches we do not use any monitoring feedback at runtime,

which results in no communication overhead in the resource management technique. To the best

of our knowledge, the runtime NoC resource management techniques (i.e. runtime task mapping

and admission control), proposed in this work are the only ones aimed at HRT video decoding,

to consider both the interference caused by task blocking and to exploit known video stream

properties.

3 System model and problem formulation

3.1 Application model

This section outlines the multi-stream video decoding application model, with focus on how

the abstract workload is generated. Frames in each video stream, can be of type: I (Intra), P

(Predictive) or B (Bi-directional) encoded; i.e. frame type denoted ft = {I, P, B}. We assume

parallel decoding of multiple MPEG-2 decoded video streams, with a fixed, independent, group-

of-pictures (GoP) structure of IPBBPBBPBBBB (decoding order). According to the MPEG-2

specification this 12 frame GoP structure is recommended to balance compression, facilitate

reasonable random-access points in the stream and to manage error propagation [11]. Decoding an

MPEG stream can be parallelised at different levels of granularity (GoP/frame/slice/macroblock-

level) [22]. In our application model, we assume frame-level data parallel decoding, which does

not involve stream instrumentation.

As shown in the system overview diagram in Figure 1a, the application model has a hierarchical

structure. At the top most level are stream based workflows (Wi), each containing video streams

V Si with arbitrary number of N independent jobs (denoted by Ji). Each of the video streams will

have varying resolutions (res(V Si) = frame height×frame width). A job, represents an MPEG

GoP and are modelled as a directed acyclic graph (DAG) with a fixed dependency structure, as

depicted in Figure 1b. Each node in the task graph (TG) represents a real-time frame decoding

task τi and edges represent traffic-flows (flows for short), denoted as Msgi, which are reference

data that needs to be sent to one or more dependent tasks (also referred to as child tasks). A task’s

execution can only start iff its predecessor(s) (also referred to as parent tasks) have completed

execution and their output data is available. As shown in Figure 1b, certain tasks in the TG can

be executed in parallel (e.g. P4, B2, B3) if all the precedence constraints are met.

A task τi is characterised by the following tuple: (pi, ti, xi, ci, ai); where pi is the fixed priority,

ti is the period, xi is the actual computation cost in terms of execution time, ci is the worst-case

computation cost and ai is the arrival time of the task τi. Tasks are sporadic, preemptive and have

fixed priority. Individual task deadlines are unknown; however, each job is considered schedulable
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(a) (b)

Figure 1 (a) System overview diagram; (b) MPEG GoP data precedence and task communication

graph (Communication traffic between tasks and main-memory not illustrated)

if it completes execution on/before its end-to-end deadline (De2e = |Ji| /fps). fps denotes the

frame rate of the video stream, which we assume is fixed at 25fps for all video streams. A

task upon completing its execution sends its output (i.e. the decoded frame data) as a message

flow to the PEs executing its child tasks (dependent task). A message flow, denoted by Msgi is

characterised by the following tuple: (Pi, Ti, PLi, Ci); where Pi is the priority, Ti is the period,

PLi is the payload and Ci is the basic latency of the message flow Msgi. It is important to note

that, if one or more of a task’s children are assigned to a single PE, then only one data flow is

sent to the PE in order to avoid flow redundancy. Each task also has memory read and write

flows which are not illustrated in Figure 1b. Flows inherit the ti and pi of the sender tasks and

the PLi of transmitting the reference frame data is (res(V Si)×bits per pixel).

3.1.1 Deriving the task execution cost

The computation cost of decoding a video frame and the payload of reference data message flow,

will greatly depend on the temporal and spatial variations of video streams. MPEG decoding

consists of operations such as parse, decode, motion compensation (MC), inverse quantisation

(IQ) and inverse discrete cosine transform (IDCT) etc. At the lowest granularity, MPEG contains

blocks and based on how they are encoded they can be categorised into 9 types as explained by

Tan et al. [31]. Depending on the type of frame and decoding steps performed on the frame, the

frame type to block type relationship may vary, as shown in Table 1. Based on this information,

we can model the frame execution cost as given in Eq. (2). Here, the wj term denotes the weight

of a type j block and the w0 denotes the constant term in the regression model [31]. As per [31],

the regression coefficients wj are fixed for a given decoder regardless of the type/resolution of

the video. We model the number of type j blocks (denoted Mj) as a uniform random variable

between {0, max Mj}, where max Mj as defined in Eq. (1), is the maximum amount of blocks for

a given video resolution.

Figure 2 shows frame decoding time distributions of 200 jobs (GoPs) which were synthetically

generated, as per the execution model described before. The distributions show that P/B-frames

have a larger range than I-frames due to the lower amount of coding options used when decoding.

Furthermore, I-frames on average take longer to decode because I-frames have a high number

IDCT only blocks which have a higher weighting. These distributions correlate well with previous
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Figure 2 Frame decoding time distribution of synthetically generated workload (720 × 576 resolution

video, 200 jobs)

MPEG real video stream decoding analysis seen in [19]. As defined in Eq. (3), the WCET ci of a

task of type ft in a video stream is the maximum of all ft type task’s execution costs xi; therefore,

different frame types would have a different ci. For example, in Figure 2, the I-frame decoding

task WCET is ≈ 0.08s, the P-frame decoding WCET is ≈ 0.07s and the B-frame decoding WCET

is ≈ 0.06s. We assume the actual execution cost xi is unknown to the dynamic task mapping

algorithm at runtime.

We emphasise that the task WCET that this work is considering assumes all data a task needs

is available in the local memory at the start of its execution. The data required is provided by the

reference data transfers from parent tasks and reading encoded data from main memory, both

of which occur before the task execution. The communication latencies related to these data

transfers are dealt with separately as part of the end-to-end response time calculation presented

in the preceding sections.

max Mj =
res(V Si)

block_size
, (0 if block Mj not enabled in frame type) (1)

xi = w0 +
∑

1≤j≤9

wj × rand(0, max Mj) (2)

ci(ft) = max{xi of τi∈V Si | frame type = ft} (3)

Table 1 Relationship between MPEG block types and frame types (adapted from [31])

Frame type (ft) M1 M2 M3 M4 M5 M6 M7 M8 M9

I-frame X X

P-frame X X X X

B-frame X X X X X X X

3.1.2 Task priority assignment

The task and flow priority assignment between different jobs of the same video stream do not

change. The resource manager assigns a priority to each task in the first job (J0) of the video

stream upon admission. These priories are then fixed and the exact same priority values are used
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for tasks in subsequent jobs of that stream. This is supported by the fact that each job in the

stream has the same number of tasks and dependency structure.

Isovic et al. [18], introduces a quality and dependency-aware frame priority assignment which

we have adapted to fit our 12-frame GoP sequence as given in Eq. (4). For a given video stream,

task priorities are assigned according to Eq. (5), where tasks of low resolution video streams

are given higher priority over high-resolution video streams. Here fix denotes the frame index

within the GoP. This assignment ensures low-resolution video streams will have a lower chance

of blocking resulting in lower response-times than high-resolution streams. The (tc × offset)

component ensures that unique job-level priorities and earliest arrival time is used to select

between equal resolution video streams (tc denotes current time). Flows inherit the priority of

their source tasks. A higher pi value denotes a higher priority.

GoP pr
fr = {12, 11, 4, 7, 10, 3, 5, 9, 2, 6, 1, 8} (4)

pi = (res(V Si) − GoP pr
fr [fix]) + (tc × offset) (5)

It is important to note that this work is not trying to solve the priority assignment problem or

propose a new assignment scheme, for dynamic workloads. This work purely attempts to optimise

on the task allocation, for a given priority assignment. We have selected a sensible assignment

policy that reflects common practice in the video streaming industry. The proposed mapping

heuristics can work around any other priority assignment approach.

3.1.3 Job arrival rate

Video stream start/end times are arbitrary. We assume the video streams have a variable bit

rate (VBR), which means the video stream data will be arriving at the input of the system at

a variable rate. In reality, the input could be more bursty in nature due to the variability in

the transmission medium (e.g. the Internet). However, we assume that the VBR encoding has

a user-specified upper bound related to the stream frame-rate; therefore the job arrival rate can

be modelled as sporadic with a minimum inter-arrival time. The arrival rate of a job is therefore

modelled as per Eq. (6) where Jrate
min and Jrate

max are workload parameters, usually set to 1.0 and 1.3

respectively. Decreasing Jrate
min , would increase the chance of new jobs arriving before the deadline

of the previous job has passed, and increasing Jrate
max too much can make the system more idle.

We assume all tasks of a job Ji arrive at the same time instant and hence, the period of all tasks

and flows (i.e. ti and Ti) within a job are equal and set to the minimum inter-job arrival time

(i.e. 12/25=0.48s, for 25fps and 12 tasks per job).

Arrival rate(Ji) = rand(Jrate
min ×De2e, Jrate

max×De2e) (6)

3.2 Platform model

The multi-core platform is composed of P homogeneous PEs connected by a NoC. The NoC

platform model uses wormhole packet switching, fixed priority preemptive arbitration, has a

2D mesh topology and uses the XY deterministic algorithm for routing such as in [5]. XY

deterministic routing assures that the message flows will always use the same resources of the

NoC (i.e. same path) to deliver data from a given specific source and destination. This property

is a requirement of the flow response time analysis used by our deterministic admission controller.

Therefore, any deterministic routing technique that guarantees a network path is compatible

with the presented analysis. The NoC link arbiters are priority-preemptive thus making it easier
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to predict the outcome of network contention for specific scenarios. All inter-PE and PE-to-

memory communication occurs via the NoC by passing messages. Each PE contains a local

memory, a priority-preemptive local scheduler, task queue and a dependency buffer. The PE

upon completing a task’s execution, transmits its output to the appropriate PEs dependency

buffer. Tasks can begin execution on a PE iff all its data dependencies have arrived at the

dependency buffer. If two tasks are mapped on the same PE it is assumed they do not need to

communicate through channels of the NoC; hence the output of the source task will immediately

be available at the dependency buffer of its PE. Higher priority tasks that have all dependencies

fulfilled can interrupt already running lower priority tasks. Once a task finishes its execution the

local scheduler picks the next highest priority task with dependencies fulfilled, to be executed.

Similarly, higher priority flows can interfere lower priority flows that share the same network link.

The global input buffers are located in the main memory, and the task data (i.e. the encoded

MPEG frame data) must be transmitted from the main memory via the NoC to the respective

PE before execution (referred to as memory read). Additionally, after the MPEG decoding task

has completed, its output (i.e. decoded MPEG frame data) is transmitted to the frame-buffer

located in the main memory (referred to as memory write). The model assumes an encoded

MPEG-2 I-frame (with ≈ 40% frame compression), is twice as big as a P-frame and 4 times as

big as a B-frame [19]. The encoded frame byte size and the decoded frame byte size represents

the memory read and write traffic payloads respectively. We assume memory read flows have

higher priority over data and memory write flows. The platform model assumes 4 main memory

controllers (MMC), placed on the four sides of the NoC. A task communicates with the MMC

closest to it.

3.3 Open-loop runtime resource manager

The resource manager (RM) of the system (Figure 1a), performs task mapping, priority assign-

ment, admission control (AC) and task dispatching to the PEs. In our platform model we assume

the RM is a separate entity/component, however it could also reside in one of the PEs. Task

mapping and priority assignment is performed only once for a video stream at the admission of

the first job J0; all subsequent jobs of the video stream follow the initial mapping and priority

assignment. The RM also maintains a runtime mapping table (TMT ) of the jobs of every active

video stream in the system. This mapping table contains the following task information:

Real-time properties: {ci, ti, pi}

Non-real-time properties: {ft, fix, }

Task mapping: indicates which PE a specific task τi is mapped to.

The TMT is populated with each task of the first job J0 of an admitted video stream. Once

the video stream has stopped/finished, the task entries related to the stream are removed. The

RM also has knowledge of the fixed TG dependency structure used by all video streams. The

above TMT information is looked-up during the deterministic admission control and runtime

task mapping operations. For example, the task mapping techniques proposed in this work,

make use of the information in the TMT (e.g. task WCET, priorities and mapped PE) to

determine the worst-case interference for a mapped task. Therefore, unlike in previous work

[15, 30], our proposed resource management technique is open-loop and does not require any

feedback/monitoring mechanism.
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3.4 Problem statement

A deterministic admission controller (D-AC) decides whether to reject or admit a video stream,

based on the schedulability of the new and existing video streams. This enables the system to

give a hard real-time video stream decoding guarantee to the end-user. However, the D-AC tests

result in under-utilised system resources, due to the pessimistic nature of the RTA [23,24]. With

proper task to PE mapping approaches, admission rates and system utilisation can be improved.

This is challenging as certain workload characteristics such as execution time, arrival patterns and

task and flow interferences are unknown a priori. We present heuristic based runtime mapping

approaches that consider the current state of the PEs and the task and flow blocking behaviour

in order to minimise communication and computation load of the processing elements. The goal

is to develop task mapping heuristics that will lower the worst-case response-time (WCRT) of

the video stream such that the D-AC will increase its admission rate, leading to better utilised

systems.

4 Deterministic admission control

The deterministic admission controller (D-AC) is invoked when a new video stream request is

received. It performs RTA to determine if any of the new or existing/active video streams would

miss their end-to-end deadline, by admitting the new video stream. Algorithm 1 shows the steps

involved in D-AC decision process. Firstly, upon arrival of a new video stream, the online task

mapping heuristic is initiated to assign tasks and flows, processor and priority allocations (line

1). The task mapping details are then added temporarily to the TMT (line 2), to account for

the additional resource contention incurred by potentially admitting a new stream. If the video

is rejected, then the entries are removed (line 22). After the task mapping, the flows (and their

real-time properties) resulting from the mapping can be generated (line 3).

With the information above, the calculation of the WCRT of tasks and flows of all video

streams in the system can be initiated (lines 4-11 of Algorithm 1). Higher priority tasks and

flows of one stream can block lower priority tasks and flows of other active video streams. A flow

Msgi can have two types of interference sources - direct and indirect interference. The direct

interference flow set (denoted Sid) are higher priority flows that have at least one physical link

in common with the observed traffic-flow. The indirect flow set (denoted Sii) are higher-priority

flows with no shared links with the observed flow but share at least one link with a flow in Sid.

Eq. (9) given in [16, 28] is used to calculate the upper bound for the worst-case network latency

Ri of each traffic flow (Msgi) in wormhole switching, fixed priority preemptive NoCs. The task

WCRT (ri in Eq. (7), originally introduced in [3]) is used as release jitter JI
i of message flows. In

Eq. (7), hp(τi) is the set of higher priority tasks mapped on the same PE and we have excluded

the non-interfering task set ni(τi) due to the known precedence constraints. The basic latency

Ci of a message flow, calculated using Eq. (8), is the flow transmission latency when no flow

contention is present. In Eq. (8), Hops is the number of hops between source and destination,

RL is the link traversal time, numFlits is the payload size and HL denotes the time needed to

route a packet header. In Eq. (9), we adjust Sid, such that non-interfering flows ni(Msgi) of

flow Msgi are excluded due to task precedence constraints. The terms tj and Tj in Eq. (7) and

Eq. (9) denote the task and flow periods respectively. The calculated WCRT of tasks and flows

are saved in TMT to be used to calculate the WCRT of the video stream job.
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rn+1
i = ci +

∑

∀τj∈{hp(τi)\ni(τi)}

⌈
rn

i

tj

⌉

cj (7)

Ci = (HL × Hops) + (RL × (Hops − 1)) + (HL × numFlits) (8)

Rn+1
i = Ci +

∑

∀Msgj∈{Sid\ni(Msgi)}

⌈

Rn
i + rj + JI

j

Tj

⌉

Cj (9)

Algorithm 1 Deterministic admission control pseudo-code

Input: T MT : Runtime task mapping table;

Real-time task properties of new video stream request V Sk

Output: Boolean AC-decision : admit/reject

// Perform mapping and derive resulting flow set

1: Map all tasks τq ∈ V Sk to NoC PEs and assign priorities.

2: Temporarily insert V Sk task mapping details to T MT

3: Derive all valid periodic flows in system (for above mapping configuration) : F Ttemp

// Calculate WCRT of each task and flow in T MT

4: for all τi ∈ T MT do

5: Find interference set hp(τi) (exclude ni(τi))

6: Calculate task WCRT - Eq. (7), save value in T MT

7: end for

8: for all Msgi ∈ F Ttemp do

9: Find interference sets Sid, Sii (exclude ni(Msgi))

10: Calculate task & flow WCRT - Eq. (9) , save value in F Ttemp

11: end for

// Calculate W CRT (JCP
i ) of all video streams

12: for all V Si ∈ T MT do

13: vsp : init. structure for all simple paths of V Si job

14: for all paths ∈ job(V Si) do

15: Calc. path response-time =
∑

Msgq∈path

Rq; save to vsp

16: end for

17: Critical path of V Si job : JCP
i = max{vsp}

// Check video stream schedulability

18: if W CRT (JCP
i ) ≤ De2e then

19: ac_decision = T RUE

20: else

21: ac_decision = F ALSE

22: Remove V Sk details from T MT

23: return ac_decision

24: end if

25: end for

26: return ac_decision

In lines 12-24 of Algorithm 1, the WCRT of the critical path of the job WCRT (JCP
i ) is

calculated. Recall that the video streams use a fixed job structure, hence there are fixed number

of simple paths of the TG known a priori. For each path of a video stream job job(V Si) the

summation of the WCRT of all nodes and edges is calculated (line 15); note that the WCRT of

the source task is included in Ri as release-jitter rj . The job critical path JCP
i is the path with
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the maximum accumulated cost (line 17). A video stream is granted admission, iff the expression

given in Eq. (10) is true for the new and all active video streams in the system (lines 18-24 in

Algorithm 1); this guarantees that the worst-case timing requirements of all existing and new

video streams will be successfully met. It is important to note that the JCP
i and WCRT (JCP

i )

are properties of a given task-to-PE assignment, hence task mapping is integral to the D-AC

decision.

WCRT (JCP
i ) ≤ De2e (10)

4.1 Exclusion of non-interfering tasks and flows

Precedence constraints of the tasks are taken in to account when calculating the task and flow in-

terference. For this analysis, it is assumed there is no overlap between consecutive jobs within the

same video stream. The end-to-end RTA given in [16] assumes a synchronous pipeline execution

mode, where multiple instances of the TG or portions of the TG (i.e. from a prior job in the same

video stream) can be simultaneously executing in the system. In this work, we assume there is no

overlap in execution between consecutive jobs of the same video stream. Hence, when deriving

the hp(τi) of a task, we can exclude dependent/successor tasks. Likewise, when calculating the

direct (Sid) and indirect (Sii) flow interference sets the task precedences are taken into account

to determine non-interfering flows.

We now formally present the non-interference set of tasks and flows with respect to precedence

constraints. Within the application TG, there exists different simple paths (also referred to as

paths). A simple path is a topologically ordered set of nodes and edges which does not have

repeating vertices and are a subset of the TG. For example, the simple path (P1⇒B9) consists

of the frame decoding tasks P1, P4, P7, B9 and the flows between them. We define two distinct

simple path types to and from a node in the TG. The ancestral simple path (expressed as (τ0⇒τi))

consists of path from root node (τ0) to the target node τi; the descendant simple path (expressed

as (τi⇒τ−1)) consists of the path from target node τi to any leaf node (τ−1) in the TG. For

example in the TG (Figure 1b), if we consider τi = P4, then the nodes I0 and P1 will lie on the

ancestral simple path, and the nodes P7 and one leaf node B8/9/10/11 will lie on the descendant

simple path. Hence, the non-interference set of a task τi can be defined as per Eq. (11). Similarly

flows in ancestral and descendant simple paths will not interfere with the target flow as given by

Eq. (12). Here, the (Msgi : τs → τd) component denotes the target flow Msgi and its source and

destination tasks τs and τd respectively.

ni(τi) = τk ∈ {τ0⇒τi ∪ τi⇒τ−1} (11)

ni(Msgi : τs → τd) = Msgk ∈ {τ0⇒τs ∪ τd⇒τ−1} (12)

5 Proposed runtime mapping approaches

5.1 Least worst-case remaining slack (LWCRS)

The difference between the task deadline and worst-case computation cost (i.e. task slack), is

used as a primary metric when determining the task-to-PE mapping. The heuristic (Algorithm 2)

takes into account the worst-case blocking factor introduced by hp(τi) to determine the PE that

provides the least worst-case remaining slack (LWCRS) for a target task τi. The mappers make

use of the information stored in the runtime TMT (as described in Section 3.3), to determine the

worst-case blocking for a task. Algorithm 2, iterates through the provided PE_list and calculates

the following for each task-to-PE mapping: RemSlackt - the worst-case remaining slack (WCRS)
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Algorithm 2 _get_PE_least_slack pseudo-code - Find PE with the least worst-case remaining

slack

Input: τi : target task; TMT : copy of the runtime task mapping table; PE_list : list of PEs to search

Output: tuple : (result PE, search result (boolean))

1: P E_packing = { }

2: for all P Ei ∈ P Elist do

3: // obtain following from TMT

4: Get MP T (P Ei) : tasks already mapped on P Ei

5: Get hp(τi), lp(τi) : high/low priority tasks in MP T (P Ei)

// get worst-case remaining slack (WCRS) to target task

6: τslack
i : task slack w.r.t estimated sub-task deadline

7: RemSlackt = τslack
i −

∑

∀τj ∈hp(τi)

cj

// get WCRS on low-pri mapped tasks

8: RemSlacklp = { }

9: for all τj ∈ lp(τi) do

10: RemSlackj = τslack
j −

∑

∀τk∈hp(τj )

ck

11: Insert RemSlackj to RemSlacklp

12: end for

// populate local data structure

13: if RemSlackt > 0 and ∀x ∈ RemSlacklp|x > 0 then

14: P E_packing [P Ei] = RemSlackt +
∑

RemSlacklp

15: end if

16: end for

// if none of the PEs in the list will provide a positive WCRS, then choose the PE with min. utilisation

17: if ∀x ∈ P E_packing|x > 0 then

18: P Ej = index of MIN(PE_packing)

19: return (P Ej , FALSE)

20: else

21: P Ej = _get_PE_min_util(TMT, PE_list)

22: return (P Ej , FALSE)

23: end if

of τi - taking into account blocking induced by hp(τi) (line 7); RemSlacklp - the WCRS for each of

the lower-priority tasks already mapped on the PE (lp(τi)), taking into account the (ci) of τi (line

10-11). A weight (w = RemSlackt + RemSlacklp) is then assigned to all PE in PE_list(line 14);

the PE with the lowest w provides the LWCRS. The heuristic attempts to find the PE mapping

that will result in a tight temporal-fit, without missing the deadlines of τi nor any of the already

mapped tasks. Individual task deadlines are unknown, hence they are estimated via the technique

proposed in [20], where the cumulative remaining taskset slack is divided proportional to ci. If

a suitable PE with positive slack is not found, the algorithm will return the PE with minimum

utilisation.

5.2 LWCRS-aware mapping

The LWCRS-aware mapping approach (Algorithm 3), makes use of the LWCRS utility function

explained in Section 5.1 as well as tries to minimise distance between communicating tasks. The

primary objective of the algorithm is to tightly pack (i.e in the temporal domain) each task of the
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Figure 3 Illustration of LWCRS mapping closest parent selection (left) and IPC mapping task

grouping (right)

job, into the PEs, in order to leave room for tasks of future video streams. The LWCRS mapper

will ensure that initial PEs in the NoC will be heavily utilised before selecting the next available

PE, whilst not violating the subtask deadlines. This increases the number of simultaneous video

streams that the system can handle without missing any deadlines. LWCRS-aware mapping is

a general purpose technique, that can be applied to map other types of applications that have

dependency/communication patterns.

The algorithm of LWCRS mapping is given in Algorithm 3. The algorithm uses a copy of the

runtime task mapping table TMT (maintained by the RM). The existing task-to-PE mappings

and mapped task properties are stored in the TMT. Algorithm 2 is used within Algorithm 3, to

find a PE which gives the LWCRS (lines 3 and 12). Firstly, the PE which gives the lowest slack

is selected to map the root node of the TG (line 3). For all other nodes in the TG, the algorithm

maps each node with an increasing hop distances distance from its closest parent (lines 9-17). A

nodes’ closest parent is defined as the node with the longest path from the root node. For example

in Figure 3, B5 has 2 parents - P4 and P1; however P4 is the closest parent due to the longer

path from the root node (therefore τP ARENT
B5 = P4). If no suitable PE with remaining slack is

found, the algorithm maps the target node to the PE with minimum utilisation (line 17-20). The

algorithm attempts to reduce long-communication routes between communicating tasks in order

to reduce network congestion and communication costs. Each node in the TG is mapped onto a

PE that gives the LWCRS as well as close proximity to τP ARENT
i (lines 6-15). TMT is updated

in each iteration.

5.3 I and P frames combined mapping (IPC)

Unlike the LWCRS-aware mapper, IPC exploits known application-specific communication and

dependency patterns. By inspecting the video job TG (Figure 3), we can see that the I and P

frames lie on the longest-path in the TG. We define longest-path as the path in the TG with

most number of non-repeating nodes (assuming edge weights are equal). Furthermore, the path

I0 → P1 → P4 → P7 is most often the critical path (CP) of a job, assuming B-frame decoding

tasks do not experience severe blocking. Figure 3 (right) illustrates the TG after the grouping of

I and P frames. Combining the I/P frames together has two distinct advantages : (a) it reduces

the NoC congestion/interference as fewer flows need to be injected into the NoC; (b) it reduces

the end-to-end response time of a job since the TG’s potential CP is executed as soon as possible,
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Algorithm 3 LWCRS-aware mapping heuristic algorithm pseudo-code

Input: all tasks in the job (J0), TMT : copy of the runtime task mapping table

Output: task to processing element mapping : MPG (τi → P Ei)

1: for all unmapped tasks : τi ∈ J0 do

2: if τi is root_node then

3: (P Ei, found)=_get_PE_least_slack(τi, TMT, PEs)

4: Map (τi → P Ei); Update TMT;

5: else

6: // obtain following from TMT

7: Get τP ARENT
i : parent task with max route cost.

8: Get P EP
i : PE that τP ARENT

i was mapped onto

// get neighbours of increasing hop_counts

9: for hc = 1 to MAX_HOP S do

10: N_P EP
i = _get_neighbours(P EP

i , hc)

11: Append P EP
i into N_P EP

i

12: (P Ei, found) = _get_PE_least_slack(τi, TMT, N_P EP
i )

13: if found is TRUE then

14: Map (τi → P Ei); Update TMT;

15: break loop; Go to step 1;

16: end if

17: end for

// if no suitable PE is found, select closest min. util. PE

18: if a suitable PE is NOT found then

19: N_P EP
i = _get_neighbours(P EP

i , hop_count = 1)

20: P Ei = _get_PE_min_util(TMT, N_P EP
i )

21: Map (τi → P Ei); Update TMT

22: end if

23: end if

24: end for

25: return TMT

without waiting for message flows. The IPC mapping technique works as follows. Firstly, the

I and P frame decoding tasks of the job are grouped and mapped to the lowest-utilised PE on

the platform. The B-frame decoding tasks are mapped as close to their parent tasks with a 2

hop distance constraint. The LWCRS heuristic (Algorithm 2 described in Section 5.1) is used to

select a PE within the 2 hop distance region. B-frames have no inter-dependencies, hence they

can be processed in parallel. The B-frame decoding computation cost is lower than I/P frames,

hence they can occupy smaller temporal gaps in the PE task queues.

6 Static hard real-time mapper

Static-mapping algorithms are used for multiprocessor systems when the application characteris-

tics and workloads are known at design-time. To evaluate our heuristic based dynamic mapping

techniques, we compare against a static search-based hard real-time (HRT) mapper as introduced

by Sayuti et al. [26]. We adapt and modify this static mapper to suit our application and platform

model. In this particular technique, the authors use a genetic algorithm (GA) based optimisa-

tion strategy to optimise the task to PE mapping approach. GAs have been used in the past to

optimise task allocation for multi/many-core systems [2, 32]; however the work done in [26] was

the first to explore task mapping of hard real-time tasks whilst optimising multiple objectives.
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Figure 4 The GA pipeline from [26] adapted and integrated to the experimental design flow

GAs start with a random initial population of candidate solutions and gradually evolves the pop-

ulations towards the global optimum using a given fitness statistic. In Sayuti et al. [26] the GA

individual is represented by an integer-based chromosome structure indicating the PE mapping

for each task. As illustrated in Figure 4, their algorithm uses simple evolutionary GA pipeline

constructs such as single-point crossover, bit-flip mutation and binary tournament selection to

generate a new population for each generation. They use elitism to ensure the best individual of

each generation is advanced to the next generation. A multiple objective fitness function (applica-

tion schedulability - Eq. (9) and power dissipation for every individual mapping solution) is used

to guide a random search towards solutions of increasing fitness. It is important to note however

that due to the random nature of solution development, GAs do not guarantee optimality even

when it may be reached.

This static HRT mapper is purely used as an upper baseline, to evaluate the proposed heuristic

based mapping techniques. If workload characteristics are known at design time, we can use

a static HRT mapper to find a mapping configuration that will optimise our chosen metrics.

This obtained experimental upper bound is valuable to assess the performance of the dynamic

mappers results for a given workload. Dynamic mappers rely on fast heuristics and do not have

complete knowledge of the workload at runtime; hence an indication of a good heuristic is one

which shows results as close as possible to the upper-bound. However, recall that static mappers

not only rely on full knowledge of the workload, but also incur a considerable runtime execution

overhead. In this work we show via experimentation that even for small NoCs, under low workload

conditions the static mapper will take up to several hours to find a reasonably optimised mapping

configuration. The computation complexity of the fitness function will increase exponentially as

the workload increases. For these reasons, GA-based static HRT mappers are not suitable for use

in runtime mapping.

The GA-based HRT mapping optimisation given in [26] has been significantly, adapted to

be able to integrate it with our application model and metrics. The red shaded components in

Figure 4 indicate the changes made to the GA and the design flow with respect to the GA in [26].

In the experimental design flow, the same workload is first generated and input into the GA

pipeline to obtain mapping solutions. The final GA mapping solutions are then taken and used

in the system simulator to obtain performance measurements and compare against the mapping
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results provided by the dynamic mappers. The following sub-sections outline the adaptations

done to the GA design in [26].

6.1 Points-based GA fitness function

Unlike in [26] we are concerned with the end-to-end (E2E) schedulability of an entire video stream

rather than individual tasks/flows. We use a novel points-based single-objective fitness function

as described in Algorithm 4. The loop in lines 3-12 evaluates and accumulates the points for each

V Si in the workload (WL). Video streams that have a higher WCRT (JCP
i ) than their deadline

are given a positive point based on the amount of which they have missed their deadline (i.e.

WCRT (JCP
i ) − De2e). On the other hand video streams that are fully schedulable are awarded

a negative point relative to their slack (i.e. De2e − WCRT (JCP
i )). The ratios in line 7 and 10

of Algorithm 4 indicates the extent to which a video stream is unschedulable/schedulable. In-

dividuals with negative points have a higher fitness score than those with positive points. This

points-based fitness scoring system would enable the GA to pick individuals with task mappings

that have lower distributions of WCRT (JCP
i ). For example consider the following scenario. Two

GA individuals, A and B have equal number of fully schedulable streams and one unschedulable

stream each, but they have fitness scores -1.65 and -1.15 respectively. This indicates that As

unschedulable video missed its deadline by a lower margin than Bs unschedulable video. This dif-

ferentiation can not be made if an integer based fitness score is used, where both these individuals

would be ranked equally.

Algorithm 4 Points-based GA fitness function

1: points = 0 //Calculate points for all videos in workload (W L)

2: for all V Si ∈ W L do

3: Calculate WCRT of all sporadic tasks and flows of V Si

4: Find JCP
i of V Si

5: if JCP
i ≥ De2e then

6: // unschedulable

7: points += 1 ×
W CRT (JCP

i
)−De2e

De2e

8: else

9: // fully schedulable

10: points += −1 ×
De2e−W CRT (JCP

i
)

De2e

11: end if

12: end for

13: return points

6.2 Application-specific adaptations

In addition to the novel fitness function, we introduce certain extensions to the application model

in [26] to accommodate our application specific task-model. For example, precedence constraints

were taken into account when calculating the task/flow interference sets (Section 4.1). Memory

read/write traffic has been incorporated such that for each mapping configuration (i.e. each

chromosome) tasks-to-MMC selection (Section 3.2). Redundant flows are removed for each chro-

mosome when multiple children are mapped to the same PE (Section 3.1).
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6.3 GA design optimisations

Due to the extensions above, the fitness evaluation of the GA becomes more complex. To alleviate

this issue, we limit the recursion depth of the WCRT analysis in Eq. (9). Furthermore, a hash

table of task mapping solutions and corresponding fitness scores are maintained and looked-up

to avoid having to evaluate the same gene more than once. Subsequently, the GA evolution

cycle terminates immediately if it encounters an individual with an acceptable mapping solution.

Such a mapping solution will result in all the admitted video streams to be schedulable; in

other words, the maximum WCRT (JCP
i ) of all the video stream is less than the E2E deadline :

max
V Si∈W L

(WCRT (JCP
i )) < De2e

7 Evaluation

7.1 Experiment design

We wish to evaluate the performance of the proposed task mapping schemes in terms of admission

rates and PE utilisation. Experimental evaluation is performed through a discrete-event, abstract

simulation of a 3x3 NoC platform with the characteristics described in Section 3. The PEs are

assumed to be operating at 200MHz and the NoC frequency is set to 10MHz with 7 clock-

cycle routing latency and 16 byte link width. A lower NoC frequency (i.e. low bandwidth) is

assumed, in order to induce an experimental condition with a reasonable amount of network

utilisation/congestion. The NoC and the PEs use priority-preemptive arbitration and scheduling

respectively. The light-weight NoC simulation component described in [17] is used to model the

NoC communication traffic and interference patterns. The D-AC in Section 4 is used for all the

simulation runs of this experiment.

Synthetic abstract video streams are used as workloads for all experiments as described by the

application model in Section 3.1. The task execution costs are calculated using the block-level

frame decoding cost model described in Section 3.1.1. All synthetic streams have a fixed frame

rate of 25fps and 12 frame GoPs. The inter-arrival time of the video stream jobs are uniformly

distributed between 1.0×De2e and 1.3×De2e.

7.1.1 Varying workload

The total workload introduced to the system can be defined as a summation of the resolutions

of all the video streams admitted and active in the system, as shown in Eq. (13). Mapping

approaches for a range of workload values are evaluated; starting from a single video stream

with 230×180 resolution to 9 parallel video streams with 720×576 resolution. Each experiment

contains 30 simulation runs with different random seeds, which results in varying video stream

arrival patterns and task execution costs.

Total workload value =
∑

∀V Si∈W L

[frame_h(vi) × frame_w(vi)] (13)

7.1.2 Varying communication-to-computation ratio and NoC size

The mapping techniques explored in this paper use runtime heuristics such as communication

path load, hop-distance and PE utilisation. Hence, it is interesting to explore the performance

of these techniques, when the application communication-to-computation ratio (CCR) varies.

For example, if an application is computation-bound (low CCR) then standard load-balancing

heuristics may be sufficient. On the other hand if the application is communication-bound (high



18 Dynamic and Static Task Allocation for Hard Real-time Video Stream Decoding on NoCs

CCR) then communication-aware heuristics may perform better. Several previous work in the

state-of-the-art in dynamic task mapping [1, 21] does not consider the influence of varying CCR

in their results, which may lead to biased results.

A single video stream can be represented by a sporadic TG as shown in Figure 1b. Thus, the

CCR of a single video stream can be calculated as the ratio between the total cost of the commu-

nication edges over the total task cost in the TG, as shown in Eq. (14). Here, the communication

basic latency and the task WCET are the communication and task costs respectively. The CCR

of a workload can then be defined as the mean CCR of all the parallel video streams included

in the workload (Eq. (15)). To change the CCR, we keep the task computation cost constant

and gradually vary the NoC frequency. To evaluate the scalability of the proposed mappers we

perform experiments under different NoC sizes and CCR combinations. Data from 30 uniquely

seeded simulation runs are obtained. Each run consists of a fixed number of simultaneous video

streams but with different arrival patterns and varying task execution costs.

CCR(V Si)
︸ ︷︷ ︸

CCR of a single
video stream

=
Total edges cost

Total nodes cost
=

∑

∀e∈edges

Ci

∑

∀τi∈Ji

ci
(14)

CCRW L =

∑

∀V Si∈W L

CCR(V Si)

|V S|
(15)

7.1.3 Metrics

For each simulation run we measure the video admission-rates and PE and NoC busy times. The

admission rate is calculated as a ratio between the admitted video streams over the total video

stream decoding requests. A D-AC ensures all admitted videos will be fully schedulable. The

percentage PE busy time (also referred to as PE utilisation) is measured as the ratio between the

total active (busy) time of all PEs in the system over the total simulation time. The percentage

NoC busy time (also referred to as NoC utilisation) is the ratio between the total active time of

the NoC links over the total simulation time.

The objective is to increase the admission rate of the system and thereby decrease the PE idle-

time. Higher admission rates using lower NoC usage is advantageous because it can potentially

lead to lower power consumption.

7.2 Baseline mapping heuristics

7.2.1 Dynamic Mapping Heuristics

The path-load based best-neighbour (BN) heuristic defined in [8], and the pre-processing (PP)

based algorithm defined in [21] are used as baselines. The original BN algorithm was adapted to

support multiple tasks and have used PE utilisation to determine available PEs, while maintaining

path-load as the main heuristic. Since the dependency pattern of the tasks are assumed to be

known beforehand, the pre-processing stage of the PP algorithm is performed at design-time.

While PP takes into account both the communication and the computation properties of the tasks

the BN heuristic focuses mainly on communication link congestion. Evaluation is also performed

against two load-balancing task allocation heuristics which attempt to evenly distribute the load

of the application across available PEs. The lowest utilised (LU) heuristic iterates through all

tasks in the job and maps each task to the analytical lowest utilised PE. The worst-case utilisation

of a PE is measured as given in Eq. (16), where MPT (PEi) denotes all tasks mapped on PEi.
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Since we do not know the actual execution cost of the tasks, we use the worst-case computation

cost (ci). At the end of each iteration the respective local mapping table is updated with the new

task-to-PE mapping. Finally, the least mapped (LM) heuristic, selects the PE with the minimum

number of mapped tasks according to the runtime task-mapping table.

U =
∑

∀τi∈MP T (P Ei)

[
ci

ti

]

(16)

7.2.2 Static GA-based HRT mapper

The GA-based HRT mapper (GA-MP) described in Section 6 is used to act as an upper-baseline

for our proposed task mapping techniques. The workload consisting of multiple video decoding

streams are generated and fed into both the GA-MP and the abstract simulator (Figure 4).

Task-to-PE mappings solutions obtained via the GA-MP are then evaluated in the discrete-event

abstract simulator. The performance of the static mappings obtained from the GA-MP are

then compared with the dynamic mapping strategies. The crossover and mutation probability

rates are important parameters in the GA-pipeline and for all our experiments we use (0.5, 0.01)

respectively. Higher workloads will be executed with a larger number of GA-evaluations to suit

the increasing complexity of the search problem.

7.3 Discussion of experimental results

7.3.1 Dynamic mapper performance under workload variation

Figure 5 shows the performance of the different task-mapping heuristics in terms of mean admis-

sion rate and mean PE and NoC busy time, as the level of the workload is increased. Results

obtained by using the dynamic task mappers (i.e. IPC, LWCRS, PP, BN, LM and LU) are

first discussed. The admission rates for all mapping types decrease as the workload is increased,

because for high workloads the AC cannot guarantee the timing requirements will be met, and

hence rejections will be made. Using the IPC and LWCRS task mapping heuristics the WCRT

of the jobs can be reduced, thus allowing the D-AC to admit a higher number of video streams

than the baseline mappers. When comparing with the baseline heuristics, the proposed IPC and

LWCRS dynamic mapping heuristics provide a 10%-20% improvement in low workloads, and an

average of 5% improvement in high workloads, for admission rates. It is important to note that

even though IPC outperforms LWCRS, IPC is an application specific heuristic which makes use

of known characteristics of the video stream.

The PP heuristic outperforms the other baselines (BN, LM, LU) because it attempts to balance

computation and communication by grouping the tasks in a job. The admission rates when using

BN drops lower than LU and LM in the highest workload levels because the path-load heuristic

alone is not sufficient. Higher admission rates result in more tasks being processed by the system,

leading to increased PE utilisation as depicted in Figure 5(middle). However, the PE utilisation is

a function of both the number of video streams admitted and their spatial resolution (e.g. 4 high

resolution streams will yield a higher utilisation than 5 lower resolutions streams). With respect

to the dynamic mapping heuristics, we can see that as the workload increases, the PE utilisation

also increases; however in workload level 225.4 × 104 we see a decline because the admission

rates are low as well as the admitted video streams are of a lower-resolution. The proposed IPC

and LWCRS heuristics outperform the baseline dynamic mappers, except in the case where PP

performs better than LWCRS at workload level 189.8×104, where the admitted video streams by
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Figure 5 Workload vs. (Top: Admission rate; Middle: PE busy time; Bottom: NoC busy time)

PP is of higher resolution than LWCRS. Across the different workloads, the proposed dynamic

mapping methods show an improvement of 5%-15% in PE busy time for workloads over 83.1×104

The NoC busy time results shown in Figure 5(bottom) complement the PE busy time results

and offers further insight into the mapping behaviour. Lower PE busy times indicate the PEs

are busy waiting for data to arrive at the local buffers, thus increasing the NoC usage. Out of

the proposed dynamic mappers, IPC utilises the NoC more than LWCRS. LWCRS produces a

tighter grouping of tasks than IPC resulting in lower number of PEs being used. Tightly grouping

tasks reduces the number of data flows but does not reduce memory flows; therefore now memory

traffic becomes a bottleneck, primarily congesting the local-link. Hence, LWCRS could still have

a higher WCRT (JCP
i ), leading to reduced admission rates compared with IPC. In IPC, because

4 tasks in the job (i.e. I0, P1, P4, P7) are always mapped together, the algorithm will try to find

other PEs to map the B-frame tasks. This leads to more PEs being used than LWCRS and thus

a higher NoC busy time than LWCRS. LU, LM mappers have the highest NoC usage due to

the sparse distribution of tasks on all PEs. PP shows similar NoC usage to IPC, but it does

not consider blocking, hence, it might place the grouped tasks to PEs that might cause higher

interference.

7.3.2 Static mapper performance under workload variation

In the Figure 5, GA-MP results denote the task mapping using the genetic algorithm based

static hard real-time mapper. The number of GA evaluations taken to obtain these results are

given in Figure 5(top-right table). GA-MP has full knowledge of the task characteristics and

is used as an upper baseline. The trend of the results closely match the dynamic mappers (i.e.

admission rates decrease and PE busy times increase as the workload is increased). Even though

the GA-MP outperform all the dynamic mappers at every workload level, we notice a gradual

decrease in relative improvement as the workload level increases (e.g. at workload 225.4 × 104

the IPC and GA-MP show comparable mean admission rates). Under certain conditions the GA-

MP and the proposed dynamic mappers show similar results in admission rates, but the GA-MP
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Figure 6 GA-MP performance analysis for different workload levels

has higher PE busy times (e.g. at workload 143.4 × 104 LWCRS show similar admission rates

but poor PE utilisation). This is because in certain scenarios the GA-MP obtains a mapping

which rejects lower resolution video streams but accepts higher resolution streams, thus giving

rise to higher PE busy times. We noticed that GA-MP uses only a few cores per job (on average

2 or 3 cores). Furthermore, the GA tries to map children of the same parent together on the

same PE, thus avoiding redundant data traffic flows. Due to these reasons, the GA-MP mapping

significantly reduces the number of flows injected into the NoC. This reduces the NoC busy time,

flow contention and therefore leading to higher admission rates.

As the workload increases, the number of the tasks and flows as well as their computation

and communication costs increase; hence increasing the complexity of the optimisation problem.

To compensate, the number of evaluations also needed to be increased to obtain a reasonable

performance level. To illustrate this, the GA-based mapping optimisation is executed for the

ten different workloads with a fixed generation and population size (500, 200 respectively). The

search terminates when an acceptable mapping solution is found. Results (Figure 6) show that

the total execution time (red bars) of the GA increases exponentially as the workload level is

increased and all except the lowest workload level show an execution time in the order of tens of

hours. Workload 189.8 × 104 shows a lower execution time, because the number of parallel video

streams are 6 even though the workload value is higher. Note that there is a sudden increase in

GA execution time from 112.4 × 104 to 143.4 × 104. This is because the number of video streams

have increased from 5 to 7 and also because the GA does not terminate early, as no solution can

be found for the higher workload within the fixed number of evaluations. Hence, both the number

of parallel video streams and their resolutions are directly related to the GA execution time. The

GA was able to find a satisfactory solution for workloads up to 112.4 × 104, however a solution

was not found for the larger workloads. Similar to the execution time, we see that the lowest

achieved max
V Si∈W L

(WCRT (JCP
i )) gets worse as the workload level increases; showing that as the

search space and complexity increases the GA evaluations become computationally expensive as

well as is unable to find a solution within a reasonable time frame.
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Figure 7 Normalised analytical W CRT (JCP
i ) obtained using different dynamic mapping approaches,

under varying CCR and NoC sizes.

7.3.3 Scalability and CCR variation evaluation

Figure 7 shows the performance variation in the different dynamic mapping techniques when eval-

uating for scalability and different communication loads. The y-axis of each subplot in Figure 7

displays the normalised calculated analytical WCRT (JCP
i ) of the video streams for different

mapping techniques under different NoC sizes and varying CCR values. CCR < 1.0 denote

computation-bound workloads while CCR > 1.0 denotes communication-bound workloads. In

this experiment, we disable the admission-controller, hence all generated video streams are ad-

mitted; still, lower analytical WCRT (JCP
i ) distributions are preferred as this will lead to higher

number of video streams being schedulable. The level of workload is kept proportional to the num-
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ber of PEs in the platform, such that on average (over 30 seeded runs), the workload=2.2 × 105

per PE. The analytical WCRT (JCP
i ) of all mappers increase as the CCR increases, since the

communication latency has effectively increased. LU and LM are computation-centric mappers,

and therefore their performance deteriorates significantly under higher CCR conditions. Further-

more, LU and LM may map communicating tasks further apart as the NoC size increases, which

results in a broader distribution of data points. BN does not group tasks together, but takes

into account the communication channel load as a metric; hence, it performs better than LM

and LU in higher CCRs but still shows a higher WCRT (JCP
i ) distribution when compared to

PP, LWCRS and IPC. The proposed IPC mapping method perform relatively better than all the

baselines in all conditions while the proposed LWCRS method performs better than BN, LU and

LM. The PP heuristic which attempts to balance computation and communication, is a strong

competitor to the proposed mapping techniques. It performs better than LWCRS for CCR > 0.5

due to better grouping of the TG, but still shows a slightly higher WCRT (JCP
i ) distribution

when compared with IPC. However, the lower bottom whiskers of LWCRS tells us that in certain

workload conditions it can produce a lower WCRT (JCP
i ) than PP.

8 Conclusion

This paper formally describes a multi-stream video decoding application model and an algorithm

for a deterministic admission controller, which uses video stream schedulability tests. A novel

point-based, WCRT-aware fitness function for a design-time hard real-time task mapper is pre-

sented and compared against dynamic mapping techniques. This work describes two application

and platform aware runtime task mapping strategies, that attempt to decrease the end-to-end

response-time of the video stream decoding jobs. The first (LWCRS) technique attempts to

tightly pack tasks in the temporal domain by using a novel worst-case remaining slack-aware met-

ric of the tasks. The second technique (IPC) groups the I and P frame decoding tasks and maps

them to a single PE, and the remaining tasks according to LWCRS. The techniques improve the

admission rates of a hard real-time deterministic admission controller and thereby increasing sys-

tem utilisation. We also present extended evaluation of these two mappers against other existing

runtime mappers, under varying platform sizes and communication-to-computation loads.

Simulations carried out reflect that the proposed dynamic task mappers show an improvement

of about 10%-20% in mean admission rates and an improvement of about 5%-15% in PE busy

times, when compared against other existing heuristic based dynamic task-mappers. Furthermore,

better admission rates and PE utilisation can be obtained at a lower usage of the NoC, which

could potentially lead to lower power consumption in the system. The results from the static hard

real-time GA-MP mapping shows that for lower workloads a suitable mapping solution can be

achieved within a reasonable amount of time (3 hours on average). However, for larger workloads

the GA-MP can take on average 100 hours to achieve a task-to-PE mapping which is only 5%-10%

better than the proposed dynamic mappers.

Results also show that mapping heuristics that rely purely on communication/computation

load does not scale well as the NoC size and workload increases. This work shows how the

dynamic mappers behave under different CCR workloads. LWCRS and IPC group tasks together

to minimise communication and to reduce the computation interference; they perform significantly

better than the BN, LU and LM baselines and marginally better than the PP mapping technique

under high CCR workloads. By taking into account task and flow blocking factors, better mapping

decisions can be achieved. For communication and memory bound applications such as parallel

video stream decoding, the performance results of the mapping techniques at higher orders of

CCR are of particular interest. Potential further work in this area will be to explore combined
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priority assignment and mapping techniques to reduce the worst-case response time further.
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