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Abstract

There is an urgent need to refine strategies for testing the safety of chemical

compounds. This need arises both from the financial and ethical costs of ani-

mal tests, but also from the opportunities presented by new in-vitro and in-silico

alternatives. Here we explore the mathematical theory underpinning the for-

mulation of optimal testing strategies in toxicology. We show how the costs

and imprecisions of the various tests, and the variability in exposures and re-

sponses of individuals, can be assembled rationally to form a Markov Decision

Problem. We compute the corresponding optimal policies using well developed

theory based on Dynamic Programming, thereby identifying and overcoming

some methodological and logical inconsistencies which may exist in the current

toxicological testing. By illustrating our methods for two simple but readily gen-
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eralisable examples we show how so-called integrated testing strategies, where

information of different precisions from different sources is combined and where

different initial test outcomes lead to different sets of future tests, can arise

naturally as optimal policies.

Keywords: Optimal Integrated Testing Strategies, Dynamic Programming

1. Introduction

Notions of what society deems to be an acceptable testing regime for new chem-

icals are in a constant state of flux. Until 1999 it was acceptable in the EU

to perform tests on guinea pigs in order to determine whether certain cosmetic

products were hazardous for human skin (Program (1999)). After 1999 this was5

replaced by the mouse LLNA (Local Lymph Node Assay), another animal-based

method. More recently the EU ethical climate has changed again; by 2018 no

new chemical to be used in the cosmetics industry can be tested on animals.

Instead, chemicals need to be classified reliably using information from emerg-

ing in-vitro and in-silico assays, supplemented where possible by mathematical10

models. These new methods are likely to be less accurate than in-vivo tests,

but are generally cheaper and less ethically problematic to implement. This

presents a problem common across toxicology in general: can we make good

predictions about the risks associated with new chemicals without using ani-

mals at all? In other words, how best can we assemble uncertain information15

based on non-animal assays, so as to arrive at optimal ethical testing regimes?

Many important papers have emerged on this topic (Gabbert and Weikard

(2010),Gabbert and van Ierland (2010),Gabbert and Weikard (2013),Jaworska J

(2010),Jaworska et al. (2013),Jaworska et al. (2015),Norlen H (2014)).20

Indeed (Gabbert and Weikard (2010)) develops a theory that determines the op-

timal exposure level of any particular member of the population to the chemical

and uses this theory to solve a decision problem of how to pick which chemical

to test for hazard first from some finite set of possible chemicals. (Gabbert and
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van Ierland (2010)) develops a framework allowing one to compute the optimal25

battery of tests to assess a generic toxicological endpoint by means of a cost

effectiveness analysis (CEA). By contrast, (Gabbert and Weikard (2013)) devel-

ops a framework in which adaptive cost sensitive Integrated Testing Strategies

can be derived by means of a Value of Information technique (VOI). The au-

thors there distinguish between decision problems for competitive businesses30

and regulators. Furthermore, (Jaworska et al. (2015)) begins by improving and

generalising previous work (Jaworska J (2010),Jaworska et al. (2013)) by devel-

oping more accurate potency class predictions of skin sensitisation potential of

chemicals via theory of Bayesian Networks and then uses these results together

with VOI framework to derive Optimal Integrated Testing Strategies for the35

assessment of chemical hazard of chemicals. Finally, similar to (Gabbert and

van Ierland (2010)) and (Gabbert and Weikard (2013)), (Norlen H (2014)) uses

CEA in the context of performing a cost effectiveness analysis in the special

case of acute oral toxicity.

40

However, none of these explicitly accounts for the individual differences between

humans both in the exposure (i.e. environmental variability) and in the toxicity

corresponding caused by that exposure (i.e. individual variability). To be more

specific, only Gabbert and Weikard (2010) introduces a concept of toxicity for-

mally but treats it as constant for all members of the population. Moreover,45

none of these papers combines these with the financial costs of chemical risk

classification in a mathematically rigorous fashion.
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Any new testing strategy must be able to deal rationally with contradictory

evidence. For example, one in-vitro assay may predict that certain chemical is

a skin sensitiser, while another in-silico assay may predict that the same chem-50

ical is actually safe. The classification part of the argument in van der Veen

et al. (2014) deals with this problem using a combination of majority voting and

Bayesian Statistics. Jaworska J (2010) proposes assembling a Bayesian Network

and combines this with the Weight-of-Evidence approach to overcome this is-

sue. Thomas et al. (2012) proposes a strategy of ”averaging probabilities”, using55

empirical estimates of precision of each assay and then averaging these out in

one ”meta-assay”. Each of these solutions may be pragmatic and defendable

within the authors’ given problem, but an over-arching logical framework would

be a helpful step in confirming the value and risk associated with the removal

of animal tests.60

In what follows we shall propose a mathematical framework which seeks to

simultaneously overcome the shortcomings mentioned above. The issues of im-

precision, and of environment- and individual-level variability, fall naturally

within theories developed for evolutionary ecology (Currey et al. (2007)). The65

efficient assimilation of evidence can then be handled by well-developed theories

of Markov Decision Processes (Bellman (1957)).

We finish this chapter by surveying previous work in Toxicology and Medicine

that is based on this mathematical theory. To the best of our knowledge very70

little work in Toxicology uses Markov Decision Processes, to be more precise,

these are the works of Chang (2010) and Korthikanti et al. (2010). Chang (2010)

is a rich summary of techniques used in contemporary in house pharmacological

research and decision making illustrated with numerous examples. Among a

vast range of mathematical and computational techniques used are the Markov75

Decision Processes as applied to the optimal decision making of a pharmaceuti-

cal business on whether to proceed from earlier (Phase 1 clinical trial) to later

(Phases 2 and 3 of clinical trials) stages. Our work generalises this work in a
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number of directions. Firstly, the models in Chang (2010) are developed for

the sake of a making a commercial business more profitable and do not take80

into account the regulatory aspect of Toxicology, i.e. the fact that the company

may actually incur fines from regulatory bodies and lawsuits from individual

consumers in case they exhibit adverse outcomes as a consequence of using the

drug. The Markov Decision Process model in this paper takes this into account

via the mechanisms of misclassification costs: in case the company declares an85

unsafe chemical as safe there will be serious consequences. Equally, if the com-

pany actually declares a safe chemical as unsafe it will lose money by not selling

the safe product in the market for which it possibly had an advantage over its

competitors. Thus our work bridges the two worlds: it allows the company to

maximise its profits while simultaneously acts in the best interest of the gen-90

eral public. Secondly, Chang (2010) does not take neither variable exposure

to chemical among different members of the target population nor precision of

measurements used to test safety in the account. Instead, it relies on toxic-

ity levels observed in recently tested chemicals to draw conclusions on the new

chemical of interest while the transition probabilities of the Markov Decision95

Model model are estimated from historical data and power calculations which,

by nature, cannot guarantee precisions of estimates in advance in the case of

unknown moments. Another problem with this approach is that there is no

guarantee the new chemical will share toxicity thresholds with the previously

used chemicals. These issues motivate the truly novel part of the methodological100

work presented in this paper which is applicable in a general setting not necessar-

ily restricted to Toxicology and Medicine. Namely, the transition probabilities

between states of the Markov Decision Process in this paper are based on the

idea of integrating evidence from different measurements of the same quantity

in a non-contradictory way by using the information on the precision from the105

instruments/assays used in the process. Knowing the value obtained in a less

accurate measurement and its precision we can get a probability distribution on

the values more accurate measurement of the same quantity can possibly take.

This simple observation has far reaching consequences; namely since the states
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of the Markov Decision Process in our model are the collection of measurements110

the above allows for a logically sound way of defining transition probabilities of

the model by first performing cheapest possible tests for each parameter of in-

terest. This procedure is justified by the existence of devices of varying precision

in many fields of human work. As far as Toxicology is concerned, this corre-

sponds to in-vivo, in-vitro and in-silico tests. By choosing to start our analysis115

with a cheap in-silico test we remedy the problem outlined above: indeed we

get the transition probabilities of the model without having to resort to further

unknown characteristics of the chemical therefore bypassing a potentially cir-

cular argument. Another interesting work involving Markov Decision Process

in Toxicology is a theoretical paper of Korthikanti et al. (2010). The authors120

approach the problem of model checking for a Markov Decision Process from

the Computer Science point of view using the language of Mathematical Logic;

actually as it turns out, the authors do not work with a conventional proba-

bilstic definition of a Markov Decision Process but define their own in another

set-up. Although motivated by an example of Insulin compartment model the125

paper soon drifts into proving results in Mathematical Logic and holds little

practical value.

When it comes to applications in Medicine the literature is much larger. We

discuss in detail a variety of different applications (Fakih (2006), Kurt et al.130

(2011), Shechter et al. (2008), Alagoz et al. (2007), Alterovitz et al. (2008),

Nunes et al. (2017) and Sloan (2007)) . As mentioned in the above, the main

novelty of this paper, logically consistent aggregation of evidence from differ-

ent measurements in a non-contradictory way and without a need to resort to

empirical estimates still stands. Fakih (2006) develops a general framework for135

learning efficient approaches to medical diagnosis. It resembles this manuscript

and Bayer-Zubek (2004) in the sense that the states are cumulative history of

observations, which in turn, guarantees the Markovian nature of the process but

it resorts to the empirical estimates of transition probabilities between states

based on observed frequencies. Kurt et al. (2011) develops a discrete time,140
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but unlike this paper, an infinite-horizon Markov Decision Process to maximise

the patient’s quality-adjusted life years prior to them having either a stroke or

developing a Coronary Heart Disease. The infinite horizon is justified by the

large number of visits to the doctor by Type 2 Diabetes patients. The model

resembles the one of ours in that it has a terminal state which in turn insures145

convergence. Finally, transition probabilities are computed as a combination

of equations based on medical knowledge and empirical observations. Shechter

et al. (2008) develops a Markov Decision Process that aims to maximise the ex-

pected lifetime or quality-adjusted life years. Similarly to Kurt et al. (2011) this

model contains an absorbing state which can be reached from any other state150

and is an infinite-horizon problem for the same reason as Kurt et al. (2011).

Furthermore, exactly as Kurt et al. (2011), the rewards in the problem are

not measured only in monetary units as in our case but instead in the units

of Health Economics, namely quality-adjusted life years, while the transition

probabilities of the model are estimated empirically from data. Alagoz et al.155

(2007) develops a Markov Decision Process for optimal choice of when to go

for a liver transplant and then, furthermore, should one accept the part of a

liver of a living-donor or the entire cadaveric liver. This is again a discrete-time

infinite-horizon problem for the same reasons as in the previous papers. Again,

the model contains a naturally emerging absorbing state while the cost is mea-160

sured in Health Economics units. Transition probabilities are estimated from

clinical data. Furthermore, the authors derive in closed form the sufficient con-

ditions for the existence of simple threshold-based optimal policies. Alterovitz

et al. (2008) develops a Markov Decision Process to optimise the probability of

the steering needle reaching a target through the noisy environment generated165

by the uncertainties emerging from the needle- soft tissue interactions and other

obstacles that are too small to detect with great but still limited resolution of

medical images. The problem does not have costs in the sense of the papers

above. They formulate the problem as a discrete time acyclic Markov Decision

Process and solve it by value iteration. Finally, the transition probabilities do170

not emerge from the imprecision of measurements of needle’s position, turning
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angle and velocity but instead are a consequence of the stochastic environment

in which the needle operates. Nunes et al. (2017) develops a Markov Decision

Problem for the optimal control of hospital admissions for non-emergency pa-

tients. Transition probabilities are computed by means of an interplay between175

a complicated model based on deep understanding of the specific process and

empirical considerations. This is a discrete state model considered where the

limit of expected average reward is the object to maximise while the costs are

expressed in monetary units. Sloan (2007) develops a Markov Decision Process

to determine the optimal replacement of broken medical equipment with either180

new equipment or already used (but sterilised and refurbished) equipment. As

in this paper, cost and penalties are expressed in monetary terms. This is a

discrete time Markov Decision Process. Transition probabilities between states

are made on the authors’ guesses and serve to demonstrate how the optimal

policies change subject to variation of these. This is similar to our paper with185

the difference that we study the sensitivity of optimal policies to monetary costs

instead.

In summary, we develop a Markov Decision Process for the assessment of hazard

of new chemicals while taking into account the exposure, inter-person variabil-190

ity in toxicity and misclassification costs. The result is optimal cost-effective

sequential testing strategies for assessment of risk of chemicals. These so-called

”optimal policies” rationally integrate outputs from tests with different costs

and precisions. The integrated testing frameworks which emerge achieve the

keys aims outlined in Pastoor et al. (2014),Embry et al. (2014).195

2. Theory

2.1. Individual- and Population-level Models

Much existing literature in quantitative toxicology seems to ignore, or implic-

itly to average out, the large differences that may exist between the exposure

of individuals to potentially toxic chemicals, and the variable effects of a fixed200
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exposure to these chemicals on these individuals. When the purpose of testing

is to identify the risk of rare toxicologically harmful outcomes, it seems mathe-

matically expedient to account for this variability explicitly.

We start by providing an alternative view on exposure. Since we cannot know205

the exact exposure of every single human to the chemical of interest, the nat-

ural way to model it is probabilistically. We shall therefore denote exposure

experienced by an individual by a random variable X having some distribution

with density function f , say, where f would typically correspond to one of many

classical distributions (normal, log-normal, gamma). For illustrative purposes,210

here we will assume f is characterised by a single unknown parameter a∗, say.

This could correspond, for example, to the variance of the exposure distribution.

We now turn to modelling the variability in toxicity caused by a given expo-

sure. A typical dose-response curve is sigmoidal: Toxicity is typically small up

to some threshold level of exposure, beyond which it increases rapidly with ex-

posure before eventually saturating. This behaviour is efficiently captured by a

relationship of the form

g(x) = Axp/(1 + xp),

where A is the level at which toxicity saturates, x is the exposure and p is a

model parameter to be inferred from data. However, due to individual-level215

variability, it makes sense to model toxicity at a given level of exposure as a

random variable, having mean specified by the function g together with some

unknown variance to be inferred from data. Rigorously, we shall denote toxicity

at a level of exposure X = x by a random variable T x. This random variable

will have mean220

E(T x) := g(x)

Similarly to the case of exposure (above), we denote the probability density

function hx for the random variable T x as being characterised by a single pa-

rameter b∗.
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For the sake of transparency, in what follows assume A and p are known, and225

that the unknown parameters are a∗ (relating to exposure variability) and b∗

(relating to individual variability in response to exposure). The purpose of any

optimal testing regime will be, broadly, to find the most efficient way to estimate

ranges for a∗ and b∗ so as to determine whether or not a chemical is safe. This

purpose will be made more precise below, while the generalisation to wider sets230

of unknown parameters is left to the Discussion.

2.2. Definition of safety

From the point of view of a pharmaceutical company it is impossible to predict

whether a particular individual who buys their product will be adversely affected

by it. Again, only probabilistic language makes sense: for example a criterion235

that no more than 1 in 1000000 customers is affected at a level exceeding some

defined threshold. Suppose γ represents this threshold of toxicity and let T

be the random variable indicating the toxicity experienced by an individual

sampled randomly from the population. Rigorously, using the logic and notation

introduced for exposure and toxicity above, we will declare our chemical of240

interest to be safe for human use if and only if

P (T ≥ γ) ≤ 10−6. (1)

By conditioning on the exposure level and using the generalised law of total

probability we obtain:

P (T ≥ γ) =

∫ ∞

0

P (T x ≥ γ)f(x)dx (2)

=

∫ ∞

0

∫ ∞

γ

hx(t)dtf(x)dx. (3)

In other words, the chemical is safe for human use if and only if:

∫ ∞

0

∫ ∞

γ

hx(t)f(x)dxdt ≤ 10−6. (4)

The important mathematical step here it that calculating the probability a245

chemical is safe is reduced to finding the value of a well defined (but unknown)
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double integral i.e. to evaluating a (possibly complicated) function of a∗ and b∗

alone. Thus (4) can be, in general, written as

F (a∗, b∗) ≤ 10−6 (5)

for some well defined function F . In other words, all we need to deduce whether

our chemical is safe or not is knowledge of the parameters a∗ and b∗. Some250

values of a∗ and b∗ correspond to safe chemicals, and some to unsafe chemicals.

It is the job the any testing strategy to identify the real values of a∗ and b∗ with

sufficient accuracy to determine in which category to place the chemical.

2.3. Precision of Measurements

Biological practice shows that one hardly ever obtains the same numerical value255

upon repeating the same test in the laboratory. Rather, the values observed are

random variables. Suppose we have several in-vitro and in-silico tests at our

disposal for the assessment of our chemical of interest. Some tests will relate to

exposure (i.e. tests attempting to estimate a∗) and some will relate to toxicity

(to estimate b∗). All tests will be inaccurate, and we assume that in-vivo tests260

are the most accurate, followed by in-vitro and in-silico tests respectively.

For mathematical convenience we assume that test outcomes can only take a

finite number of values (i.e. that the data are discrete rather than continuous).

This simply allows integrals such as equation 4 to expressed as finite sums, which265

does not lose generality because the scale of discretisation can be arbitrarily fine.

Specifically, suppose that a series of n independent in-vitro tests for a∗ has out-

comes (random variables) av
1
, ...avn, and that m independent in-silico tests for a∗

have outcomes as
1
, ...asm. Similarly let bv

1
, ...bvp and bs

1
, ...bsq be the outcomes of p270

independent in-vitro, and q independent in-silico, tests for b∗.

Because in-vitro tests are likely to be more accurate than in-silico tests, it is

reasonable to assume that the random variables avi have a smaller variance than
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the asi (and similarly for b). Explicitly, we define constants li and rj (for i = 1...n275

and j = 1...m) and δi and εj (for i = 1...q and j = 1...q) which capture the

accuracy of these tests, such that each |avi − a∗| ≤ li and each |asi − a∗| ≤ ri,

and similarly each |bvj −b∗| ≤ δj and each |bsj −b∗| ≤ εj . Note that the variances

of the li and δj are smaller than those of the ri and εj , respectively.

2.4. The cost structure280

There are several types of costs associated with toxicological testing. First of all,

carrying out each assay is costly; although hopefully much cheaper than in vivo

studies, even in silico approaches require computing infrastructure and human

resources. There are also costs associated to the misclassification of chemicals.

For example, a ”false negative” classifying an unsafe chemical as safe (see (32)285

for the definition of safety) will involve costs from lawsuits and negative public-

ity. On the other hand, a ”false positive” classifying a safe chemical as unsafe

would yield costs in terms of wasted R&D and the loss of income which could

be generated from selling the product. In what follows we shall be using the

following notation:290

Cavi = cost of in vitro assay i related to estimating a∗

Casi = cost of in silico assay i related to estimating a∗

Cbvj = cost of in vitro assay j related to estimating b∗

Cbsj = cost of in vitro assay #i related to estimating b∗

MCfalseneg = cost of classifying an unsafe chemical as safe295

MCfalsepos = Cost of classifying a safe chemical as unsafe

Within the framework developed here, we will show how these costs can, and

indeed should, become a part of the development of optimal testing strategies.300

2.5. Markov Decision Problems

Our ultimate goal is to find optimal policies for sequential decision making un-

der uncertainty. This is likely to involve the decision about which tests are
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necessary to depend on the outcomes of earlier tests on the same, or a similar,

chemical (Bayer-Zubek (2004)). The optimal testing policy will be the one that305

minimises the expected total cost, including the costs of misclassification. Due

to limited resources it is clear that the decision of whether to declare the chem-

ical safe or unsafe has to be reached after some finite number of tests have been

performed. The theory of (finite horizon) Markov Decision Problems provides

the necessary mathematical machinery, by describing the interaction between a310

decision maker and the environment.

The general set up for Markov Decision Problems is as follows (see Bellman

(1957) for a more detailed treatment). At each (discrete) time step, the testing

process is in some state s, say, and the decision maker chooses one of several315

available actions, a, say. This action moves the system to some new state s′

and gives the decision maker reward R(s, a, s′). In our case in costs which can

simply be thought of as negative rewards. The Markov part of the name comes

from the demand that the probability of transition from state s to state s′ upon

choosing action a depends only on the state s, and not on the previous history320

of the process. This function is denoted by P (s′|s, a). The ultimate goal of the

decision maker is to maximise the expected reward (minimise the expected loss)

by choosing her actions optimally.

Formally speaking, a policy π is simply a function that maps states to actions.325

The value function of a state s under some policy π, denoted V π(s) is formally

defined by:

V π(s) = E[
∑

R(s, a, s′)|s0 = s]. (6)

In other words, the values function is the expected sum of future costs/rewards

on the assumption that we start at state s. Moreover, we introduce the special

state sterminal which is the absorbing state, meaning that when the process330
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reaches this state it remains there forever. We demand that

V π(sterminal) = 0 (7)

This relation must hold for all policies π simultaneously.

The optimal value function V ∗ of the Markov Decision Process specified above

is:335

V ∗(s) = min
π

V π(s), for all states s (8)

It can be demonstrated that V ∗ satisfies the following equation (Bayer-Zubek

(2004)):

V ∗(s) = min
all actions a

∑

all states s

P (s′|s; a)[R(s, a, s′) + V ∗(s′)] (9)

Again, this relation has to be specified for all states simultaneously. The optimal340

policy π∗ is defined state-by-state according to the following relation:

π∗(s) = arg min
all states a

∑

all states s′

P (s′|s, a)[R(s, a, s′) + V ∗(s′)] (10)

2.6. Chemical Risk Classification Problem as a Markov Decision Problem

Recall that, in our general framework, the chemical is safe if and only if:

F (a∗, b∗) ≤ 10−6 (11)

where a∗ and b∗ are the parameters we seek to estimate using various tests.

Recall also that we have n in vitro and m in silico tests for estimating a∗. Sim-345

ilarly, we have p in vitro and q in silico tests for estimating b∗. The accuracies

and costs of these tests are as defined in sections 2.3 and 2.5.

Essentially, our goal is to come up with a sequential testing strategy which tells

us whether (12) holds or not while incurring the smallest expected cost. In what350
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follows we shall describe how to write this as a Markov Decision Problem. To

this end we follow the reasoning from (Bayer-Zubek (2004)) very closely indeed.

We elaborated on the analogy between problem solved there and our problem

in the Introduction. The only fundamental difference is that we have to propose

the way of defining the transition probabilities whereas in (Bayer-Zubek (2004))355

the authors estimate these are estimated empirically from data.

We have seen in the previous section that a Markov Decision Problem is fully

specified by its actions, states and transition probabilities. We first describe the

actions of our Markov Decision Problem. These comprise the n + m + p + q360

available tests and two classification actions (”classify as safe” and ”classify

as unsafe”). States will represent the complete history of previously observed

values upon testing, namely the results of performing various in vitro and/or in

silico tests. Indeed, let s stand for the current state of the system. Moreover,

assume that the next test to be done is G, say, where G can be any of the365

tests available to us. Then the system will move to the state s′ = s ∪ {G = g}

where g is one of the possible values of G. The probability of this transition will

therefore depend on all the values previously obtained by measurements which

is the information kept in s. In other words:

P(s′|s,G) = P(G = g|s) (12)

Observe that this ensures Markovian nature of the problem. There will be an370

initial state which will correspond to the observed values obtained by perform-

ing two cheapest in silico tests (or alternatively, expert knowledge), one for each

of the parameters. This provides us with a (potentially very wide due to impre-

cision) initial range of values which a∗ and b∗ can take, at a lowest cost possible.

375

We note that, because the same test cannot usefully be performed indefinitely,

our Markov Decision Problem is acyclic (Bayer-Zubek (2004)), and that this im-

plies important computational consequences (see sections 3.1 and 3.2). Finally,
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we introduce a special state called the terminal state, denoted by sterminal. This

has the property that every classification action (independently of the state at380

which it has been performed) forces transition to sterminal with probability one.

In other words, this state is absorbing, indicating that an evidence-based clas-

sification decision has been reached.

All that remains is to introduce the costs of our available classification actions.385

We introduce the quantity MC(ω, ζ) to stand for the misclassification cost for

classifying a chemical as ω once its true class is ζ; ω, ζ ∈ {safe, unsafe}. Since

we do not know the true risk class of the chemical at the time of testing (hence

the testing), a natural way of thinking of misclassification cost is to treat it as a

random variable. We will say that the cost of classification action ω performed390

at some state s takes value MC(ω, ζ) with probability P (ζ|s), where this last

quantity stands for the chance that the true risk class of the chemical is ζ given

that the system is at state s. The expected cost of the action is then:

R(s, ω) =
∑

ζ

P (ζ|s)MC(ω, ζ) (13)

395

Putting all this together, and following Bayer-Zubek (2004), we can deduce that

the equation (9) for the optimal value function collapses to

V ∗(s) = min
a∈all actions available at state s

[R(s, a) +
∑

s′

P (s′|s, a)V ∗(s′)] (14)

3. Calculation

The preceding work was general and technical, but showed that the problem of

finding optimal testing policies for toxicological testing can be mapped to the400

existing mathematical framework of Markov Decision Processes. To show the

value of this result, and to explore its general consequences, it is expedient to

proceed via examples.
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In these examples it is assumed that the outcome of each test, and the values405

of the unknown parameters a∗ and b∗, are all integers. This is not a practical

limitation, because these integers may refer to measurements at an arbitrarily

fine scale; this assumption simply allows methods from discrete (as opposed to

continuous) mathematics to be applied and exact results to be computed. As

described above, we start by performing the cheapest in silico tests for a∗ and b∗410

(one for each). For sake of simplicity and illustration, we assume the outcomes

of these tests are

as
1
= 6, bs

2
= 6. (15)

and that the accuracy of these tests is such that |as
1
− a∗| ≤ 3 and |bs

1
− b∗| ≤ 3.

This immediately implies that a∗ ∈ {3, 4, 5, 6, 7, 8, 9} and b∗ ∈ {3, 4, 5, 6, 7, 8, 9}.

415

Moreover, assume relation (10) defines the following points in the (a∗, b∗)-plane:

K := {(a∗, b∗) ∈ R
2 : F (a∗, b∗) ≤ 10−6} = {(3, 6), (4, 5), (4, 6), (4, 7), (5, 4),

(5, 5), (5, 6), (5, 7), (5, 8), (6, 3), (6, 4), (6, 5), (6, 6), (6, 7), (6, 8),

(6, 9), (7, 4), (7, 5), (7, 6), (7, 7), (7, 8), (8, 4), (8, 6), (8, 7), (9.6)}

25 ”safe points” of region K are indicated in the Figure 1 below via red points.

Remaining 24 points on the grid represent the ”unsafe points”.
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Figure 1: region K

In this set up, we know from our first tests that (a∗, b∗) ∈ {3, 4, 5, 6, 7, 8, 9} ×

{3, 4, 5, 6, 7, 8, 9} (where × denotes Cartesian product). The aim of the testing420

strategy is to simply to determine, with maximum efficiency, whether or not

(a∗, b∗) is an element of K.

3.1. Example 1: The case of independent evidence

Consider a simple situation where, on top of the two initial in silico tests, we

have one more in vitro test available for each of our parameters a∗ and b∗.425

These will be denoted by av and bv , respectively. We also have two possible

classification actions, namely to classify our chemical as either safe or unsafe.

Recall that the goal is to come up with the optimal sequential testing strategy,

that is the one that minimises the expected cost. Evidence is independent in

the sense that a∗-related tests tell us nothing on b∗ and vice versa (we shall430

deal with the case of dependent evidence on the next example). In the spirit

of Section 2.6 we introduce states, actions and transition probabilities needed

for specifying the corresponding Markov Decision Problem. There will be the
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initial state corresponding to the observation (15). We will denote this state by

{}. Moreover, we will assume in vitro tests are more precise than their in silico435

counterparts, i.e. that they have a lower absolute measurement error. In order

to capture this idea we will assume that:

|av − a∗| ≤ 2 and |bv − b∗| ≤ 2 (16)

Using the above one deduces that

av ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, bv ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} (17)

This together with the idea the fact that a∗ and b∗ related tests are independent,

gives rise to 11 + 11 + 121 = 143 more states of the system, all listed below:440

{av = 1} . . . {av = 11}

{bv = 1}, . . . {bv = 11}

{av = 1, bv = 1} . . . {av = 1, bv = 11}

...

{av = 11, bv = 1}, . . . {av = 11, bv = 11}

Finally, we have the terminal state, sterminal, defined exactly as before.

We now move on to describing the available actions and corresponding transition

probabilities. At the initial state {}, there are four actions available: classify as

safe, classify as unsafe, do the av test or do the bv test. This means we must spec-445

ify the following quantities: P ( is safe|{}, any classification action), P (av =

i|{}, do av test), P (bv = i|{}, do bv test); where i ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}.

We start with the first quantity in the above. We have seen that we must have:

(a∗, b∗) ∈ {3, 4, 5, 6, 7, 8, 9} × {3, 4, 5, 6, 7, 8, 9}, so that there are 49 values the450

ordered pair (a∗, b∗) can possibly take, only 25 of which belong to K. Thus, in
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the absence of any further knowledge, it makes sense to define:

P (chemical is safe|{}, any classification action) = 25/49 (18)

We now present an argument for defining the quantities of the form P (av =

i|{}, do av test), i ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}. Notice that, due to symme-

try, the quantities P (bv = i|{}, do bv test), i ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, can455

be defined in an analogous way.

For j ∈ {3, 4, 5, 6, 7, 8, 9} define sets Tj by

Tj := {j − 2, j − 1, j, j + 1, j + 2} (19)

Notice than that av must belong to at least one of the T ′
js since the absolute

error of the in vitro measurement is 2. With this in mind we define our quantities460

of interest as follows:

P (av = i|{}, do av test) :=

∑

9

j=3
I{i ∈ Tj}

∑

11

k=1

∑

9

j=3
I{k ∈ Tj}

(20)

The idea behind (20) is simple. Observe that if we knew the true value of a∗

were j, say, (16) would immediately tell us that av ∈ Tj (since the absolute error

of this measurement is 2). The problem, clearly, is that we do not know the

exact value of a∗, only that a∗ is an element of {3, 4, 5, 6, 7, 8, 9}. First, we count

all those intervals Tj that contain i. Secondly, we scale appropriately to get the

normalising constant of the probability density. We then define the probability

of interest as a function of the two. For example, notice there is only one suchlike

interval that contains value 1, two of them that contain value 2, three of them

that contain value 3 and so on. Moreover, let us note that this is only one of

the possible ways to define the transition probabilities in a manner consistent

with precision of measurements and non-contradictory nature of evidence and

is by no means the only one. Thus, the random variable av|{} has the following
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distribution:

av |{}, do av test=











































































































































1 with prob 1/35

2 with prob 2/35

3 with prob 3/35

4 with prob 4/35

5 with prob 1/7

6 with prob 1/7

7 with prob 1/7

8 with prob 4/35

9 with prob 3/35

10 with prob 2/35

11 with prob 1/35

As promised before, the corresponding counterpart for bv test is defined by:

bv |{}, do bv test=











































































































































1 with prob 1/35

2 with prob 2/35

3 with prob 3/35

4 with prob 4/35

5 with prob 1/7

6 with prob 1/7

7 with prob 1/7

8 with prob 4/35

9 with prob 3/35

10 with prob 2/35

11 with prob 1/35

(21)

Now, at the states of the form {av = i}, i ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} we

have only 3 actions available, namely do bv test or perform one of the two
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classification actions available. This, due to the independence of measurements,

simply means that one must define

P (chemical is safe|av = i) for i ∈ {1, . . . 11}.

Let A0 = B0 = {3, 4, 5, 6, 7, 8, 9}. Thus A0 and B0 can be associated with

our knowledge of a∗ and b∗ at state {}, respectively. However, we now have

new information, namely that av = i. This, by using the principle of non-465

contradictory nature of evidence, means that a∗ ∈ A0 ∩ Ti. Since we have not

done any further b∗-related tests at this stage it makes sense to define (although

this can be done in a variety of different ways we believe the one below is the

simplest) the following quantity:

P (chemical is safe|av = i) :=
#(((A0 ∩ Ti)×B0) ∩K)

#((A0 ∩ Ti)×B0)
(22)

Here #D stands for the number of elements in the set D. Indeed, numerator470

in (22) counts only those ordered pairs (a∗, b∗) that are consistent with the

new information and correspond to the safe chemical, whereas the denominator

corresponds to all ordered pairs that are consistent with the new information.

Yet again, using symmetry and independence, actions in the states of the form

{bv = i}, i ∈ {1, . . . 11} are fully specified upon defining:475

P (chemical is safe|bv = j) :=
#((A0 × (Tj ∩B0)) ∩K)

#(A0 × (Tj ∩B0))
(23)

Finally, it remains to specify the actions and transition probabilities for the

states of the form {av = i, bv = j} i, j ∈ {1, . . . , 11}.

Clearly, there are only two actions available in such states, and these are to

classify as safe or unsafe. As before, this boils down to computing480

P (safe|av = i, bv = j). Using the same notation and ideas as before we define

these as follows:

P (safe|av = i, bv = j) :=
#(((A0 ∩ Ti)× (B0 ∩ Tj)) ∩K)

#((A0 ∩ Ti)× (B0 ∩ Tj))
(24)
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We are now ready to compute the corresponding optimal policies. Because our

Markov Decision Problem is acyclic, equation (14) for the optimal value func-

tion can be solved in a single sweep through the states. This means we start by485

computing the optimal value function at the so called ”leaf states”, that is the

states of the form {av = i, bv = j} and then work our way upwards to the states

of the form {av = i}, {bv = j}(notice we need the information above to compute

these). Finally, we finish with the computation of V ∗({}) having computed all

other necessary quantities along the way. The optimal policy is then read from490

top down. The actual computations were implemented using MATLAB, code

is available upon request.

By manipulating the attribute and misclassification costs we were able to obtain

several classes of fundamentally different optimal policies. This clearly demon-495

strates that, even in this apparently simple case, the optimal policy emerges from

a complex interplay between the geometry of the feasible region K and the costs

present in the problem. Moreover, this shows that simple non-adaptive policies

are unlikely to be optimal, that is, having changed your population model and

the cost structure you have no reason whatsoever to believe the optimal policy500

will not change as well. Indeed, one would have to repeat all the steps in the

above and compute the optimal policy corresponding to one’s favourite inter-

play between the ingredients. Finally, let us note that this gives the problem

a strongly Bayesian flavour. The policies thus obtained, and some motivation

for what they emerge, are summarized below. For convenience we introduce the505

”cost vector” Ω to represent all the costs associated with the problem. Mathe-

matically:

Ω := (MCfalsepos,MCfalseneg, Cav, Cbv) (25)
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First we look at the following situation:

Ω = (200, 100, 80, 50) (26)

The optimal policy is π∗({}) = ”classify as unsafe”. In plain English means510

that it is optimal to classify the chemical as unsafe without doing any further

test at all. The cost of testing, and of misclassification, mean that the chemical’s

development should be abandoned.

Secondly, we look at the following cost structure:515

Ω = (100, 200, 80, 50) (27)

In this case we obtain π∗({}) = ”classify as safe”. In contrast to Case 1, the

change in the balance between the consequences of false negatives versus false

positives means that we should immediately classify our chemical as safe.

In reality, the cost of testing is likely to be dwarfed by the cost of misclassifica-520

tion, with false negatives being particularly costly. The motivates the following

example captured via respective cost structure:

Ω = (10000, 20000, 80, 50) (28)

In this case we obtain the following:

π∗({})= ”do bv test”525

π∗({bv ∈ {4, 5, 6, 7, 8}})= ”do av test”

π∗({bv ∈ {1, 2, 3, 9, 10, 11}})= ”classify as unsafe”

π∗({bv = 4, av = 6})= ”classify as safe”

π∗({bv = 4, av = i})=”classify as unsafe” for all i ∈ {1, 2, 3, 4, 5, 7, 8, 9, 10, 11}

π∗({bv = 5, av ∈ {5, 6, 7}}) = ”classify as safe”530

π∗({bv = 5, av ∈ {1, 2, 3, 4, 8, 9, 10, 11}}= ”classify as unsafe”

π∗({bv = 6, av ∈ {4, 5, 6, 7, 8}})= ”classify as safe”
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π∗({bv = 6, av ∈ {1, 2, 3, 9, 10, 11}}= ”classify as unsafe”

π∗({bv = 7, av ∈ {5, 6, 7}}) = ”classify as safe”

π∗({bv = 7, av ∈ {1, 2, 3, 4, 8, 9, 10, 11}}= ”classify as unsafe”535

π∗({bv = 8, av = 6})= ”classify as safe”

π∗({bv = 8, av = i})=”classify as unsafe” for all i ∈ {1, 2, 3, 4, 5, 7, 8, 9, 10, 11}

The above is a mathematical description of the optimal sequential testing policy.

In simple English, the first four lines in the above scheme can be interpreted540

as follows: Start by doing the bv test. If this test gives you values 1,2,3,9,10

or 11 then classify your chemical as unsafe, otherwise do the av test. If the bv

test gave value 4, then if the av test gives value 6 then classify your chemical

as safe, but otherwise classify it as unsafe. The remaining statements in the

classification scheme are interpreted similarly.545

The details of this example are not as important as the general picture which

emerges: even in this very simple scenario, the optimal policy is a set of adaptive

tests where the outcome of the earlier tests dictates what subsequent tests (if

any) are needed. For an adaptive testing policy to emerge from such a limited550

range of possibilities, and for it to have such clear dependence on relative costs,

is evidence that adaptive testing policies may be expected to be optimal in more

realistic scenarios.

3.2. Example # 2: The case of dependent evidence

As in the previous example, we first carry out the two cheapest (and probably555

therefore inaccurate) in silico tests, one for each parameter. Now suppose we

have no more b∗- related tests available, but have two more a∗- related in vitro

tests at our disposal, denoted av1 and av2, respectively. We will assume these

two tests have different precision, and that both are more precise than their in

silico counterpart. Mathematically, we capture this by imposing that:560

|av1 − a∗| ≤ 2 and |av2 − a∗| ≤ 1 (29)
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Using the ideas from Section 3.1 we deduce that the corresponding Markov De-

cision Problem will have a total of 79 states. Detailed description of these and

the corresponding transition probabilities can be found in the Appendix.

As in the previous example, it is possible to manipulate attribute and misclas-565

sification costs to obtain a range of optimal policies. Examples of these are

summarized below via corresponding Ω vectors. We begin by looking at the

cost structure given by:

Ω = (200, 100, 80, 50) (30)

In this case the optimal policy is to classify the chemical as unsafe without doing570

any test.

Secondly, we consider the following costs:

Ω = (100, 200, 80, 50) (31)

Then the optimal policy is to immediately classify the chemical as safe without

doing any test.575

Finally we look at the case capture via the following more realistic cost structure:

Ω = (20000, 10000, 80, 50) (32)

The optimal policy turns out to be a complex mixture, interested reader can

find the details in the Appendix.

580

We finish this section by illustrating another useful feature of our model. Ob-

serve that if av1 = 1 then (24) tells us that a∗ is an element of {−1, 0, 1, 2, 3}.

However, we actually know for sure that a∗ is an element of {3, 4, 5, 6, 7, 8, 9}.

Putting these two pieces of information together we deduce that a∗ = 3, i.e.
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we have thus identified a∗ with absolute certainty. Therefore, common sense585

tells us that it should not be optimal to do any further a∗-related tests after

that since we would be simply spending money for learning nothing we already

know. Indeed, the above tells us that π∗({avt1 = 1}) = ”classify as unsafe”.

This (and other similar situations) are not coincidental. Interested reader can

find the formal proof of this fact in the Appendix.590

Discussion and Conclusion

This paper provides a mathematically rigorous framework for the computation

of optimal sequential testing strategies for chemical risk classification. Its nov-

elty lies in the fact that it does so by taking into account various important

and realistic ingredients. These include population model, errors in laboratory595

measurements and the corresponding cost structure. Mathematically, the heart

of the argument comes from Machine Learning, more specifically the rich the-

ory of Markov Decision Problems. Optimal Sequential Policies were computed

in two simple but highly illustrative and easily generalisable examples, namely

tests that are independent and those whose outcomes are deeply correlated by600

the common truth they are revealing with possibly different precision. Indeed,

in case of more parameters the corresponding Markov Decision Problem shall

simply have more states, all other aspects will be identical.

The key take-home message for toxicological testing is that it is possible, and605

indeed necessary, to search for optimal testing strategies. Markov Decision

Problems provide a mathematical framework with which to achieve this. We

show that the strategies which emerge must explicitly take into account the

costs both of testing and of misclassification. Moreover, the optimal testing

policies are typically adaptive, where the outcome of any given test influences610

the decision as to which test (or classification) to apply next. This may be

interpreted as a mathematical avocation of the recent interest in adaptive testing

strategies from both industry and regulatory bodies.
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