

This is a repository copy of *Structural evolution of synthetic alkali-activated CaO-MgO-Na2O-Al2O3-SiO2 materials is influenced by Mg content*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/117704/

Version: Supplemental Material

Article:

Walkley, B. orcid.org/0000-0003-1069-1362, San Nicolas, R., Sani, M.A. et al. (3 more authors) (2017) Structural evolution of synthetic alkali-activated CaO-MgO-Na2O-Al2O3-SiO2 materials is influenced by Mg content. Cement and Concrete Research, 99. pp. 155-171. ISSN 0008-8846

https://doi.org/10.1016/j.cemconres.2017.05.006

Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Supporting information for:

Structural evolution of synthetic alkali-activated CaO-MgO-Na₂O-Al₂O₃-SiO₂ materials is influenced by Mg content

Brant Walkley^{1, 5}*, Rackel San Nicolas², Marc-Antoine Sani³, Susan A. Bernal⁵, Jannie S.J. van Deventer^{1, 4}, John L. Provis ⁵

¹ Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia

² Department of Infrastructure Engineering, The University of Melbourne, Victoria 3010, Australia

³ School of Chemistry and Bio21 Institute, The University of Melbourne, Victoria 3010, Australia

⁴ Zeobond Pty Ltd, P.O. Box 23450, Docklands, Victoria 8012, Australia

⁵ Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD, United Kingdom

* Corresponding author. Email: b.walkley@sheffield.ac.uk

Appendix A

	Mol % (target)				Mol % (measur ed)			
Sample	CaO	SiO ₂	Al ₂ O ₃	MgO	CaO	SiO ₂	Al ₂ O ₃	MgO
Α	39.2	56.5	1.4	2.9	40.6	55.2	1.4	3.0
В	37.1	53.3	1.3	8.3	37.7	52.6	1.3	8.5
С	35.1	50.5	1.2	13.1	35.0	49.9	1.3	14.0
D	39.7	53.5	3.9	3.0	39.3	54.0	3.8	3.0
E	37.5	50.5	3.6	8.4	35.2	53.7	3.5	7.7
F	35.5	47.8	3.5	13.2	36.9	46.1	3.5	13.6
G	49.1	47.3	1.2	2.5	49.3	47.1	1.3	2.6
н	46.8	45.1	1.1	7.0	46.9	45.0	1.2	7.1
I	44.7	43.1	1.1	11.2	45.2	42.6	1.1	11.3
J	49.6	44.7	3.2	2.5	50.1	44.0	3.3	2.7
К	47.2	42.6	3.1	7.1	46.9	43.1	3.1	7.1
L	45.1	40.7	2.9	11.3	45.2	40.7	3.0	11.3

Table S1: Bulk oxide composition of each powder formulation as determined by X-ray fluorescence analysis. An error of approximately 1 wt. % is expected.

Appendix B: BSE images and SEM-EDX data for additional samples not shown in main text

Figure S1: ESEM back-scattered electron (BSE) image and elemental maps of alkali-activated sample B cured for 180 days

Figure S2: ESEM back-scattered electron (BSE) image and elemental maps of alkali-activated sample C cured for 180 days

Figure S3: ESEM back-scattered electron (BSE) image and elemental maps of alkali-activated sample E cured for 180 days

Figure S4: ESEM back-scattered electron (BSE) image and elemental maps of alkali-activated sample F cured for 180 days

Figure S5: ESEM back-scattered electron (BSE) image and elemental maps of alkali-activated sample G cured for 180 days

Figure S6: ESEM back-scattered electron (BSE) image and elemental maps of alkali-activated sample H cured for 180 days

Figure S7: ESEM back-scattered electron (BSE) image and elemental maps of alkali-activated sample I cured for 180 days

Figure S8: ESEM back-scattered electron (BSE) image and elemental maps of alkali-activated sample J cured for 180 days

Figure S9: ESEM back-scattered electron (BSE) image and elemental maps of alkali-activated sample K cured for 180 days

Figure S10: Projection of alkali-activated material chemistry onto the ternary CaO – Al_2O_3 – SiO_2 system (neglecting Na₂O and MgO content) showing elemental composition of AAMs cured for 3, 28 and 180 days for samples A, B and C (Ca/(Al+Si) = 0.67 and Al/Si = 0.05) as marked, as determined by ESEM-EDX analysis. A random selection of points evenly distributed across a representative 500 µm × 500 µm section of the sample were used for analysis. Approximate regions of C-S-H and C-(N)-A-S-H determined from [1] and [2].

Figure S11: Projection of alkali-activated material chemistry onto the ternary CaO – Al_2O_3 – SiO_2 system (neglecting Na₂O and MgO content) showing elemental composition of AAMs cured for 3, 28 and 180 days for samples D, E and F (Ca/(Al+Si) = 0.67 and Al/Si = 0.15) as marked, as determined by ESEM-EDX analysis. A random selection of points evenly distributed across a representative 500 µm × 500 µm section of the sample were used for analysis. Approximate regions of C-S-H and C-(N)-A-S-H determined from [1] and [2].

Figure S12: Projection of alkali-activated material chemistry onto the ternary $CaO - Al_2O_3 - SiO_2$ system (neglecting Na₂O and MgO content) showing elemental composition of AAMs cured for 3, 28 and 180 days for samples G, H and I (Ca/(Al+Si) = 1.00 and Al/Si = 0.05) as marked, as determined by ESEM-EDX analysis. A random selection of points evenly distributed across a representative 500 µm × 500 µm section of the sample were used for analysis. Approximate regions of C-S-H and C-(N)-A-S-H determined from [1] and [2].

Figure S13: Projection of alkali-activated material chemistry onto the ternary $CaO - Al_2O_3 - SiO_2$ system (neglecting Na₂O and MgO content) showing elemental composition of AAMs cured for 3, 28 and 180 days for samples G, H and I (Ca/(Al+Si) = 1.00 and Al/Si = 0.15) as marked, as determined by ESEM-EDX analysis. A random selection of points evenly distributed across a representative 500 µm × 500 µm section of the sample were used for analysis. Approximate regions of C-S-H and C-(N)-A-S-H determined from [1] and [2].

Figure S14: Projection of alkali-activated material chemistry onto the ternary MgO – $AI_2O_3 - SiO_2$ system (neglecting CaO and Na₂O content) showing elemental composition of AAMs cured for 3, 28 and 180 days for samples A, B and C (Ca/(AI+Si) = 0.67 and AI/Si = 0.05) as marked, as determined by ESEM-EDX analysis. A random selection of points evenly distributed across a representative 500 µm × 500 µm section of the sample were used for analysis.

Figure S15: Projection of alkali-activated material chemistry onto the ternary MgO – $Al_2O_3 - SiO_2$ system (neglecting CaO and Na₂O content showing elemental composition of AAMs cured for 3, 28 and 180 days for samples D, E and F (Ca/(Al+Si) = 0.67 and Al/Si = 0.15) as marked, as determined by ESEM-EDX analysis. A random selection of points evenly distributed across a representative 500 µm × 500 µm section of the sample were used for analysis.

Figure S16: Projection of alkali-activated material chemistry onto the MgO – $AI_2O_3 - SiO_2$ system (neglecting CaO and Na₂O content) showing elemental composition of AAMs cured for 3, 28 and 180 days for samples G, H and I (Ca/(AI+Si) = 1.00 and AI/Si = 0.05) as marked, as determined by ESEM-EDX analysis. A random selection of points evenly distributed across a representative 500 μ m × 500 μ m section of the sample were used for analysis.

Figure S17: Projection of alkali-activated material chemistry onto the ternary MgO – $AI_2O_3 - SiO_2$ system (neglecting CaO and Na₂O content) showing elemental composition of AAMs cured for 3, 28 and 180 days for samples G, H and I (Ca/(AI+Si) = 1.00 and AI/Si = 0.15) as marked, as determined by ESEM-EDX analysis. A random selection of points evenly distributed across a representative 500 µm × 500 µm section of the sample were used for analysis.

Figure S18: Projection of alkali-activated material chemistry onto the ternary $Na_2O - Al_2O_3 - SiO_2$ system (neglecting CaO and MgO content) showing elemental composition of AAMs cured for 3, 28 and 180 days for samples A, B and C (Ca/(Al+Si) = 0.67 and Al/Si = 0.05) as marked, as determined by ESEM-EDX analysis. A random selection of points evenly distributed across a representative 500 µm × 500 µm section of the sample were used for analysis.

Figure S19: Projection of alkali-activated material chemistry onto the ternary $Na_2O - Al_2O_3 - SiO_2$ system (neglecting CaO and MgO content) showing elemental composition of AAMs cured for 3, 28 and 180 days for samples D, E and F (Ca/(Al+Si) = 0.67 and Al/Si = 0.15) as marked, as determined by ESEM-EDX analysis. A random selection of points evenly distributed across a representative 500 µm × 500 µm section of the sample were used for analysis.

Figure S20: Projection of alkali-activated material chemistry onto the ternary $Na_2O - Al_2O_3 - SiO_2$ system (neglecting CaO and MgO content) showing elemental composition of AAMs cured for 3, 28 and 180 days for samples G, H and I (Ca/(Al+Si) = 1.00 and Al/Si = 0.05) as marked, as determined by ESEM-EDX analysis. A random selection of points evenly distributed across a representative 500 µm × 500 µm section of the sample were used for analysis.

Figure S21: Projection of alkali-activated material chemistry onto the ternary $Na_2O - Al_2O_3 - SiO_2$ system (neglecting CaO and MgO content) showing elemental composition of AAMs cured for 3, 28 and 180 days for samples J, K and L (Ca/(Al+Si) = 1.00 and Al/Si = 0.15) as marked, as determined by ESEM-EDX analysis. A random selection of points evenly distributed across a representative 500 µm × 500 µm section of the sample were used for analysis.

Figure S22: Summary of bulk atomic ratios Ca/Si versus Si/Al (60 measurements per sample) for the alkali-activated material for samples A – L cured for 3, 28 and 180 days as indicated

Figure S23: Summary of bulk atomic ratios Mg/Si versus Si/Al (60 measurements per sample) for the alkali-activated material for samples A – L cured for 3, 28 and 180 days as indicated

Appendix C: Attenuated total reflectance Fourier transform infrared spectroscopy.

ATR-FTIR spectra collected for precursor powders are presented in Figure S24. A broad, intense band is observed at 894 cm⁻¹ and a shoulder can also be observed at 995 cm⁻¹ in the spectra of in the spectra of all precursors. These bands are attributed to stretching vibrations of Si-O-T bonds (T = Si or Al) due to a highly depolymerised silica network and consistent with that observed in GGBFS [3-6]. A small band at approximately 465 cm⁻¹ is also observed in the spectra of all precursors and is attributed to symmetrical bending of Si-O-T bonds, respectively [7].

The spectra of all precursors exhibit bands at approximately 1460 cm⁻¹ and 1415 cm⁻¹ which are attributed to asymmetric stretching of O-C-O bonds in CO_3^{2-} present in different polymorphs of CaCO₃ (vaterite and calcite, respectively) which has formed as a consequence of reaction of free lime with CO₂ during calcination [3, 6, 8]. A shoulder at 850 cm⁻¹ is also observed in the spectra of the precursor for all samples and is likely due to the presence of HCO₃⁻ formed via reaction of adsorbed water and CO₂ [9].

The sharp band at 875 cm⁻¹ in the spectra of all precursors is attributed to asymmetric stretching of AIO_4^- groups in Al-O-Si bonds within the polymerised aluminosilicate phase [3, 4]. A small bands at 713 cm⁻¹ is also observed in the precursor for all samples and is associated with bending vibrations of internal oxygen bridges Si-O-Al are [10] as well as pseudo-lattice vibrations occurring within 3- and 4- unit aluminosilicate rings comprised of TO₄ tetrahedra [10-14]. A small bands observed at 508 cm⁻¹ in the spectra of all precursors is attributed to O-Si-O bending vibrations [15] and 5 membered single rings and 6 membered double rings comprising of TO₄ tetrahedral units [10].

The vibration modes present in the ATR-FTIR spectra of the precursor for all samples are consistent with calcium, silicon and aluminium bonding environments commonly observed in GGBFS [3, 9], calcium aluminosilicate glasses [4, 13] and Mg-free synthetic calcium aluminosilicate powders synthesised using the same method [6]. These modes are also consistent with a heterogeneous

mixture of a depolymerised calcium silicate phase and a polymerised aluminosilicate phase within the amorphous phase identified by XRD [6, 16].

Figure S24: ATR-FTIR spectra of the precursor powder and alkali-activated material for samples A – L

cured for 3, 28 and 180 days as indicated

References

[1] R.J. Myers, S.A. Bernal, R. San Nicolas, J.L. Provis, Generalized structural description of calciumsodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model, Langmuir : the ACS journal of surfaces and colloids, 29 (2013) 5294-5306.

[2] J.S.J. van Deventer, R. San Nicolas, I. Ismail, S.A. Bernal, D.G. Brice, J.L. Provis, Microstructure and durability of alkali-activated materials as key parameters for standardization, Journal of Sustainable Cement-Based Materials, 4 (2014) 116-128.

[3] S.A. Bernal, J.L. Provis, V. Rose, R.M. de Gutierrez, Evolution of binder structure in sodium silicate-activated slag-metakaolin blends, Cement Concrete Comp, 33 (2011) 46-54.

[4] J.A. Gadsden, Infrared spectra of minerals and related inorganic compounds, Butterworths, London, 1975.

[5] P. Yu, R.J. Kirkpatrick, B. Poe, P.F. McMillan, X. Cong, Structure of calcium silicate hydrate (C-S-H): Near-, mid-, and far-infrared spectroscopy, Journal of the American Ceramic Society, 82 (1999) 742-748.

[6] B. Walkley, R. San Nicolas, M.-A. Sani, G.J. Rees, J.V. Hanna, J.S.J. van Deventer, J.L. Provis, Phase evolution of C-(A)-S-H/N-A-S-H gel blends investigated via alkali-activation of synthetic precursors, Cement and Concrete Research, (2016).

[7] S.A. Bernal, R.M. de Gutierrez, A.L. Pedraza, J.L. Provis, E.D. Rodriguez, S. Delvasto, Effect of binder content on the performance of alkali-activated slag concretes, Cement and Concrete Research, 41 (2011) 1-8.

[8] C.K. Huang, P.F. Kerr, Infrared study of the carbonate minerals, The American Mineralogist, 45 (1960) 311.

[9] S.A. Bernal, R.M. de Gutierrez, J.L. Provis, V. Rose, Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags, Cement and Concrete Research, 40 (2010) 898-907.

[10] W. Mozgawa, The relation between structure and vibrational spectra of natural zeolites, Journal of Molecular Structure, 596 (2001) 129-137.

[11] M. Criado, A. Fernández-Jiménez, A. Palomo, Alkali activation of fly ash: Effect of the SiO₂/Na₂O ratio: Part I: FTIR study, Microporous and Mesoporous Materials, 106 (2007) 180-191.

[12] M. Sitarz, M. Handke, W. Mozgawa, Identification of silicooxygen rings in SiO₂ based on IR spectra, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 56 (2000) 1819-1823.

[13] M. Sitarz, W. Mozgawa, M. Handke, Rings in the structure of silicate glasses, Journal of Molecular Structure, 511–512 (1999) 281-285.

[14] M. Handke, M. Sitarz, W. Mozgawa, Model of silicooxygen ring vibrations, Journal of Molecular Structure, 450 (1998) 229-238.

[15] W. Mozgawa, J. Deja, Spectroscopic studies of alkaline activated slag geopolymers, Journal of Molecular Structure, 924-26 (2009) 434-441.

[16] B. Walkley, R. San Nicolas, M.A. Sani, J.D. Gehman, J.S.J. van Deventer, J.L. Provis, Synthesis of stoichiometrically controlled reactive aluminosilicate and calcium-aluminosilicate powders, Powder Technology, 297 (2016) 17-33.