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LARGE DEVIATIONS PRINCIPLE FOR THE INVARIANT

MEASURES OF THE 2D STOCHASTIC NAVIER-STOKES

EQUATIONS ON A TORUS

Z. BRZEŹNIAK AND S. CERRAI

Abstract. We prove here the validity of a large deviation principle for the

family of invariant measures associated to a two dimensional Navier-Stokes
equation on a torus, perturbed by a smooth additive noise.
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1. Introduction

In the present paper we are dealing with 2-D Navier Stokes equations with pe-
riodic boundary conditions, perturbed by a small additive noise. These boundary
conditions are usually realized by considering the problem on a two-dimensional
torus T2, see Section 2 for more details. To fix readers attention, let us write down
these equations in a functional form, as

du(t) + Au(t) dt+ B(u(t), u(t)) dt =
√
ε dw(t), u(0) = u0, (1.1)

for 0 < ε << 1.
Full definitions of the symbols involved can be found later in Section 2, but, for

the time being, let us recall that A is the Stokes operator, equal, roughly speaking,
to the Laplace operator (acting on vector fields) composed with the Leray-Helmoltz
projection P , defined on the space of zero mean and square integrable vector fields
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S. Cerrai was partially supported by the NSF grant DMS 1407615, Asymptotic Problems for

SPDEs.
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2 Z. BRZEŹNIAK AND S. CERRAI

with values in the subspace H of divergence free vector fields, the convection B(u, u)
is equal to P (u∇u), w(t) is a K-cylindrical Wiener process, for K = D(A

α
2 ) with

α > 1, and u0 ∈ H. Of course, because P nullifies the gradients, the gradient of the
pressure term ∇p disappears in such a formulation. Basic questions about such a
problem are now well understood, and we simply refer to the papers [21] and [9]
and to the chapter 15 of the monograph [16].

It is know that, for every fixed ε > 0, the Markov process on H generated
by equation (1.1) has an invariant measure με (see [21]), which is also unique
and ergodic (see [19] and also [23]). The objective of our paper is study of the
validity of a large deviation principle (LDP) for the family of invariant measures
{με}ε>0. To be more precise, our purpose is to show that the family of probability
measure

{

με

}

ε>0
satisfies a LDP, as ε ↓ 0, with rate ε and action functional equal

to the quasi-potential U associated to the controlled deterministic NSE, also known
as the skeleton equation,

u′(t) + Au(t) + B(u(t), u(t)) = f(t), u(0) = u0, (1.2)

where f ∈ L2(0,∞;D(A
α
2 )). The quasi-potential U(v), for v ∈ H, can be defined

as the infimum, over all T > 0, of the energy of the control f , with respect to the
norm of the reproducing kernel Hilbert space K of the law L(W (1)), i.e.

1

2

∫ T

0

|Aα
2 f(t)|2H,

such that the solution u to the skeleton equation (1.2), with initial data u(0) = 0,
reaches the state v at time T , i.e. u(T ) = v. To this purpose, we refer to equation
(4.12) for a version of the definition of U using both positive and negative times
and (4.13) for a representation of U using the skeleton equation over the negative
half-line (−∞, 0].

The quasi-potential U was an important object in our recent study [6] with M.
Freidlin and in some sense our current paper is a natural continuation of that work.
The two other works on which we depend a lot in our investigation is the paper [12]
by the second named authour and M. Röckner and [29] in which a similar question
was investigated for reaction diffusion equation with polynomially bounded, resp.
bounded, reaction term.

Let us make an important comment about the assumption α > 1. In fact, the
Markov process on H, generated by problem (1.1), for both periodic and Dirichlet
boundary conditions, has a unique invariant measure με for α > 0, (to this purpose,
see [9, Corollary 9.1 and Remark 4.1 (c)]). However, an essential tool in proving
the LDP is given by the exponential estimates for the invariant measures and we
have been able to prove them only in the case of periodic boundary conditions and
α > 1 ( see Theorem 5.1). As a matter of fact, we do not know if, even in the
case of periodic boundary conditions, such exponential estimates are true without
assuming that the covariance of the noise is a trace-class operator. This is the
reason why, already from the very beginning, we assume that our problem is posed
on a 2-D torus and that α > 1.

The subject of this paper is closely related to recent research activity in mathe-
matics and physics related to the so called rare events, see for instance [2], [18] and
[34].
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Let us conclude this introduction by briefly describing the content of our paper.
Section 2 is devoted to presenting basic notation and preliminaries. We try to ex-
plain the differences and similarities between the NSES with periodic and Dirichlet
boundary conditions which lead us to consider only the latter case. In particular,
we prove some estimates concerning the nonlinearity B with respect to norm in
different fractional domains of the Stokes operator A, see Propositions 2.3 and 2.4.

In Section 3 we discuss the skeleton equation and, in addition to recalling some
fundamental and useful results (also from our previous work [6]), we also discuss
their generalizations to the general case α > 0, valid however only for the case of
NSEs on a 2-D torus.

In Section 4 we introduce the action functional, for the large deviation principle
in C([0, T ]; H) associated with the family of solutions {uε}ε>0 of equation (1.1),
and the corresponding quasi-potential. We formulate generalizations of the corre-
sponding results from [6] to the general case α > 0, again, valid only for the case of
NSEs on a 2-D torus. Moreover, we state our main result, i.e. Theorem 4.5, about
the LDP for the family of invariant measures {με}ε>0 for the stochastic NSEs on a
2-D torus. The remainder of the paper is devoted to the proof of that result.

So, in Section 5 we formulate and prove Theorem 5.1 about exponential esti-
mates for the family of probability measures

{

με

}

ε>0
. This result is based on the

uniqueness and ergodicity of each invariant measure με. The basic ingredient in
this proof is also Lemma 5.3, about uniform exponential estimates for the solutions
uε of equation (1.1). Our proof is a simplification (and clarification) of a proof of
a more general result from [22]. However, we should note that another proof of
such a result is possible, which is based on an earlier paper [11] by the first named
authour and Peszat, see [5]. We believe that it is possible to obtain results similar
to ours for stochastic NSEs with multiplicative noise. However, such a study is
postponed till another publication.

Let us continue with the description of the content of our paper. In Section 6 we
continue with the proof of Theorem 4.5 and show that the invariant measures με

satisfy an appropriate lower bounds, see Theorem 6.1. In inequality (6.1) we already
see the relationship between the invariant measures με and the quasi-potential U.

Sections 7 and 8 are devoted to the formulation and proof of appropriate lower
bounds satisfied by the invariant measures με, see Theorem 7.1.

The paper is concluded with an appendix. It is devoted to a proof of precise
behavior for large negative time of solutions to the skeleton equation (1.2) on the
negative half-line (−∞, 0]. Such results should be of independent interest.

Acknowledgments. The first named author would like to thanks Department of
Mathematics, University of Maryland for it’s hospitality during his visit in Septem-
ber 2013 during which this project was initiated. Research of the second named
author was partly supported by NSF grant DMS-1407615. Talks on preliminary
versions of the results from this paper were given by the first named authour at
workshops at Lyon, Kraków, Loughborough and Warwick (all in 2015). After, one
of them we were informed by A. Shirkyan about a paper [26] by D. Martirosyan
who studies LDP for invariant measure for stochastic wave equations.
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2. Notation and preliminaries

Our main results are formulated for the stochastic Navier-Stokes equations with
periodic boundary conditions. Hence we begin with a brief introduction to the
relevant notation in this case; all the mathematical background can be found in
the small book [30] by Temam. Here we will not recall the notation in the case
of the Dirichlet boundary conditions but only refer the reader to our earlier paper
[6]. Some of our results are true also in this case. Proper generalization to this
case, as well to the case of multiplicative noise, will be a subject of a forthcoming
publication.

We denote here by T
2 the two dimensional torus of fixed dimensions L×L. The

space H is equal to

H = {u ∈ L2
0(T

2,R2) : div (u) = 0 and γν(u)|Γj+2
= −γν(u)|Γj

, j = 1, 2},
where L2

0(T
2,R2) is the Hilbert space consisting of those u ∈ L2(T2,R2) which

satisfy the condition
∫

T2

u(x) dx = 0, (2.1)

γν is the bounded linear map defined on divergence free vectors in L2(T2,R2) with

values in the dual space of H
1
2 (∂T2) (the image in L2(∂T2) of the trace operator

H1(T2) → L2(∂T2)), such that γν(u) coincides with the restriction of u · ν to ∂T2,

if u ∈ D(T2), and Γj , j = 1, · · · , 4 are the four (not disjoint) parts of the boundary
of ∂(T2) defined by, for j = 1, 2,

Γj = {x = (x1, x2) ∈ [0, L]2 : xj = 0}, Γj+2 = {x = (x1, x2) ∈ [0, L]2 : xj = L}.
We also define the vorticity space V by setting

V =
{

u ∈ H : Dju ∈ L2(T2,R2), u|Γj+2
◦ τj = u|Γj

, j = 1, 2
}

, (2.2)

where Dj , j = 1, 2, are the 1st order weak derivatives in the interior of the torus.
Because of condition (2.1), the norm on the space V induced by the norm from

the Sobolev spaces H1,2 is equivalent to the following one

(

u, v
)

V
=

2
∑

i,j=1

∫

O

∂uj

∂xi

∂vj
∂xi

dx, u, v ∈ V.

The Stokes operator A can be defined in a natural way as
⎧

⎨

⎩

D(A) = V ∩H2,2(T2,R2)

Au = −PΔ, u ∈ D(A),

(2.3)

where

P : L2(O) → H

is the orthogonal projection, called usually the Leray-Helmholtz projection.
It is well known that A is a self-adjoint positive operator in H. In fact, its

eigenvectors and eigenvalue can be explicitly found. In particular, A has bounded
imaginary powers and thus by [33, Remark 2 in 1.15.2], the domains of the fractional
powers of A are equal (with equivalent norms) to the complex interpolation spaces
between D(A) and H, i.e.

D(Aθ) = [H, D(A)]θ, θ ∈ (0, 1). (2.4)
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This means that

D(Aθ) = H ∩H2θ,2(T2,R2). (2.5)

Moreover, it is well known, see for instance [31, p. 57], that V = D(A1/2).
It follows from the above that, contrary to the Dirichlet boundary conditions

case, compare with [6, Proposition 2.1], the Leray-Helmholtz projection

P : Hα,2(T2,R2) → D(Aα) (2.6)

is a bounded linear map for every α ≥ 0. To this purpose,in the bounded domain
case.

The Stokes operator A satisfies all the properties known in the bounded domain

case, inclusive the strict positivity property, with λ1 = 4π2

L2 ,

〈Au, u〉H ≥ λ1|u2|H, u ∈ D(A). (2.7)

Now, consider the trilinear form b on V × V × V given by

b(u, v, w) =
2

∑

i,j=1

∫

O

ui
∂vj
∂xi

wj dx, u, v, w ∈ V.

It is known that b is a continuous trilinear form such that

b(u, v, w) = −b(u,w, v), u ∈ V, v, w ∈ H
1
0(O), (2.8)

and, for some constant c > 0 (see for instance [32, Lemma 1.3, p.163] and [31]),

|b(u, v, w)| ≤ c

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

|u|1/2H |∇u|1/2H |∇v|1/2H |Av|1/2H |w|H u ∈ V, v ∈ D(A), w ∈ H

|u|1/2H |Au|1/2H |∇v|H|w|H u ∈ D(A), v ∈ V, w ∈ H

|u|H|∇v|H|w|1/2H |Aw|1/2H u ∈ H, v ∈ V, w ∈ D(A)

|u|1/2H |∇u|1/2H |∇v|H|w|1/2H |∇w|1/2H u, v, w ∈ V.
(2.9)

Next, define the bilinear map B : V ×V → V′, by setting

〈B(u, v), w〉 = b(u, v, w), u, v, w ∈ V,

and the homogenous polynomial of second degree B : V → V′ by

B(u) = B(u, u), u ∈ V.

From the first inequality in (2.9), we have that if v ∈ D(A), then B(u, v) ∈ H and
the following inequality follows directly

|B(u, v)|2H ≤ C|u|H|∇u|H|∇v|H|Av|H, u ∈ V, v ∈ D(A). (2.10)

Moreover, the following identity is a direct consequence of (2.8).

〈B(u, v), v〉 = 0, u, v ∈ V. (2.11)

Furthermore, we have the following property involving the nonlinear term B and
the Stokes operator A

〈Au,B(u, u)〉H = 0, u ∈ D(A), (2.12)

see [30, Lemma 3.1] for a proof.
Let us also recall the following facts (see [9, Lemma 4.2] and [32]).
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Lemma 2.1. The trilinear map b : V × V × V → R has a unique extension to a
bounded trilinear map from L

4(O)× (L4(O)∩H)×V and from L
4(O)×V×L

4(O)
into R. Moreover, B maps L

4(O) ∩H (and so V) into V′ and

|B(u)|V′ ≤ C1|u|2L4(O) ≤ 21/2C1|u|H|∇u|L2(O) ≤ C2|u|H|u|V ≤ C3|u|2V, u ∈ V.

(2.13)

Lemma 2.2. For any T ∈ (0,∞] and for any u ∈ L2(0, T ;D(A)) with u′ ∈
L2(0, T ; H), we have

∫ T

0

|B(u(t), u(t))|2H dt < ∞.

The restriction of the map B to the space D(A) ×D(A) has also the following
representation

B(u, v) = P (u∇v) = P (
2

∑

j=1

ujDjv), u, v ∈ D(A). (2.14)

In view of (2.6), the above representation allows us to prove the following property
of the map B (compare with a weaker result in [6, Proposition 2.5] for the Dirichlet
boundary case).

Proposition 2.3. Assume that α ∈ (0, 1]. Then for any s ∈ (1, 2] there exists a
constant c > 0 such that

|B(u, v)|
D(A

α
2 )

≤ c|u|
D(A

s
2 )
|v|

D(A
α+1
2 )

, u, v ∈ D(A). (2.15)

Proof. In view of equality (2.14), since by (2.6) the Leray-Helmholtz projection P
is a well defined and continuous map from H

α(O) into D(A
α
2 ) and since the norms

in the spaces D(A
s
2 ) are equivalent to norms in H

s(O), it is enough to show that

|u∇v|Hα ≤ c|u|Hs |v|Hα+1 , u, v ∈ H
2(O).

Thus, it is sufficient to prove for scalar valued functions

|fg|Hα ≤ c|f |Hs |g|Hα , f, g ∈ H2. (2.16)

First we consider the case α = 0. In this case it is sufficient to assume that
s ∈ (1, 2) and we have

|fg|L2 ≤ |f |L∞ |g|L2 ≤ |f |Hs |g|L2

by the Gagliado-Nirenberg inequality, which implies that Hs →֒ L∞ continuously.
Secondly, we consider the case α = 1. Also in this case it is sufficient to assume

that s ∈ (1, 2). Then, by the Sobolev Gagliado-Nirenberg inequalities, we have

|∇(fg)|L2 ≤ |g∇f |L2 + |f∇g|L2

≤ |∇f |Lp |g|Lq + |f |L∞ |∇g|L2

≤ |∇f |Lp |g|H1 + |f |Hs |∇g|L2

≤ |f |Hs |g|H1 + |f |Hs |∇g|L2

where p, q ∈ (2,∞) are such that 1
p +

1
q = 1

2 and 1
2 = 1

p +
s−1
2 , i.e. 1

p = 1− s
2 . From

the above two inequalities we trivially deduce that

|fg|H1 ≤
√
6|f |Hs |g|H1

what proves inequality (2.16) for α = 1.
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Finally, let us consider the case α ∈ (0, 1). By a complex interpolation argument
and the Marcinkiewicz Interpolation Theorem, we infer that for any α ∈ (0, 1)

|fg|Hα ≤ 6
α
2 |f |Hs |g|Hα ,

so that the proof of Proposition 2.3 is complete.

Since the Sobolev space Hα is an algebra for α > 1, we have the following result.

Proposition 2.4. Assume that α ∈ (1,∞). Then there exists a constant c > 0
such that

|B(u, v)|
D(A

α
2 )

≤ c|u|
D(A

α
2 )
|v|

D(A
α+1
2 )

, u ∈ D(A
α
2 ), , v ∈ D(A

1+α
2 ). (2.17)

Proof. Let us fix α ∈ (1,∞). In view of equality (2.14), as in the proof of Proposi-
tion 2.3 it is enough to show that

|u∇v|Hα ≤ c|u|Hα |v|Hα+1 , u ∈ H
α(O), v ∈ H

α+1(O).

Since the Sobolev space Hα is an algebra and |∇v|Hα ≤ c|v|Hα+1 , the result follows.

Remark 2.5. One consequence of Propositions 2.3 and 2.4 is that the 2-D NSEs with

periodic boundary conditions are locally well posed in the space D(A
β
2 ), for every

β ≥ 0. To be precise for every u0 ∈ D(A
β
2 ) and every f ∈ L2

loc([0,∞);D(A
β
2 −

1
2 )

there exists T > 0 and a strong solution u defined on [0, T ]. This local existence
result is well known for β ∈ {0, 1} for 2-D NSEs with either Dirichlet or periodic
boundary conditions. Moreover, it is rather a folk result for β ∈ (0, 1). However, in
[6] we proved it to be true also for β ∈ (1, 32 ). The difference between the NSEs with
general boundary conditions and NSEs on a torus stems from the fact that, while
Propositions 2.3 and 2.4 hold in the latter case for any α > 0, we have been able
to establish a corresponding result in the former case for only α ∈ [0, 1

2 ). And the
root for this difference lies in the properties of the the Leray-Helmholtz projection
P . Actually, while in the latter case, it is a bounded linear map from Hα,2(T2,R2)
into D(Aα), in the former case we have been able to prove an analogous result
only for α ∈ (0, 1

2 ). As in [6], by using the global well-posedness in H, local well-

posedness in D(A
β
2 ) implies also global well-posedness. See Proposition 3.3 for

precise formulations of these results.

Remark 2.6. Similar inequalities to those in Propositions 2.3 and 2.4 have also been
studied in [7].

3. The skeleton equation

We consider here the following Navier-Stokes equation
{

u′(t) + Au(t) + B(u(t), u(t)) = f(t), t ∈ (a, b),

u(a) = u0,
(3.1)

where −∞ < a < b < ∞.
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Definition 3.1. Given any f ∈ L2(a, b; V′) and u0 ∈ H, a solution to problem
(3.1) is a function u ∈ L2(a, b; V) such that u′ ∈ L2(a, b; V′), u(a) = u0

1 and (3.1)
is satisfied.

As shown in [32, Theorems III.3.1/2], for every f ∈ L2(a, b; V′) and u0 ∈ H there
exists exactly one solution u to problem (3.1).

Lemma 3.2. For any r > 0 there exists cr > 0 such that, if T ∈ R and u ∈
C([T,+∞); H) satisfies f := u′ +Au+B(u, u) ∈ L2(T,+∞; H), then

|f |L2(T,+∞;H) ≤ r =⇒ |u|C([T,+∞);H) ≤ cr + |u(T )|H. (3.2)

More precisely, the following inequality holds:

|u(t)|H ≤ e−λ1(t−T ) |u(T )|H +
1

λ1
|f |2L2(T,+∞;H), t ≥ T. (3.3)

Proof. By [32, Lemma III.1.2] and inequality (2.7) we have

1

2

d

dt
|u(t)|2H + |u(t)|2V ≤ 1

2
|u(t)|2V +

1

2λ1
|f(t)|2H. (3.4)

This implies that for all b > a ≥ T ,

|u|2C([a,b);H) + |u|2L2(a,b;V) ≤ |u(a)|2H +
1

λ1
|f |2L2(a,b;H), (3.5)

what yields (3.2). Moreover, from (3.4) in view of inequality (2.7) we have

d

dt
|u(t)|2H + λ1 |u(t)|2H ≤ 1

λ1
|f(t)|2H, t ≥ T.

Hence, by the Gronwall lemma, for any T ≤ a ≤ t < +∞ we have

|u(t)|2H ≤ |u(a)|2H e−λ1(t−a) +
1

λ1

∫ t

a

e−λ1(t−s) |f(s)|2H ds,

what implies (3.3).

In [32, Theorem III.3.10] it is proven that, if f ∈ L2(a, b; H), the solution u of
equation (3.1) has the following properties

√

(· − a)u ∈ L2(a, b;D(A)) ∩ L∞(a, b; V),
√

(· − a)u′ ∈ L2(a, b; H).

Moreover, there exists c > 0 such that for all a < b

|
√

(· − a)u|2L∞(a,b;V) + |
√

(· − a)u|2L2(a,b;D(A))

≤ c exp
[

c
(

|u0|4H + |f |4L2(a,b;V′)

)

] (

|u0|2H + |f |2L2(a,b;V′) + |b− a||f |2L2(a,b;H)

)

.

(3.6)
In [6, Proposition 3.3] we have also proved the following result for α ∈ (0, 1

2 ) for
2-D NSEs with both Dirichlet and periodic boundary conditions. It turns out that
in the latter case it is true for any α ≥ 0.

1It is known (see for instance [32, Lemma III.1.2]) that these two properties of u imply that

u is almost everywhere equal to a function ū ∈ C([a, b],H). Thus, when we later write u(a) we

mean ū(0).
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Proposition 3.3. Suppose that α ≥ 0. If f ∈ L2(a, b;D(A
α
2 ) and u0 ∈ D(A

α+1
2 ),

for some α ≥ 0, then the unique solution u to the problem (3.1) satisfies

u ∈ L2(a, b;D(A1+α
2 ) ∩ C([a, b];D(A

α+1
2 )), u′(·) ∈ L2(a, b;D(A

α
2 )). (3.7)

Proof. As discussed in Remark 2.5, the above result follows from Propositions 2.3
and 2.4. The proof of the above result can be accomplished by following line by
line the proof of [6, Proposition 3.3], which worked for both types of boundary
conditions but only for α ∈ (0, 1

2 ).

Now, for any −∞ ≤ a < b ≤ ∞ and for any two reflexive Banach spaces X
and Y , such that X →֒ Y continuously, we denote by W 1,2(a, b;X,Y ) the space of
all u ∈ L2(a, b;X) which are weakly differentiable as Y -valued functions and their
weak derivative belongs to L2(a, b;Y ). The space W 1,2(a, b;X,Y ) is a separable
Banach space (and Hilbert if both X and Y are Hilbert spaces), endowed with the
natural norm

|u|2W 1,2(a,b;X,Y ) = |u|2L2(a,b;X) + |u′|2L2(a,b;Y ), u ∈ W 1,2(a, b;X,Y ).

Later on, when no ambiguity is possible, we will use the shortcut notation

W 1,2(a, b) = W 1,2(a, b;D(A),H).

The following definition has first appeared in the paper [25] by Lions and Mas-
moudi as a natural tool in the investigation of the uniqueness questions for Navier-
Stokes Equations in the Lebesgue spaces Ld.

Definition 3.4. Assume that −∞ ≤ a < b ≤ ∞ and f ∈ L2
loc

(a, b; H). A function
u ∈ C((a, b); H) is called a very weak solution to the Navier-Stokes equations (3.1)
on the interval (a, b) if for all φ ∈ C∞((a, b)×D), such that divφ = 0 on (a, b)×D,

∫

D

u(t1, ξ)φ(t1, ξ)dξ =

∫

D

u(t0, ξ)φ(t0, ξ)dξ

+

∫

[t0,t1]×D

u(s, ξ)(∂sφ(s, ξ) + Δφ(s, ξ)) dsdξ

+

∫ t1

t0

b(u(s), u(s), φ(s)) ds+

∫

[t0,t1]×D

f(s, ξ) · φ(s, ξ) dsdξ,

(3.8)

for all a < t0 < t1 < b.

One can observe that a solution to the Navier-Stokes equations (3.1) on the
interval (a, b) is also a very weak solution to (3.1) on the interval (a, b). We need a
notion of a very weak solution because a basic object in our study of large deviations
is the space X , see definition in equality (4.10), which consists only of H-valued
continuous functions. It has been used in Proposition 3.6 which consequently was
used in the proofs of Lemmata 3.8 and 3.9 in our previous paper [6].

By adapting some of the results from [25] to the 2-dimensional case, it is possible
to prove the following result.

Proposition 3.5. Assume that −∞ ≤ a < b ≤ ∞ and f ∈ L2
loc

((a, b); H). Suppose
that the functions u, v ∈ C((a, b); H) are very weak solutions to the Navier-Stokes
equations (3.1) on the interval (a, b), with u(t0) = v(t0), for some t0 ∈ (a, b). Then
u(t) = v(t) for all t ≥ t0.
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Definition 3.6. Assume that −∞ ≤ a < b ≤ ∞. Given a function u ∈ C((a, b); H)
we say that

u′ +Au+ B(u, u) ∈ L2(a, b; H), (resp. ∈ L2
loc

((a, b); H))

if there exists f ∈ L2(a, b; H), (resp. f ∈ L2
loc

((a, b); H)) such that u is a very weak
solution of the Navier-Stokes equations (3.1) on the interval (a, b).

Obviously, the corresponding function f is unique and we will denote it by H(u),
i.e.

[H(u)](t) := u′(t) + Au(t) + B(u(t), u(t)), t ∈ (a, b). (3.9)

In [6, Proposition 10.2] we have proved the following result.

Lemma 3.7. Assume that α ∈ (0, 1
2 ). Assume that u ∈ C((−∞, 0]; H) is such that

H(u) := u′ +Au+ B(u, u) ∈ L2(−∞, 0;D(A
α
2 )) and there exists {tn} ↓ −∞, such

that

lim
n→∞

|u(tn)|H = 0.

Then u ∈ W 1,2(−∞, 0;D(A1+α
2 ), D(A

α
2 )), u(0) ∈ D(A

α+1
2 ) and

lim
t→−∞

|u(t)|
D(A

α
2

+ 1
2 )

= 0.

In Appendix A, we generalize the above result, again only in the case of NSEs
on a torus, to the case of any α > 0.

4. LDP for stochastic NSEs on a 2-D torus

For any fixed ε ∈ (0, 1] and x ∈ H, we consider the problem

du(t) + Au(t) + B(u(t), u(t)) =
√
ε dw(t), u(0) = x. (4.1)

Here w =
{

w(t)
}

t≥0
is an H-valued Wiener process with reproducing kernel Hilbert

space denoted by K. In particular K ⊂ H and the natural embedding i : K →֒ H
is a Hilbert-Schmidt operator. Let us fix an orthonormal basis {fk}k∈N of K and
a sequence

{

βk

)

}∞k=1 of independent Brownian motions defined on some filtered

probability space
(

Ω,F ,F,P
)

, where F =
{

Ft

}

t≥0
, such that the Wiener process w

has the following representation

w(t) =

∞
∑

k=1

βk(t)fk, t ≥ 0. (4.2)

With the Wiener process w, one can associate a covariance operator C ∈ L(H)
(usually denoted by Q), defined by

〈Ch1, h2〉 = E
[

〈h1, w(1)〉H 〈w(1), h2〉H
]

, h1, h2 ∈ H.

It is well known, see e.g. [15, Proposition 2.15], that C is a non-negative self-
adjoint and trace class operator in H. Moreover, see for instance [8], C = ii∗ and

K = R(C
1
2 ). In this paper we assume that for some α > 1, the operator Q := C

1
2

is an isomorphism of H onto D(A
α
2 ), i.e. when K = D(A

α
2 ).

Note that that
∞
∑

k=1

|ifk|2H = tr [C] < ∞.
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It is now well known, see e.g. in [21], that for all ε ∈ (0, 1] and x ∈ H, equation
(4.1) has a unique solution ux such that ux

ε ∈ Lp(Ω;C([0, T ]; H)), for all T > 0
and p ≥ 1. Moreover, there exists an invariant measure νε for the Markov process
generated by this equation, i.e. a Borel probability measure on H such that for
every ϕ ∈ Bb(H), and every t ≥ 0,

∫

H

Eϕ(ux
ε (t)) νε(dx) =

∫

H

ϕ(x) νε(dx), (4.3)

where Bb(H) denotes the set of bounded and continuous functions ϕ : H → R. It
is also known, see [19], that under our assumption, this invariant measure νε is
unique and ergodic. Thus is particular, for any bounded Borel measurable function
ϕ : H → R,

∫

H

ϕ(x) νε(dx) = lim
T→∞

1

T

∫ T

0

Eϕ(u0
ε(t)) dt. (4.4)

For a function2 u ∈ C([a, b]; H), where −∞ ≤ a < b ≤ +∞, such that

H(u) := u′ +Au+B(u, u) ∈ L2
loc((a, b);D(A

α
2 )),

we define the action functionals by

St0,t1(u) :=
1

2

∫ t1

t0

|Q−1H(u)(t)|2H dt, a ≤ t0 < t1 ≤ b. (4.5)

Note that sinceQ is a bounded operator in H, we have the following useful inequality
∫ t1

t0

|H(u)(t)|2H dt ≤ 2‖Q‖2L(H,H)St0,t1(u). (4.6)

If H(u) /∈ L2((t0, t1);D(A
α
2 )), we put St0,t1(u) = +∞. Moreover, we denote

S−T := S−T,0, ST := S0,T , for every T > 0.

In particular, when a = −∞ and b = 0, we set

S−∞(u) :=
1

2

∫ 0

−∞

|Q−1H(u)(t)|2H dt. (4.7)

An obvious sufficient condition for the finiteness of St0,t1(u) is that u′, Au and
B(u, u) all belong to L2(t0, t1;D(A

α
2 ). In fact, as we proved in [6, Lemma 3.9],

in the case of 2-D NSEs with both Dirichlet and periodic boundary conditions,
when α ∈ (0, 1

2 ), this is not so far from being a necessary condition. As earlier for
Proposition 3.3, it turns out that in the latter case, [6, Lemma 3.9] holds true for
any α ≥ 0.

Lemma 4.1. Suppose that α ≥ 0 and −∞ < a < b < ∞.
If a function u ∈ C([a, b]; H) satisfies

u′ +Au+ B(u, u) ∈ L2(a, b;D(A
α
2 )),

then u(b) ∈ D(A
α+1
2 ) and u ∈ W 1,2

(

t0, b;D(A
α
2 +1), D(A

α
2 )
)

, for any t0 ∈ (a, b).

Moreover, if u(a) ∈ D(A
α+1
2 ), then u ∈ W 1,2

(

a, b;D(A
α
2 +1), D(A

α
2 )
)

.

2If for instance a = −∞), we assume that u ∈ C((a, b]; H).
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Proof. As discussed in Remark 2.5, the above result follows from Propositions 2.3
and 2.4. The proof of the above result can be accomplished by following the line of
proof of [6, Lemma 3.9] which worked for both types of boundary conditions but
only for α ∈ (0, 1

2 ).

As a consequence of the contraction principle and of certain continuity properties
of the solution of equation (4.1) proven in [9], we infer the following result, see [6,
Theorem 5.3],

Theorem 4.2. For any x ∈ H, the family {L(ux
ε )}ε∈ (0,1] satisfies the large devia-

tion principle in C([0, T ]; H), with speed ε and action functional ST , uniformly with
respect to x in bounded subsets of H.

We recall here that a family of probability measures {με}ε>0 on some com-
plete metric space E satisfies a large deviation principle, with speed {βε}ε>0 such
that limεց0 β(ε) = 0, and action functional I, iff I : E → [0,∞] is a lower-
semicontinuous3 map such that

(1) For each r > 0, the level set

Ir := {x ∈ E : I(x) ≤ r} ,
is compact in E.

(2) Lower bounds: For every x̄ ∈ E and for all δ, γ > 0 there exists ε0 > 0 such
that4

με (BE(x̄, δ)) ≥ exp

(

−I(x̄) + γ

βε

)

, ε ≤ ε0. (4.8)

Here BE(x̄, δ) = {x ∈ E : |x− x̄|E < δ}.
(3) Upper bounds: For every s, δ and γ ∈ (0, s) there exists ε0 > 0 such that

με ({x ∈ E : distE (x, Is) > δ}) ≤ e−
s−γ
βε , ε ≤ ε0. (4.9)

Next, for any x, y ∈ H and a, b ∈ R, we introduce the following functional spaces

X =
{

u ∈ C((−∞, 0]; H) : lim
t→−∞

|u(t)|H = 0
}

,

Xx =
{

u ∈ X : u(0) = x
}

,

Cx,y([a, b],H) = {u ∈ C([a, b]; H) : u(a) = x, u(b) = y}.

(4.10)

We endow the space X with the topology of uniform convergence on compact in-
tervals, i.e. the topology induced by the metric ρ defined by

ρ(u, v) :=
∞
∑

n=1

2−n

(

sup
s∈[−n,0]

|u(s)− v(s)|H ∧ 1

)

, u, v ∈ X .

The set Xx is a closed in X and we endow it with the trace topology induced by X .

In [6, Propositions 5.4 and 5.5], we proved that the functional

S−∞ : X → [0,+∞], (4.11)

is lower-semicontinuous and has compact level sets. This result obviously holds for
both types of boundary conditions, but only for α ∈ [0, 1

2 ). Its proof relied on [6,

3This condition is redundant if we also assume condition (1) below.
4Inequality (4.8) is trivially satisfied when I(x̄) = ∞.
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Propositions 10.1 and 10.2] which we generalize in Appendix A. Let us state it for
the completeness sake.

Proposition 4.3. Assume that α ≥ 0. Then the functional S−∞ defined by (4.7),
is lower-semicontinuous on X . Moreover, its level sets are compact in X

Next, we define the quasi-potential U associated with equation (4.1), by setting

U(x) := inf
{

ST (u) : T > 0, u ∈ C0,x([0, T ]; H)
}

= inf
{

S−T (u) : T > 0, u ∈ C0,x([−T, 0]; H)
}

, x ∈ H.

(4.12)

In our previous paper [6], we thoroughly studied the functional U for the 2-D
NSEs, for both Dirichelt and periodic boundary conditions, and we have shown
that it satisfies the properties described below for α ∈ (0, 1

2 ). The following result
generalizes [6, Theorem 6.2 and Propositions 6.1, 6.5 and 6.6] to α ≥ 0 but only,
as all our generalizations, for the case of the 2-D NSEs on a torus.

Theorem 4.4. Assume that α ≥ 0 and x ∈ H. Then the following hold true.

(1) U(x) < ∞ ⇐⇒ x ∈ D(A
α+1
2 ) and

U(x) := inf
{

S−∞(u) : u ∈ Xx

}

. (4.13)

The restriction of the map U to the set D(A
α+1
2 ), i.e. the map

U : D(A
1+α
2 ) → R

is continuous.
(2) For any r > 0, the level set

Kr = {x ∈ H : U(x) ≤ r} (4.14)

is compact in H.
In particular, the function U : H → [0,∞] is lower semi-continuous.

Proof. The proofs of the above results follow the proofs of [6, Theorem 6.2 and
Propositions 6.1, 6.5 and 6.6], while taking into account Propositions 2.3 and 2.4.

As mentioned in the introduction, in the present paper we want to prove the
following theorem.

Theorem 4.5. The family {νε}ε>0 of the invariant measures for equation (4.1)
satisfies a large deviation principle in H, with speed βε = ε and action functional
U (defined in formula (4.12)).

In Theorem 4.4, we have seen that U has compact level sets. Thus, in order to
prove Theorem (4.5), in what follows we have only to prove the validity of the lower
and upper bounds.



14 Z. BRZEŹNIAK AND S. CERRAI

5. Exponential estimates

In the proof of lower bounds for the large deviation principle we need to prove
that there exists some R̄ > 0 such that

lim
ε→0

νε
(

Bc
H(0, R̄)

)

= 0. (5.1)

On the other hand, in the proof of upper bounds we need something stronger.
Actually we need that the convergence to zero in (5.1) is exponential.

Theorem 5.1. For any s > 0, there exist ǫs > 0 and Rs > 0 such that

νε
(

Bc
H(0, Rs)

)

≤ exp
(

−s

ε

)

, ε ≤ εs. (5.2)

This fundamental result will be used in the proof of Theorem 7.1. Let us note
that the proof uses the ergodicity of the invariant measure.

Remark 5.2.

An essential part of the proof of the above result is given by the following ex-
ponential estimates. Their proof can in fact be traced to the paper [11], but we
present here an independent one based on the use of a suitable Lyapunov function.
This proof goes back to the paper [22], but that paper tried to treat so many cases
simultaneously that we decided to write down an independent statement and proof.

Lemma 5.3. In the framework of Theorem 5.1, for any arbitrary ε > 0 there exists
γ > 0 such that

E e
γ
ε |u

x
ε (t)|

2
H ≤ e−

λ1
2 t e

γ
ε |x|

2
H +2, t > 0.

Remark 5.4. The result from Theorem 5.1 is also true for the stochastic Navier-
Stokes equations with multiplicative noise

du(t) + Au(t) + B(u(t), u(t)) =
√
εg(u) dw(t), u(0) = u0. (5.3)

where w(t) is a cylindrical Wiener process on some separable Hilbert space K,
provided the map g : H → R(K,H) is a continuous and bounded and there exists
unique ergodic invariant measure νε of the corresponding Markov process.

The result from Lemma 5.3 is also true for the stochastic Navier-Stokes equations
with multiplicative noise (5.3) provided w is a cylindrical Wiener process on some
separable Hilbert space K and a continuous and bounded map g : H → R(K,H).

Proof of Lemma 5.3. Let us fix the initial data x ∈ H. Take arbitrary ε, λ, γ > 0,
that will be specified later on. Let us denote the solution ux

ε by u. Let us recall the
Itô’s formula due to Pardoux [28] applied to a C1,2-class function ϕ : R+ ×H → R

and the process u:

dϕ(t, u(t)) =
∂ϕ(t, u(t))

∂t
dt+ 〈∂ϕ(t, u(t))

∂u
, du(t)〉+ ε

2

∑

k

〈∂
2ϕ(t, u(t))

∂u2
(ifk), ifk〉.

We apply this formula to the following function

ϕ : R+ ×H ∋ (t, u) �→ eλt e
γ
ε |u|

2
H ∈ R.
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Since ∂ϕ(t,u)
∂t = λϕ(t, u), ∂ϕ(t,u)

∂u = 2γ
ε ϕ(t, u)u ∈ H and, for y, z ∈ H, 〈∂

2ϕ(t,u)
∂u2 y, z〉 =

ϕ(t, u)
[

4γ2

ε2 〈u, y〉〈u, z〉+ 2γ
ε 〈y, z〉

]

, by (2.11) and (2.7), we infer that

〈∂ϕ(t, u(t))
∂u

, du(t)〉 =
2γ

ε
ϕ(t, u)

[

〈u,−Au〉+ 〈u,B(u, u) + 〈u
√
ε dw(t)〉

]

≤ ϕ(t, u)
[

−λ1
2γ

ε
|u|2 + 2γ√

ε
〈u, dw(t)〉

]

,

ε

2

∑

k

〈∂
2ϕ(t, u(t))

∂u2
(ifk), ifk〉 =

ε

2
ϕ(t, u)

[4γ2

ε2

∑

k

〈u, ifk〉〈u, ifk〉+
2γ

ε

∑

k

〈ifk, ifk〉
]

= ϕ(t, u)
[2γ2

ε
|i∗u|2K + γ tr (C)

]

≤ ϕ(t, u)
[2γ2

ε
|i∗|2L(H,K)|u|2 + γ tr (C)

]

.

Therefore, we infer that

dϕ(t, u(t)) ≤ ϕ(t, u)
[

−2γ

ε

(

λ1−γ|i∗|2L(H,K)

)

|u(t)|2+λ+γtr (C)
]

+ϕ(t, u)
2γ√
ε
〈u, dw(t)〉.

Now, if we put λ = λ1/2 and choose (small enough) γ > 0 such that

λ1 − γ |i∗|2L(H,K) ≥
λ1

2
, γ tr (C) ≤ λ1

2
,

we get

dϕ(t, u(t)) ≤ ϕ(t, u)
[

−γ

ε
λ1|u(t)|2 + λ1

]

+ ϕ(t, u)
2γ√
ε
〈u, dw(t)〉.

By taking expectation (and considering stopping times as for instance in [10])
we infer that

E

[

e
λ1
2 t e

γ
ε |u(t)|

2
]

≤ e
γ̄
ε |x|

2

+λ1 E

∫ t

0

e
λ1
2 s e

γ
ε |u(s)|

2
[

−γ

ε
|u(s)|2H + 1

]

ds.

Since er(−r + 1) ≤ 1, for any r ≥ 0, and λ1

∫ t

0
e

λ1
2 s ds = 2

(

e
λ1
2 t −1

)

this yields

E e
γ
ε |u(t)|

2
H ≤ e−

λ1
2 t e

γ
ε |x|

2
H +2.

The proof is now complete.

Now, we continue with the proof of the main result in this section.

Proof of Theorem 5.1. We use the notation introduced in the proof of Lemma 5.3.
Let us fix R > 0 and t > 0. By the previous lemma and Chebyshev’s inequality, we
have

P
(

ux
ε (t) ∈ Bc

H(0, R)
)

= P (|ux
ε (t)|H > R) = P

(

e
γ
ε |u

x
ε (t)|

2
H > e

R2γ
ε

)

≤ e−
R2γ
ε E

(

e
γ
ε |u

x
ε (t)|

2
H

)

≤ e−
R2γ
ε

[

e−
λ1
2 t e

γ
ε |x|

2
H +2

]

.

Now, due to the ergocity of the invariant measure νε, for any function ϕ : H → R,
Borel and bounded,

∫

H

ϕ(x) νε(dx) = lim
T→∞

1

T

∫ T

0

Eϕ(u0
ε(s)) ds.
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This implies that for any R > 0

νε
(

Bc
H(0, R)

)

= lim
T→∞

1

T

∫ T

0

P
(

u0
ε(s) ∈ Bc

H(0, R)
))

ds

≤ e−
R2γ
ε lim sup

T→∞

1

T

∫ T

0

(

e−
λ1
2 s +2

)

ds = 2 e−
R2γ
ε .

Hence, if we fix s > 0 and put

Rs :=

√

2s

γ
, εs :=

R2
sγ

2 log 2
,

we have that

νε
(

Bc
H(0, Rs)

)

≤ e−
R2

sγ

2ε = e−
s
ε , ε ≤ εs,

and this concludes proof of Theorem 5.1.

6. Lower bounds

Our purpose here is proving the following upper bound.

Theorem 6.1. For any δ, γ > 0 and x̄ ∈ H, there exists ε0 > 0 such that

νε
(

BH(x̄, δ)
)

≥ e−
U(x̄)+γ

ε , ε ≤ ε0. (6.1)

Let us point out that in the proof of the result we will use that fact that νε is an
invariant measure of the Markov process corresponding to the stochastic Navier-
Stokes

Before proceeding with the proof of Theorem 6.1, we need to prove a preliminary
result.

Lemma 6.2. Suppose that γ, T̄ > 0, x̄ ∈ H and ϕ̄ ∈ L2(0, T̄ ; H) satisfy

1

2
|ϕ̄|2L2(0,T̄ ;H) ≤ U(x̄) +

γ

4
. (6.2)

Moreover, assume there exists a solution z̄ ∈ C([0, T̄ ]; H) to the problem

z̄ ′(t) + Az̄(t) +B(z̄(t), z̄(t)) = Qϕ̄(t), z̄(0) = 0, z̄(T̄ ) = x̄. (6.3)

Then, for all δ and R > 0 there exists T0 > 0 and ϕ0 ∈ L2(0, T0 + T̄ ; H) such that

1

2
|ϕ0|2L2(0,T0+T̄ ;H) ≤ U(x̄) +

γ

4
(6.4)

and

sup
|x|H≤R

∣

∣zx(ϕ0)(T0 + T̄ )− x̄
∣

∣

H
≤ δ

2
, (6.5)

where zx(ϕ0) ∈ C([0, T0 + T̄ ]; H) is the (unique) solution of the control problem

z′(t) + Az(t) +B(z(t), z(t)) = Qϕ0(t), t ∈ [0, T0 + T̄ ], z(0) = x. (6.6)
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Proof. Let us assume that γ, T̄ > 0, x̄ ∈ H, ϕ̄ ∈ L2(0, T̄ ; H) and z̄ ∈ C([0, T̄ ]; H)
satisfy the assumptions of our Lemma. Let us fix δ > 0 and R > 0.

Since, as it is well known,5 the solution of problem (6.3) depends continuously
on the initial condition in C([0, T̄ ]; H), we infer there exists ρ > 0 such that

|y0|H ≤ ρ =⇒ |yy0(ϕ̄)(T̄ )− x̄|H ≤ δ

2
, (6.7)

where yy0(ϕ̄) ∈ C([0, T̄ ]; H) is the solution of the problem

y′(t) + Ay(t) +B(y(t), y(t)) = Qϕ̄(t), t ∈ [0, T̄ ], y(0) = y0.

Now, let us consider a solution ux ∈ C([0, T0]; H) of the homogenous Navier-
Stokes equation

u′(t) + Au(t) + B(u(t), u(t)) = 0, u(0) = x. (6.8)

According to (3.3), we have

|ux(t)|H ≤ e−λ1t |x|H, t ≥ 0.

Hence, if we choose T0 > 0 such that R e−λ1T0 ≤ ρ, we have

sup
|x|H≤R

|ux(T0)|H ≤ ρ. (6.9)

Next, let us define a control ϕ0 ∈ L2(0, T0 + T̄ ; H) by setting

ϕ0(t) =

{

0, t ∈ [0, T0],

ϕ̄(t− T0), t ∈ [T0, T0 + T̄ ],

and next let us fix x ∈ H such that |x|H ≤ R. Then, the function z ∈ C([0, T0 +
T̄ ]; H) defined by

z(t) =

{

ux(t), t ∈ [0, T0],

yux(T0)(ϕ̄)(t− T0), t ∈ [T0, T0 + T̄ ],

is the unique solution to problem

z′(t) + Az(t) + B(z(t), z(t)) = Qϕ0(t), t ∈ [0, T0 + T̄ ], z(0) = x,

In particular we infer that z = zx(ϕ0).
Since moreover zx(ϕ0)(T0 + T̄ ) = yux(T0)(ϕ̄)(T̄ ) and |x|H ≤ R, due to (6.9) and
(6.7), we infer that

|zx(ϕ0)(T0 + T̄ )− x̄|H ≤ δ

2
.

This proves condition (6.5). It remains to prove that ϕ0 satisfies (6.4). This however
follows directly from the definition of ϕ0 and assumption (6.2).

Now, we are ready to prove Theorem 6.1. As we have proved Lemma 6.2, its
proof is analogous to the proof of [29, C.2] and [12, Theorem 6.1].

5For a proof, see e.g. [9, Theorem 4.6].
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Proof of Theorem 6.1. Let us fix δ, γ > 0 and x̄ ∈ H. Without loss of generality,
we may assume that U(x̄) < ∞. Note, that in view of Theorem 4.4, this implies

that x̄ ∈ D(A
1+β
2 ). Moreover, by the definitions (4.12) for the quasi-potential U

and (4.5) for the energy, we infer that there exists T̄ > 0, a control ϕ̄ ∈ L2(0, T̄ ; H)
and a function z̄ ∈ C([0, T̄ ; H) such that

1

2
|ϕ̄|2L2(0,T̄ ;H) ≤ U(x̄) +

γ

4

and z̄ is a solution to the problem

z′(t) + Az(t) +B(z(t), z(t)) = Qϕ(t), z(0) = 0, z(T ) = x̄.

By (5.1) we can find R̄ > 0, sufficiently large, and ε1 > 0 such that

νε(BH(0, R̄) ≥ 1− (1− e−
γ
2 ) = e−

γ
2 , ε ∈ (0, ε1]. (6.10)

Note that trivially, the above implies that

νε(BH(0, R̄) ≥ e−
γ
2ε , ε ∈ (0, 1 ∧ ε1]. (6.11)

With all the data given and constructed, we can apply Lemma 6.2 and we can
find T0 > 0 and ϕ0 ∈ L2(0, T0 + T̄ ; H) such that

1

2
|ϕ0|2L2(0,T0+T̄ ;H) ≤ U(x̄) +

γ

4

and

sup
|x|H≤R

∣

∣zx(ϕ0)(T0 + T̄ )− x̄
∣

∣

H
≤ δ

2
,

where zx(ϕ0) ∈ C([0, T0 + T̄ ]; H) is the solution of the control problem (6.6). Let
us recall that for x ∈ H and ε > 0, the unique solution to the stochastic problem
(4.1) is denoted by ux

ε .
Now, since by Theorem 4.2, the family {ux

ε}ε>0 satisfies the uniform large devi-
ation principle in C([0, T0 + T̄ ]; H), there exists ε2 > 0 such that for |x|H ≤ R̄ and
all ε ∈ (0, ε2],

P

(

|ux
ε − zx(ϕ0)|C([0,T0+T̄ ];H) <

δ

2

)

≥ e−
|ϕ0|2

L2(0,T0+T̄ ;H)
+

γ
2

2ε ≥ e−
U(x̄)+

γ
2

ε . (6.12)

Let us fix x ∈ H such that |x|H ≤ R̄. Then by inequality (6.5) we have

|ux
ε (T0 + T̄ )− x̄|H ≤ |ux

ε (T0 + T̄ )− zx(ϕ0)(T0 + T̄ )|H + |zx(ϕ0)(T0 + T̄ )− x̄|H

≤ |ux
ε (T0 + T̄ )− zx(ϕ0)(T0 + T̄ )|H +

δ

2
.

This implies that

|ux
ε (T0 + T̄ )− zx(ϕ0)(T0 + T̄ )|H <

δ

2
=⇒ |ux

ε (T0 + T̄ )− x̄|H < δ.
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Therefore, since νε is an invariant measure for the Markov process uε
x, we infer

that

νε
(

BH(x̄, δ)
)

= νε (|x− x̄|H < δ) =

∫

H

P
(

|ux
ε (T0 + T̄ )− x̄|H < δ

)

νε(dx)

≥
∫

H

P

(

|ux
ε (T0 + T̄ )− zx(ϕ0)(T0 + T̄ )|H <

δ

2

)

νε(dx)

≥
∫

H

P

(

|ux
ε − zx(ϕ0)|C([0,T0+T̄ ];H) <

δ

2

)

νε(dx)

≥
∫

BH(0,R̄)

P

(

|ux
ε − zx(ϕ0)|C([0,T0+T̄ ];H) <

δ

2

)

νε(dx).

Applying (6.12) we infer that for ε ∈ (0, ε2],

νε
(

BH(x̄, δ)
)

≥ νε(BH

(

0, R̄)
)

e−
U(x̄)+

γ
2

ε ,

To conclude the proof, let us take ε0 := min{1, ε1, ε2}. Then, by (6.11), we infer
that for ε ∈ (0, ε0],

νε
(

BH(x̄, δ)
)

≥ e−
γ
2ε e−

U(x̄)+
γ
2

ε = e−
U(x̄)+γ

ε .

This completes the proof of Theorem 6.1.

7. Upper bounds

Let us recall here that Ks is the level set of the quasipotential U, as defined in
(4.14), that is

Ks := {x ∈ H : U(x) ≤ s}.
Theorem 7.1. For all δ, γ > 0 and s ≥ 0, there exists ε0 > 0 such that

νε ({x ∈ H : distH(x,Ks) ≥ δ}) ≤ e−
s−γ
ε , ε ≤ ε0. (7.1)

Before proceeding with the proof of Theorem 7.1, we state two auxiliary results,
whose proofs are postponed till next section.

Lemma 7.2. For all δ > 0 and s > 0, there exist λ = λ(δ, s) > 0 and T̄ = T̄ (δ, s) >
0 such that for every t ≥ T̄ and z ∈ C([−t, 0]; H)

|z(−t)|H < λ, S−t(z) ≤ s =⇒ distH(z(0),Ks) < δ. (7.2)

Lemma 7.3. For all s, δ, r > 0, there exists n̄ ∈ N such that

βn̄ := inf {Sn̄(u) : u ∈ Hr,s,δ(n̄)} > s,

where for each n ∈ N, s > 0, δ > 0 and r > 0, the set Hr,s,δ(n) is defined by

Hr,s,δ(n) := {u ∈ C([0, n]; H), |u(0)|H ≤ r, |u(j)|H ≥ λ, j = 1, . . . , n} , (7.3)

and λ is the constant depending on s and δ, obtained in Lemma 7.2.

Assuming Lemmata 7.2 and 7.3, the proof of Theorem 7.1 follows the same line
of the proofs of [29, C.3] and [12, Theorem 7.3]. We give here the proof, with some
additional details, for the reader’s convenience.
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Proof of Theorem 7.1. Let us fix δ > 0, γ > 0 and s ≥ 0 and let us choose positive
constants Rs and εs, as in Theorem 5.1.

Because νε is an invariant measure for the Markov process generated by equation
(4.1) and the set

{

x ∈ H : dist(x,Ks) ≥ δ} is closed and hence a Borel subset of
H, we infer that

νε
({

x ∈ H : dist(x,Ks) ≥ δ}
)

=

∫

H

P (dist (uy
ε(t),Ks) ≥ δ) νε(dy) (7.4)

=

∫

Bc
H(0,Rs)

P (dist (uy
ε(t),Ks) ≥ δ) νε(dy)

+

∫

BH(0,Rs)

P (dist (uy
ε(t),Ks) ≥ δ) νε(dy).

Thanks to Theorem 5.1, for any ε ≤ εs we have
∫

Bc
H(0,Rs)

P (dist (uy
ε(t),Ks) ≥ δ) νε(dy) ≤ e−

s
ε . (7.5)

Now, in view of Lemma 7.3, we can pick n̄ ∈ N such that

u ∈ HRs,s,δ(n̄) =⇒ Sn̄(u) ≥ s.

Since the set HRs,s,δ(n̄) is closed in C([0, n]; H), and since by Theorem 4.2 the
family {uy

ε}ε>0 satisfies the large deviation principle in C([0, n]; H) uniformly with
respect to y ∈ BH(0, Rs), we infer that there exists ε1 > 0 such that

sup
y∈BH(0,Rs)

P (uy
ε ∈ HRs,s,δ(n̄)) ≤ e−

s−γ/2
ε , ε ≤ ε1. (7.6)

This implies that for ε ∈ (0, ε1),
∫

BH(0,Rs)

P (dist (uy
ε(t),Ks) ≥ δ, uy

ε ∈ HRs,s,δ(n̄)) νε(dy) ≤ e−
s−γ/2

ε .

Thus, for ε ∈ (0, ε1),
∫

BH(0,Rs)

P (dist (uy
ε(t),Ks) ≥ δ) ≤ e−

s−γ/2
ε (7.7)

+

∫

BH(0,Rs)

P (dist (uy
ε(t),Ks) ≥ δ, uy

ε /∈ HRs,s,δ(n̄)) νε(dy).

Thus we only have to deal with the second integral on the RHS of (7.7).
Let now fix t ≥ n̄, ε ∈ (0, εs ∧ ε1) and y ∈ BH(0, Rs). In view of the definition

of Hr,s,δ(n̄), we have that

{u ∈ C([0, n]; H), |u(0)|H ≤ r} \Hr,s,δ(n) =
n
⋃

j=1

{u ∈ C([0, n]; H), |u(j)|H < λ} .

(7.8)
Therefore, because |uy

ε(0)|H = |y|H ≤ Rs, we infer that
{

ω ∈ Ω : dist
(

uy
ε(t),Ks

)

≥ δ, uy
ε /∈ HRs,s,δ(n̄)

}

=
n
⋃

j=1

{

ω ∈ Ω : dist
(

uy
ε(t),Ks

)

≥ δ, |uy
ε(j)|H < λ

}

.
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Moreover, by the Markov property of the process uy
ε , we infer that if P (τ, t, dz),

0 ≤ τ ≤ t, is the transition probability function corresponding to the Markov
process uy

ε(t), t ≥ 0 and y ∈ H, then

P

(

dist
(

uy
ε(t),Ks

)

≥ δ, |uy
ε(j)|H < λ

)

=

∫

{|uy
ε (j)|H<λ}

P (j, y, dz)P
(

dist(uz
ε(t− j),Ks) ≥ δ

)

(7.9)

≤ sup
|z|H<λ

P
(

dist(uz
ε(t− j),Ks) ≥ δ

)

. (7.10)

Therefore,

∫

{|y|H≤Rs}

P (dist (uy
ε(t),Ks) ≥ δ, uy

ε /∈ HRs,s,δ(n̄)) νε(dy)

≤
n̄
∑

j=1

sup
z∈BH(0,λ)

P (dist (uz
ε(t− j),Ks) ≥ δ) .

(7.11)

Next, in order to estimate the RHS of the last equality, we fix z ∈ BH(0, λ) and

define two auxiliary sets Ks(λ, t) and K̃s(z, t) by

Ks(λ, t) := {u ∈ C([0, t]; H) : St(u) ≤ s, |u(0)|H ≤ λ} ,
and

K̃s(z, t) := {u ∈ C([0, t]; H) : St(u) ≤ s, u(0) = z} .
Since, |z|H ≤ λ, we observe that

K̃s(z, t) ⊂ Ks(λ, t).

Moreover, according to Lemma 7.2, there exists T̄ > 0 such that for any T ≥ T̄

ϕ ∈ Ks(λ, T ) =⇒ dist(ϕ(T ),Ks) ≤
δ

2
.

In what follows we fix t ≥ max{T̄ , n̄}, and we prove that for any u ∈ C([0, t]; H)
such that

distC([0,t];H)(u,Ks(λ, t)) <
δ

2
, (7.12)

we have

dist(u(t),Ks) < δ.

Indeed, if (7.12) holds, then there exists ϕ ∈ Ks(λ, t) such that

distC([0,t];H)(u, ϕ) <
δ

2
,

so that |u(t)− ϕ(t)|H < δ
2 . Hence, by the triangle inequality, we infer that

dist(u(t),Ks) ≤ |u(t)− ϕ(t)|H + dist(u(t),Ks) <
δ

2
+

δ

2
= δ.

Since, K̃s(z, t) ⊂ Ks(λ, t) we deduce that

P (dist (uz
ε(t),Ks) ≥ δ) ≤ P

(

distC([0,t];H) (u
y
ε ,Ks(λ, t)) >

δ

2

)

≤ P

(

distC([0,t];H)

(

uz
ε , K̃s(z, t)

)

>
δ

2

)

.
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Next, as the set

{

u ∈ C([0, t]; H) : distC([0,t];H) (uε,Ks(y, t)) ≥
δ

2

}

is closed in C([0, t]; H), and, by Theorem 4.2, the family {uz
ε}ε>0 satisfies the large

deviation principle in C([0, t]; H) uniformly with respect to z ∈ BH(0, λ), we infer
that there exists ε2(t) > 0 such that

sup
z∈BH(0,λ)

P

(

distC([0,t];H) (u
z
ε ,Ks(y, t)) >

δ

2

)

≤ e−
s−γ/2

ε , ε ≤ ε(t).

Therefore, if we define

ε3 := min{ε2(t− 1), . . . , ε2(t− n̄), εs, ε1},

due to (7.4), (7.5), (7.7) and (7.11), we deduce that for ε ≤ ε3,

νε (x ∈ H : dist(x,K(s)) ≥ δ)

≤ e−
s
ε +(1 + n̄) e−

s−γ/2
ε = e−

s
ε

(

1 + (1 + n̄) e−
γ/2
ε

)

.

This clearly implies (7.1), if we take ε0 sufficiently small.

8. Proof of Lemmata 7.2 and 7.3

Proof of Lemma 7.2. Suppose that there exist δ > 0 and s > 0 such that for every
n ∈ N there exists a function zn ∈ C([−n, 0];H) with

S−n(zn) ≤ s, distH(zn(0),Ks) ≥ δ, (8.1)

and

βn := |zn(−n)|2H ց 0, as n → ∞. (8.2)

We will show that this leads to a contradiction.
Note that for every n ∈ N, the function zn satisfies the following a priori inequal-

ity

sup
s∈[−n,0]

|zn(s)|2H +

∫ 0

−n

|zn(s)|2V ds ≤ |zn(−n)|2H +

∫ 0

−n

|fn(s)|2V ′ ds, (8.3)

where

fn(s) := H(zn)(s) = z′n(s) + Azn(s) + B(zn(s), zn(s)), s ∈ (−n, 0).

Therefore, in view of inequality (4.6), by conditions (8.1) and (8.2), we infer that
there exists c > 0 such that

sup
s∈[−n,0]

|zn(s)|2H +

∫ 0

−n

|zn(s)|2V ds ≤ βn + c s.
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Moreover, by inequality (3.6), there exists a constant c > 0 such that

|
√
·+ n zn(·)|2L∞(−n,0;V) + |

√
·+ n zn(·)|2L2(−n,0;D(A))

≤ c exp
[

c
(

|zn(−n)|4H + |fn|4L2(−n,0;V′)

)

]

×
(

|zn(−n)|2H + |fn|2L2(−n,0;V′) + n|fn|2L2(−n,0;H)

)

.

(8.4)

If s ∈ [−n
2 , 0], we have s+ n ≥ n

2 and therefore, from (8.4), we get

n

2

(

|zn|2L∞(−n
2 ,0;V) + | zn|2L2(−n

2 ,0;D(A))

)

≤ c exp
[

c
(

|zn(−n)|4H + |fn|4L2(−n,0;V′)

)

]

×
(

|zn(−n)|2H + |fn|2L2(−n,0;V′) + n|fn|2L2(−n,0;H)

)

.

This implies that there exists a constant c2 = c2(s, |z1(−1)|2H) such that

|zn|L∞(−n
2 ,0;V) + | zn|L2(−n

2 ,0;D(A)) ≤ c2, n ∈ N. (8.5)

Moreover, this implies that there exists a constant c3 > 0 such that

|z′n(·)|L2(−n
2 ,0;H) ≤ c3, (8.6)

Indeed, since for n ∈ N,

z′n(t) = fn(t)−Azn(t)−B(zn(t), zn(t)), t ∈ (−n

2
, 0),

we infer that

|z′n|L2(−n
2 ,0;H)

≤ |fn|L2(−n
2 ,0;H) + |Azn|L2(−n

2 ,0;H) + |B(zn, zn)|L2(−n
2 ,0;H)

≤ c fn|2L2(−n
2 ,0;H) + c |zn|2L2(−n

2 ,0;D(A)) + |B(zn, zn)|L2(−n
2 ,0;H) + 1.

(8.7)

Next, from inequality (2.10), we deduce that

|B(zn, zn)|2L2(−n
2 ,0;H) ≤ |zn|L∞(−n

2 ,0;H)|zn|L∞(−n
2 ,0;V)|zn|L2(−n

2 ,0;V)|zn|L2(a,b;D(A)).

Thanks to (8.3) and (8.5), this implies that for some constant c > 0

|B(zn, zn)|L2(−n
2 ,0;H) ≤ c, n ∈ N.

Hence inequality (8.6) follows, due to (8.7) and (8.5).
Now, let us fix k ∈ N. Notice that if n ≥ 2k then [−k, 0] ⊂ [−n

2 , 0]. We can
consider the sequence {zn}∞n=2k, or more precisely, the sequence of restrictions of
that sequence to the time interval [−k, 0]. According to (8.3), (8.5) and (8.6), this
sequence satisfies

sup
r∈[−k,0]

|zn(r)|2H +

∫ 0

−k

|zn(r)|2V dr ≤ βn + c s

and

|zn|2L∞(−k,0;V) + | zn|2L2(−k,0;D(A)) + |z′n|L2(−k,0;H) ≤ c.
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Moreover, as S−n(zn) ≤ s, for any n ∈ N we have

|fn|L2(−k,0;D(A
α
2 ))

≤
√
2s.

Hence, by a standard compactness argument, (compare with the first method of
proof of Theorem 6.1 in [24, page 71 onwards] and the proof of Theorem III.3.10
from [32]), for each fixed k ∈ N there exist two subsequences

{zknj
}∞j=1 ⊆ {zn}∞n=2k and {fk

nj
}∞j=1 ⊆ {fn}∞n=2k,

and two functions fk ∈ L2(−k, 0,H) and uk ∈ C([−k, 0]; V)∩L2(−k, 0;D(A)), with
Dtu

k ∈ L2(−k, 0;H), such that, as j → ∞,

zknj
→ uk, weakly in L2(−k, 0;D(A)) and strongly in L2(−k, 0;V) ∩ C([−k, 0]; H),

and
fk
nj

→ fk, weakly in L2(−k, 0;D(A
α
2 )),

uk satisfies
Dtu

k +Auk +B(uk, uk) = fk on (−k, 0),

and
|uk|2C([−k,0];H) ≤ c s, |fk|2

L2(−k,0;D(A
α
2 ))

≤ 2s.

Moreover, by an inductive argument, the sequences {zknj
}∞j=1 and {fk

nj
}∞j=1 can be

chosen in such a way that, for any k ∈ N, the restrictions of uk+1 and fk+1 to
(−k, 0) are equal to uk and fk, respectively.

This allows us to define two functions u and f on the interval (−∞, 0) such
that for every k, the restrictions of u and f to (−k, 0) are equal to uk and fk,
respectively. These functions u and f satisfy, for every k ∈ N,

Dtu+Au+B(u, u) = f on (−k, 0),

and
|u|2C([−k,0];H) ≤ c s, |f |2

L2(−k,0;D(A
α
2 ))

≤ 2s.

The last of these properties implies that f ∈ L2(−∞, 0;D(A
β
2 )) and

|f |2
L2(−∞,0;D(A

β
2 ))

≤ 2s.

Moreover
Dtu+Au+B(u, u) = f on (−∞, 0),

so that S−∞(u) ≤ s. Finally, due to (8.2), there exists a sequence {tn} ↓ −∞ such
that

lim
n→∞

|u(tn)|H = 0.

Therefore, by Lemma 3.7 we infer that u ∈ X . Thus, thanks to the characterization
of U given in equality (4.13) in Theorem 4.4, we can conclude that U(u(0)) ≤ s, so
that u(0) ∈ Ks.

On the other hand,

lim
j→∞

z1nj
= u, in C([−1, 0]; H),

and, by our assumptions, distH(zn(0),Ks) ≥ δ. Hence

distH(u(0),Ks) ≥ δ

which contradicts the fact that u(0) ∈ Ks.
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Proof of Lemma 7.3. Let us assume that there exist s > 0, δ > 0 and r > 0 such
that for every n ∈ N there exists un ∈ Hr,s,δ(n) such that

Sn(un) ≤ s+ 1.

In particular, due to (3.2), we have

|un|C([0,n];H) ≤ c√
2(s+1)

(1 + r) =: cs,r, n ∈ N. (8.8)

Now, for any k ∈ N, we define

γk := inf {Sk(u) ; u ∈ C([0, k]; H), |u(0)|H ≤ cs,r ∧ r, |u(k)|H ≥ λ} .
If we show that there exists k̄ ∈ N such that γk̄ > 0, then, due to (8.8), we have

Snk̄(unk̄) ≥ nγk̄, n ∈ N,

which contradicts the fact that Snk̄(unk̄) ≤ s + 1. Therefore, in order to conclude
our proof, we show that there exists some k̄ ∈ N such that γk̄ > 0.

For any x ∈ H, we denote by zx(t) the solution of the problem

z′x(t) + Azx(t) +B(zx(t), zx(t)) = 0, zx(1) = x.

According to (3.3), there exists some integer k̄ ≥ 1 such that

|x|H ≤ cs,r =⇒ |zx(t)|H ≤ λ

2
, t ≥ k̄. (8.9)

We show that, for such k̄, it holds γk̄ > 0. Actually, if γk̄ = 0, then there exists a
sequence

{vn}n∈N ⊂
{

u ∈ C([0, k̄]; H) ; |u(0)|H ≤ cs,r ∧ r, |u(k)|H ≥ λ
}

,

such that
lim
n→∞

Sk̄(vn) = 0. (8.10)

Thus, there exists n̄ ∈ N such that Sk̄(vn) ≤ s + 1, for any n ≥ n̄ and hence,
according to (8.8), |vn(1)|H ≤ cs,r, for any n ≥ n̄. Moreover, thanks to (3.6), there
exists a constant c̃s,r,k̄ such that

|vn|L∞(1,k̄;V) ≤ c̃s,r,k̄, n ≥ n̄. (8.11)

This means, in particular, that there exists a subsequence {vnj}j∈N ⊂ {vn}n∈N

and x̄ ∈ H such that
lim
j→∞

|vnj (1)− x̄|H = 0. (8.12)

Since |vn(1)|H ≤ cs,r, it follows that |x̄|H ≤ cs,r, and then, due to (8.9), it follows
that

|zx̄(k̄)|H ≤ λ

2
. (8.13)

Now, as a consequence of (8.10), for every n ∈ N there exists fn ∈ L2(0, k̄; H) such
that

v′n(t) + Avn(t) + B(vn(t), vn(t)) = fn(t),

and
lim

n→∞
|fn|L2(0,k̄;H) = 0.

According to (8.12), this implies that

lim
j→∞

|vnj − zx̄|C([1,k̄];H) = 0,

so that |zx̄(k̄)|H ≥ λ, which contradicts (8.13).
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Appendix A. Behavior of the solutions of the Navier-Stokes

equations for large negative times

In our paper with Mark Freidlin [6] we proved the following two results, see
Propositions A.1 and A.2, for the general 2-D Navier Stokes Equations. We formu-
late them in way that does not need to use special notation used by us.

Proposition A.1. Assume that z ∈ C((−∞, 0]; H) is such that

lim
t→−∞

|z(t)|H = 0 (A.1)

and S−∞(z) < ∞, i.e.
∫ 0

−∞

|z′(t) + Az(t) + B(z(t), z(t)) |2H dt < ∞. (A.2)

Then, we have z(0) ∈ V ,

lim
t→−∞

|z(t)|V = 0, (A.3)

and
∫ 0

−∞

|Az(t)|2H dt+

∫ 0

−∞

|z′(t)|2H dt < ∞. (A.4)

Moreover, there exists a continuous and strictly increasing function ϕ : [0,∞) →
[0,∞) such that ϕ(0) = 0 and, if z satisfying condition (A.1) is a solution to the
problem

z′(t) + Az(t) + B(z(t), z(t)) = f(t), t ≤ 0, (A.5)

with f being an element of L2(−∞, 0;H), then

|z(0)|2V +

∫ 0

−∞

|Az(t)|2H dt+

∫ 0

−∞

|z′(t)|2H dt ≤ ϕ(

∫ 0

−∞

|f(t)|2H dt). (A.6)

Proposition A.2. Assume that α ∈ (0, 1/2). If a function z ∈ C((−∞, 0]; H),
satisfying condition (A.1), satisfies also

∫ 0

−∞

|z′(t) + Az(t) + B(z(t), z(t)) |2
D(A

α
2 )

dt < ∞, (A.7)

we have

z(0) ∈ D(A
α
2 + 1

2 ), (A.8)

lim
t→−∞

|z(t)|
D(A

α
2

+ 1
2 )

= 0, (A.9)

and
∫ 0

−∞

|Aα
2 +1z(t)|2H dt+

∫ 0

−∞

|Aα
2 z′(t)|2H dt < ∞. (A.10)

Moreover, there exists a continuous and strictly increasing function ϕα : [0,∞) →
[0,∞) such that ϕα(0) = 0 and if z, satisfying condition (A.1), is a solution to
problem (A.5) with f ∈ L2(−∞, 0;D(A

α
2 )), then
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|z(0)|2
D(A

α
2

+ 1
2 )

+

∫ 0

−∞

|Aα
2 +1z(t)|2H dt+

∫ 0

−∞

|Aα
2 z′(t)|2H dt (A.11)

≤ ϕα(|f |2L2(−∞,0);D(A
α
2 )
). (A.12)

The reason for the restriction α ∈ (0, 1/2) in Proposition A.2 lies in the fact
that we have used continuity of the Leray-Helmhotz projection P from Hα(O,R2)
into D(Aα/2), see Propossition 2.1 in [6] (and (2.6) in the current paper).

The aim of this section is show that in the case of the 2-D NSEs with periodic
boundary conditions, i.e. NSEs on a 2-dimensional torus, Proposition A.2 holds
true for any α > 0. Of course we will only need to consider the case α ≥ 1

2 . The
main result in this section is as follows.

Proposition A.3. Assume that α > 0. If z satisfies conditions (A.1) and (A.7),
then it satisfies (A.8), (A.9), and (A.10) as well.
Moreover, there exists a continuous and strictly increasing function ϕα : [0,∞) →
[0,∞) such that ϕα(0) = 0 and if z, satisfying condition (A.1), is a solution to
problem (A.5), with f ∈ L2(−∞, 0;D(A

α
2 )), then inequality (A.11) holds as well.

The following proof is an adaptation of the proof of Proposition 2.2 from [6].
In fact, we follow the lines quite literary. As mentioned earlier, we only need to
consider the case α ∈ [1/2,∞). Since the estimates for the nonlinear term B given
in Propositions 2.3 and 2.4 are different for α ≤ 1 and α > 1 we will have to
consider two cases: α ∈ [1/2, 1] and α ∈ (1,∞). If α ∈ [1/2, 1] then we can use
inequality (2.15) with s = 2. In this case the proof from [6] is virtually the same.
Note however, that if α > 1 and inequality (2.17) holds, this does not imply that
inequality (2.15) with s = 2 holds.

Proof of Proposition A.3. In the whole proof all the norms and scalar products are
in H.

For the readers convenience and the completeness of the results we will prove
our result in the special case

α = 1

So, let us fix φ ∈ D(A) and a function z satisfying conditions (A.1) and (A.7).
Following the methods from the proof of Proposition 2.1 from [6] it is sufficient to
prove (A.8), (A.9), and (A.10).

Since the function z satisfies inequality (A.6), we can find a decreasing sequence
{sn} such that sn ց −∞, z(sn) ∈ D(A), n ∈ N and

lim
n→∞

|Az(sn)|H = 0. (A.13)

Arguing as in the proof of [6, Proposition 3.3], we infer that the function |Az(·)|2H
is absolutely continuous and satisfies the following identity on (−∞, 0]

1

2

d

dt
|Az(t)|2H + |A 3

2 z(t)|2H = −(B(z(t), z(t)),A2z(t))H + (f(t),A2z(t))H. (A.14)
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In view of inequality (2.15), with s = 2 and α = 1, we infer that there exists c > 0

such the following inequality is satisfied for f ∈ D(A
1
2 )

−(B(z, z),A2z) + (Af,A2z) = −(A
1
2B(z, z),A

3
2 z) + (A

1
2 f,A

3
2 z)

≤ 1

2
|A 3

2 z|2 + c |Az|4 + |A 1
2 f |2, z ∈ D(A).

Hence, we infer that on (−∞, 0], we have

d

dt
|Az(t)|2H + |A 3

2 z(t)|2H ≤ c |Az(t)|2H|Az(t)|2H + 2|A 1
2 f(t)|2H. (A.15)

Therefore, by the Gronwall Lemma, we get

|Az(t)|2H ≤ |Az(s)|2H ec
∫ t
s
|Az(r)|2H dr (A.16)

+ 2

∫ t

s

|A 1
2 f(r)|2H ec

∫ t
r
|Az(ρ)|2H dρ dr, −∞ < s ≤ t ≤ 0.

Note that by inequality (A.6) we have

sup
n≥1

∫ t

sn

|Az(r)|2H dr ≤ ϕ(|f |2), t ≤ 0.

where for the sake of brevity, we set |f |L2(−∞,0;H) = |f |.
Hence, using inequality (A.16) with s = sn from (A.13) and then taking the

limit as n → ∞, we infer that

|Az(t)|2H ≤ 2

∫ t

−∞

|A 1
2 f(r)|2H ec

∫ t
r
|Az(ρ)|2H dρ dr, t ≤ 0. (A.17)

Therefore, we conclude that

sup
t≤0

|Az(t)|2 ≤ 2 eCϕ(|f |2)

∫ 0

−∞

|A 1
2 f(r)|2H dr. (A.18)

Moreover, by assumption (A.7), definition (A.5) of the function f and inequality
(A.6) we have

∫ 0

−∞

|A 1
2 f(r)|2 ec

∫ 0
r
|Az(ρ)|2H dρ dr ≤ ec

∫ 0
−∞

|Az(ρ)|2H dρ

∫ 0

−∞

|A 1
2 f(r)|2 dr < ∞,

we infer that

lim
t→−∞

∫ t

−∞

|A 1
2 f(r)|2H exp ec

∫ t
r
|Az(ρ)|2H dρ dr = 0.

Hence, due to (A.17), we have that (A.9) holds for α = 1, i.e.

lim
t→−∞

|z(t)|2D(A) = 0.

Now, let us prove the first one of inequalities (A.10), with α = 1. For this aim,
let us observe that from (A.15) we deduce that

|Az(0)|2H +

∫ 0

−∞

|A 3
2 z(t)|2H dt ≤ c

∫ 0

−∞

|Az(t)|4H dt+ 2

∫ 0

−∞

|A 1
2 f(t)|2H dt

≤ c sup
t≤0

|Az(t)|2H
∫ 0

−∞

|Az(t)|2H dt+ 2

∫ 0

−∞

|A 1
2 f(t)|2H dt.
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Taking into account inequalities (A.18) and (A.6), we infer that

|Az(0)|2H +

∫ 0

−∞

|A 3
2 z(t)|2H dt ≤ 2

∫ 0

−∞

|A 1
2 f(t)|2H dt (A.19)

+ 2cϕ(|f |2) ecϕ(|f |2)

∫ 0

−∞

|A 1
2 f(r)|2H dr,

and this concludes the proof of the first part of inequalities (A.10).
In order to prove the second of inequalities (A.10) (with α = 1), i.e.

∫ 0

−∞

|A 1
2 z′(t)|2H dt < ∞

by the maximal regularity of the linear Stokes problem, it is enough to show that
∫ 0

−∞

|A 1
2B(z(t), z(t))|2H dt < ∞.

According to inequality (2.15) (with s = 2 and α = 1), we get, similarly to
(A.19), the following estimate

∫ 0

−∞

|A 1
2B(z(t), z(t))|2H dt ≤ C

∫ 0

−∞

|Az(t)|4H dt (A.20)

≤ 2cϕ(|f |2) ecϕ(|f |2)

∫ 0

−∞

|A 1
2 f(r)|2H dr.

The proof, for α = 1, is now complete.
The case α > 1 has to be treated very carefully. To this purpose, we first consider

the case α ∈ (1, 2]. We fix φ ∈ D(A
α+1
2 ) and a function z ∈ C((−∞, 0]; H), such

that z(0) = φ, satisfying conditions (A.1) and (A.7), i.e.

lim
t→−∞

|z(t)|H = 0,

and
∫ 0

−∞

|f(t)|2
D(A

α
2 )
dt :=

∫ 0

−∞

|z′(t) + Az(t) + B(z(t), z(t)) |2
D(A

α
2 )

dt < ∞.

Since the assumptions in the present proposition are stronger than the assumptions
of Propositions A.1 and A.2, we can freely use the results from their proofs, see [6].

As before, it is sufficient to prove that z satisfies conditions (A.8), (A.9), and
(A.10). We notice that, due to inequality (A.10) with α = 1, we can find a decreas-
ing sequence {sn} such that sn ց −∞ and

lim
n→∞

|A 3
2 z(sn)|H = 0. (A.21)

Hence, as α ≤ 2, we get

lim
n→∞

|Aα+1
2 z(sn)|H = 0.

Therefore we can deduce that the function |Aα+1
2 u(t)|2H is absolutely continuous

and satisfies the following identity on (−∞, 0]

1

2

d

dt
|Aα+1

2 z(t)|2H + |Aα
2 +1z(t)|2H = −(B(z(t), z(t)),Aα+1z(t)) + (f(t),Aα+1z(t))

(A.22)
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By inequality (2.17), since α
2 ≤ 3

2 , we infer that

−(B(z, z),Aα+1z) = (A
α
2 B(z, z),A1+α

2 z) ≤ c|Aα
2 z|H|A

α+1
2 z|H|A1+α

2 z|H

≤ 1

4
|A1+α

2 z|2H + c|Aα
2 z|2H|A

α+1
2 z|2H ≤ 1

4
|A1+α

2 z|2H + c|A 3
2 z|2H|A

α+1
2 z|2H.

Due to (A.22), this implies that

d

dt
|Aα+1

2 z(t)|2H + |Aα
2 +1z(t)|2H ≤ c|A 3

2 z(t)|2H|A
α+1
2 z(t)|2H + 2|Aα

2 f(t)|2H.

Therefore, by the Gronwall Lemma, for any −∞ < s ≤ t ≤ 0 we get

|Aα+1
2 z(t)|2H ≤ |Aα+1

2 z(s)|2H exp

(

c

∫ t

s

|A 3
2 z(r)|2H dr

)

(A.23)

+ 2

∫ t

s

|Aα
2 f(r)|2H exp

(

c

∫ t

r

|A 3
2 z(ρ)|2H dρ

)

dr.

Note that by inequality (A.12) with α = 1 we have

sup
n≥1

∫ t

sn

|A 3
2 z(r)|2H dr ≤ ϕ1(|f |21

2
),

where we use notation shortcut |f |α/2 = |f |
L2(−∞,0);D(A

α
2 )
. Hence, using inequality

(A.23) with s = sn from (A.21) and then taking the limit as n → ∞, we infer that

|Aα+1
2 z(t)|2H ≤ 2

∫ t

−∞

|Aα
2 f(r)|2H ec

∫ t
r
|A

3
2 z(ρ)|2H dρ dr, t ≤ 0, (A.24)

so that

sup
t≤0

|Aα+1
2 z(t)| ≤ 2

∫ 0

−∞

|Aα
2 f(r)|2H dr e

ϕ1(|f |
2
1
2
)
= 2|f |2α

2
e
ϕ1(|f |

2
1
2
)
. (A.25)

Moreover, as
∫ 0

−∞

|Aα
2 f(r)|2H ec

∫ t
r
|A

3
2 z(ρ)|2H dρ dr < ∞,

we have that

lim
t→−∞

∫ t

−∞

|Aα
2 f(r)|2H ec

∫ t
r
|A

3
2 z(ρ)|2H dρ dr = 0,

and (A.9) follows from (A.24).
Next, we observe that, due to (A.15),

|Aα+1
2 z(0)|2H +

∫ 0

−∞

|Aα+2
2 z(t)|2H dt ≤ c

∫ 0

−∞

|A 3
2 z(t)|2|Aα+1

2 z(t)|2H dt

+2

∫ 0

−∞

|Aα
2 f(t)|2H dt ≤ c sup

t≤0
|Aα+1

2 z(t)|2H
∫ 0

−∞

|A 3
2 z(t)|2H dt+ 2|f |2α

2
.
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Taking into account inequalities (A.25) and (A.10) with α = 1, we infer that

|Aα+1
2 z(0)|2H +

∫ 0

−∞

|Aα+2
2 z(t)|2H dt ≤ 2 |f |2α

2
(A.26)

+ c|f |2α
2
e
ϕ1(|f |

2
1
2
)
ϕ1(|f |21

2
)

and this concludes the proof of the first part of inequality (A.10).
Invoking the maximal regularity of the Stokes evolution equation, in order to

prove the second inequality in (A.10), it is enough to show that
∫ 0

−∞

|Aα
2 B(z(t), z(t))|2H dt < ∞.

According to inequalities (2.17), (A.25) and (A.10) with α = 1, we have

∫ 0

−∞

|Aα
2 B(z(t), z(t))|2H dt ≤ c

∫ 0

−∞

|Aα
2 z(t)|2H|A

α+1
2 z(t)|2H dt (A.27)

≤ c sup
t≤0

|Aα+1
2 z(t)|2H

∫ 0

−∞

|A 3
2 z(t)|2H dt

≤ |f |2α
2
eϕ(|f |2α/2) ϕ1(|f |21

2
).

The proof in the case α ∈ (1, 2] is now complete. A simple extension of the last
argument and mathematical induction with respect to the integer part of α can
provide a complete proof for all α ≥ 0.
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[5] Z. Brzeźniak and S. Cerrai Exponential estimates for SPDEs, in preparation
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[9] Z. Brzeźniak and Y. Li, Asymptotic compactness and absorbing sets for 2D stochastic Navier-

Stokes equations on some unbounded domains, Trans. Amer. Math. Soc. 358 (2006), 5587–

5629.
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Poincaré Probab. Statist. 41 (2005), 69–105.

[13] S. Cerrai and M. Freidlin, Approximation of quasi-potentials and exit problems for multidi-

mensional RDE’s with noise, Transactions of the AMS 363 (2011), 3853–3892.

[14] G. Da Prato and D. Gatarek, ”Stochastic Burgers equation with correlated noise”, Stochastics

Stochastics Rep., 52 (1995), 29–41.

[15] G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions, 2nd edition,
Cambridge Univ. Press, Cambridge, 2014.

[16] G. Da Prato and J. Zabczyk, Ergodicity for infinite-dimensional systems. London Math-

ematical Society Lecture Note Series, 229, Cambridge University Press, Cambridge, 1996.

[17] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Second
Edition, Springer Verlag, 1998.

[18] W. E, W. Ren and E. Vanden-Eijnden, Energy landscapes and rare events, Proceedings of

the International Congress of Mathematicians, Vol. I (Beijing, 2002), 621–630, Higher Ed.

Press, Beijing, 2002.
[19] B. Ferrario, Stochastic Navier-Stokes equations: analysis of the noise to have a unique in-

variant measure. Ann. Mat. Pura Appl., 177 (1999), 331–347.

[20] M.I. Freidlin and A.D. Wentzell, Random perturbations of dynamical systems, Second

edition, Springer-Verlag, New York, 1998.

[21] F. Flandoli, Dissipativity and invariant measures for stochastic Navier-Stokes equations,

NoDEA, 1 (1994), 403–423.
[22] B. Goldys and B. Maslowski, Exponential ergodicity for stochastic Burgers and 2D Navier-

Stokes equations, J. Funct. Analyis, 226 (2005), 230–255.

[23] M. Hairer and J. Mattingly, Ergodicity of the 2D Navier-Stokes equations with degenerate

stochastic forcing, Annals of Mathematics, 164 (2006), 993–1032.
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