
Semi-supervised Adaptation of RNNLMs by Fine-tuning with Domain-specific
Auxiliary Features

Salil Deena1, Raymond W. M. Ng1, Pranava Madhyastha2, Lucia Specia2 and Thomas Hain1

1Speech and Hearing Research Group, The University of Sheffield, UK
2Natural Language Processing Research Group, The University of Sheffield, UK

{s.deena, wm.ng, p.madhyastha, l.specia, t.hain}@sheffield.ac.uk

Abstract
Recurrent neural network language models (RNNLMs) can be
augmented with auxiliary features, which can provide an extra
modality on top of the words. It has been found that RNNLMs
perform best when trained on a large corpus of generic text
and then fine-tuned on text corresponding to the sub-domain
for which it is to be applied. However, in many cases the aux-
iliary features are available for the sub-domain text but not for
the generic text. In such cases, semi-supervised techniques can
be used to infer such features for the generic text data such that
the RNNLM can be trained and then fine-tuned on the available
in-domain data with corresponding auxiliary features.

In this paper, several novel approaches are investigated for
dealing with the semi-supervised adaptation of RNNLMs with
auxiliary features as input. These approaches include: using
zero features during training to mask the weights of the feature
sub-network; adding the feature sub-network only at the time
of fine-tuning; deriving the features using a parametric model
and; back-propagating to infer the features on the generic text.
These approaches are investigated and results are reported both
in terms of PPL and WER on a multi-genre broadcast ASR task.
Index Terms: RNNLM, Semi-supervised Adaptation, LDA
topic models

1. Introduction
Language models (LMs) play a key role in automatic speech
recognition (ASR) as they ensure that the output respects the
pattern of the language in question. n-gram LMs dominated
ASR for decades until RNNLMs [1] were introduced and found
to give significant gains in performance. n-gram LM and
RNNLM contributions are complementary and state-of-the-art
ASR systems involve interpolation between the two types of
models [1, 2, 3, 4, 5, 6, 7].

In automatic speech recognition, word context is gener-
ally heavily influenced by the domain, which can include topic,
genre and speaking style. RNNLMs trained on a text corpus
provide an implicit modelling of such contextual factors. It
has been found that feature-based adaptation of RNNLMs by
augmenting the input with domain-specific auxiliary features
provide significant improvements in both perplexity (PPL) and
word error rate (WER) [8, 2, 9, 10, 4, 6, 11]. Such features,
however, can also include acoustic embeddings [12, 13] derived
from audio, which might be available for only a subset of the
text data, such as the matched in-domain data used for fine-
tuning. In such cases, semi-supervised adaptation approaches
can be used. The problem of features that only exist at fine-
tuning but not at training time also exists in other areas where
recurrent neural networks (RNN) are used, such as for Neural
Machine Translation (NMT) [14]. The techniques proposed in
this paper can be generalised to such cases.

In this work, the features used for domain adaptation of
RNNLMs are latent Dirichlet allocation (LDA) [15] features ex-
tracted from the text. Whilst such features can be derived for the
whole text, a setup is devised where the features are assumed to
be available for the in-domain text but not for the generic text.
Various methods are investigated for semi-supervised adapta-
tion, aimed at compensating for the missing features and are
evaluated against a setup having the complete set of features.
The main contribution of this paper is showing that LDA fea-
tures can be predicted for the generic text corpus, comprising
about 80% of the whole data using the remaining 20%, giving
a correlation of about 71% with ground truth LDA features.

2. Background and Related Work
2.1. Recurrent Neural Network LMs

Recurrent Neural Network Language Models [1] include a re-
current layer which can represent the full history hi =<
wi−1, . . . ,w1 > for word wi using a concatenation of word
wi−1 and the remaining context vector vi−2 from the previous
time step. Each word wi is represented using a 1-of-K encod-
ing. An out-of-vocabulary (OOV) node [8, 9, 4] can be included
at the input to represent any input word that is not in the cho-
sen vocabulary, and an out-of-shortlist (OOS) node [8, 9, 4] can
be included at the output to represent any word not in a shortlist
vocabulary. The main purpose of the latter is to reduce the com-
putational cost at the output layer by limiting the vocabulary to
the most frequent words.

The LM probability for the next word P (wi+1|wi,vi−1)
is computed as follows. A full history vector is obtained by con-
catenating wi and the hidden (recurrent) layer activation from
the previous time step, vi−1. The hidden layer takes the two in-
puts and produces a new representation of the history, vi using
a non-linear sigmoid activation. This activation is then input
to the softmax activation function at the output layer to pro-
duce normalised RNNLM probabilities. Moreover, the activa-
tion from the hidden layer is also returned to the input layer, as
it encodes the word history, and is used to compute the probabil-
ity for the following word. A further auxiliary feature vector f
can be provided as input to the network and this is illustrated in
Figure 1. RNNLM training is performed using the back prop-
agation through time (BPTT) algorithm [16], where the error
is back-propagated through the recurrent connection for a spe-
cific number of time steps. The most expensive computation in
RNNLM is the output softmax layer, which involves normalis-
ing the probabilities over the whole output vocabulary. In this
paper, the approach proposed by Chen et al.[3, 17] is used, with
GPU-based mini-batch training using spliced sentence bunch,
allowing full softmax computation of the output using CE train-
ing.

Copyright © 2017 ISCA

INTERSPEECH 2017

August 20–24, 2017, Stockholm, Sweden

http://dx.doi.org/10.21437/Interspeech.2017-15982715



Figure 1: Feature-based RNNLM with OOS and OOV nodes.

2.2. Feature-based RNNLM Adaptation

In order to better understand at what level features can be added
to the RNNLM, it is worth taking a look at the equations of
the RNNLM to generate the current hidden state vi from the
previous hidden state vector and the current word, which is then
used to predict the next word:

vi = RU(wi,vi−1) (1)

= σ(W(hh)vi−1 +W(ih)wi + b(h)) (2)

wi+1 ∼ softmax(W(ho)vi + b(o)) (3)

Where RU is the recurrent unit, σ is the sigmoid function
and {W,b} are the weights and biases of the neural network
respectively.

There are four main approaches of adding features to a
RNNLM [2, 18, 4, 19, 6]. Taking f to be the feature vectors,
these approaches are:

2.2.1. Addition

In this particular method, the word vector wi at each time step
is added to the feature vector f and the result, wi + f , is used
as input to the recurrent unit, as follows:

vi = RU(wi + f ,vi−1) (4)

This method, however, relies on the assumption that the fea-
ture vector and the word vector have the same dimensionalities,
which can be also be enforced by projecting both vectors to a
lower shared-dimensional subspace.

2.2.2. Stacking

Here, the word vector and the feature vector are concatenated
such that the hidden state equation becomes:

vi = RU(

[
wi

f

]
,vi−1) (5)

This approach was used in [18]. One disadvatange with
this particular method is that the words and the features might
correspond to different distributions. For example, the words
are usually represented as one-hot vectors and the features can
be continuous. Using the same weight matrix for both might
lead to unexpected behaviour if the two distributions are very
different.

2.2.3. Extra Perceptron

This involves using an extra perceptron which takes as input the
current hidden state vector vi together with a new weight matrix
W(hh′) and the feature vector f with its corresponding weight

matrix W(hf), which outputs a custom hidden state vector v′i,
that is then used to predict the next word.

vi = σ(W(hh)vi−1 +W(ih)wi + b(h)) (6)

v′i = σ(W(hh′)vi +W(hf)f + b(h′)) (7)

wi+1 ∼ softmax(W(ho)v′i + b(o)) (8)

The advantage of this technique is that different learning
rates can be set for the updates corresponding to equations 6, 7
and 8. However, the extra perceptron method requires more pa-
rameters to learn and can be prone to underfitting if the amount
of data is small.

2.2.4. Feature Sub-network

In this particular method, used in [2, 4, 6, 20], a feature sub-
network is added either at the hidden layer [2, 4, 6] or the output
layer [20]. In line with previous work [6], we hereby consider
using a separate weight matrix W(hf) at the hidden layer. The
hidden state vector equation then becomes:

vi = σ(W(hh)vi−1 +W(ih)wi +W(hf)f + b(h)) (9)

This way of adding an extra feature seems to have the
least side-effects and is the preferred method when applied to
RNNLMs [2, 4, 6]. The reason is because it can cope with the
word and feature vectors having different distributions and can
also allow for control of over-fitting by setting different regular-
isation weights on W(hh), W(ih) and W(hf).

In this work, the feature sub-network approach is used be-
cause it provides the most flexibility in terms of semi-supervised
adaptation, as outlined in the next section. The addition method
is definitely not a good choice because it assumes that both the
words and features are available for all the data and that they
are of the same dimensionality. The stacking approach is less
flexible whilst the extra perceptron approach requires a lot more
parameters than the feature sub-network method.

3. Semi-supervised Adaptation Methods
In this section, four novel approaches are proposed for dealing
with RNNLM fine-tuning with auxiliary features, where such
features are not available for the generic text used for training.

3.1. Zero Features to Mask the Feature Sub-network

Zero features allows the training of a RNNLM with the same
structure as the final RNNLM where features are available
whilst masking the feature sub-network and therefore give an
equivalent network to one without features. The advantage of
this approach is it does not require structural changes to the net-
work at the time of fine-tuning, but it does require the whole
network to reconfigure and recover the feature weight matrix
W(hf) during fine-tuning. It is expected that this reconfigura-
tion would work well for a relatively small network but a large
network would require a large amount of text data and epochs
to converge.

3.2. Adding Feature Sub-network at Fine-tuning

This approach is similar in spirit to the zero features approach
but can be convenient when an RNNLM has been trained al-
ready with possibly large amounts of data (and therefore requir-
ing days to weeks to train) and then the network needs to be
fine-tuned with in-domain text where features such as LDA are
available. At the time of fine-tuning, the feature sub-network

2716



is introduced with the weights W(hf) initialised with random
values. During fine-tuning, the features are introduced and the
weights of the feature sub-network are allowed to update and
thus reach a new convergence point with the rest of the network
parameters. The fact that structural changes need to be made to
the network means that such an approach might not work very
well in more complex networks where RNNs are used, such as
Neural Machine Translation [14]. However, it is a good option
for already trained models that would take too long to retrain.

3.3. Deriving the Features using Back-propagation

A back-propagation technique to infer document-level embed-
dings using an RNNLM was investigated in [20]. This in-
volved training a RNNLM together with randomly initialised
document-level features and then back-propagating till the fea-
tures to recover them as document embeddings, whilst keeping
the rest of the network fixed. A similar approach is used in this
work, where the RNNLM is first trained with the show-level
LDA features on the in-domain data as in [6]. The network
is then kept fixed and back-propagation is carried out on the
generic text in order to recover the features f for each sentence.
The features updated at each time step and the feature vector ob-
tained at the end of the sentence is taken to be the sentence-level
feature. The sentence-level features are then averaged at the
show-level, to give the target show-level LDA features, which
are then used to train a feature-based RNNLM on the generic
text. This method relies on the correlation between the text data
and the features being captured on the in-domain text data prior
to generalisation on the out-of-domain generic text.

3.4. Deriving the Features using a Parametric Model

In previous work [6], RNNLM adaptation was applied to Multi-
Genre broadcast data [21], where genre labels are available for
in-domain BBC show data but not for historical subtitles that
were provided for language model training. In order to address
this issue when training the RNNLM using both the large out-
of-domain and the smaller in-domain data, the genre labels for
the historical subtitles were derived using a parametric model.
This involved extracting LDA features from both the in-domain
and out-of-domain data and using a support vector machine
(SVM) classifier to predict the genre labels from the LDA fea-
tures, on the out-of-domain text, after training the SVM on the
in-domain data.

A similar parametric approach can be used to predict any
other type of features. In this work, a parametric regression
model is proposed, which can learn a mapping between the hid-
den state vector of a separate RNNLM trained without features,
and the feature vectors. The hidden state vectors are first gen-
erated at sentence level by feeding each sentence through the
RNNLM and extracting the hidden states at the end of the sen-
tence. These hidden state vectors are averaged across all sen-
tences in a given show, in order to give show-level hidden state
vectors. A parametric regression model is then fitted between
the averaged hidden state vectors and the show-level LDA fea-
tures according to Eqn 10.

fsh = g(means∈sh(vs)) (10)
Where fsh are features at the show level, g is the paramet-

ric function, means∈sh(vs) is the mean of sentence-level (s)
hidden state vectors, vs, averaged for each show (sh).

Two parametric models are used in this work: linear regres-
sion and multi-layer perceptron (MLP) regression with 1024
nodes, which are then used to predict LDA features for the out-
of-domain text.

4. Experiments and Results
4.1. Multi-Genre Broadcast Challenge Data

The experiments in this paper make use of the data provided
by the British Broadcasting Corporation (BBC) for the Multi-
Genre Broadcast (MGB) challenge 2015 [21]. Task 1 of the
challenge involved participants having to perform the automatic
transcription of a set of BBC shows. These shows were cho-
sen to cover the multiple genres in broadcast TV, categorised
in terms of 8 genres: advice, children’s, comedy, competition,
documentary, drama, events and news. Acoustic Model (AM)
training data was fixed and limited to more than 2,000 shows,
broadcast by the BBC during 6 weeks in April and May of 2008.
The development data for the task consisted of 47 shows that
were broadcast by the BBC during a week in mid-May 2008.
The numbers of shows and the associated broadcast time for
training and development data are shown in Table 1.

Table 1: Amount of Training and Development Data.
Train Development

Genre Shows Time Shows Time
Advice 264 193.1h. 4 3.0h.

Children’s 415 168.6h. 8 3.0h.
Comedy 148 74.0h. 6 3.2h.

Competition 270 186.3h. 6 3.3h.
Documentary 285 214.2h. 9 6.8h.

Drama 145 107.9h. 4 2.7h.
Events 179 282.0h. 5 4.3h.
News 487 354.4h. 5 2.0h.
Total 2,193 1580.5h. 47 28.3h.

Additional data was available for Language Model (LM)
training in the form of subtitles from about 340k shows broad-
cast from 1979 to March 2008, with a total of 650 million
words, and referred to as LM1, corresponds to the generic
out-of-domain text. The subtitles from the 2,000+ shows for
acoustic modelling with a total of 10.6M words, referred here
as LM2, corresponds to our matched in-domain text.

The development data was used as the evaluation set in or-
der to provide fair comparison with previous work [4, 22, 6].
For language model experiments, theLM2 data was partitioned
into a training and development set by selecting 90% of text for
each programme for training and the remaining 10% for devel-
opment, after shuffling the lines for each programme.

4.2. Experimental Setup

The experimental setup is aimed at both evaluating the quality
of the predicted LDA features against ground truth, and then
testing the semi-supervised approaches presented in this paper
in an ASR setup. The setup for ASR experiments is the same
as in [23, 6] with a baseline 4-gram language model built on
LM1+LM2 text by first selecting a vocabulary of 200k words
was chosen from all the words in the LM2 text (87k) and aug-
mented with the most frequently occuring words in LM1. The
RNNLMs were trained with a 60k vocabulary for the input
word list and a 50k vocabulary for the output word list, both
obtained by shortlisting the 200k vocabulary based on most fre-
quent words. ASR decoding was performed in three stages; in
a first stage, lattices were generated using a 2-gram LMs, fol-
lowed by lattice rescoring with a 4-gram LM to generate new
lattices. n-best list rescoring was performed by first converting
the lattices to n-best lists, with n being 100 as in [6].

The RNNLMs with 512 hidden nodes, are first trained on
out-of-domain selected LM1 text and then fine-tuned on the in-
domain LM2 text data. The out-of-domain data is generated by
selecting 5M lines from theLM1 text, after randomly shuffling

2717



the shows, giving a total of about 45M words, corresponding to
11843 shows. This was done because training a RNNLM on the
whole LM1 text takes more than a week and a representative
subset of the data makes the experiments more manageable in
a limited time-frame. The domain-specific features are derived
by training a show-based latent Dirichlet allocation (LDA) topic
model on the in-domain text data, as reported in previous work
[6], and computing posteriors on both the in-domain and out-
of-domain text data.

4.3. Experiments

4.3.1. Predicted LDA Features

The generated LDA features are compared against the ground
truth by computing Pearson’s correlation coefficient between
the two. The Average Correlation Coefficient (ACC) is com-
puted by averaging the coefficients across the 47 shows in the
development set. The predicted LDA features are also used to
predict the show they correspond to by computing the nearest
neighbour (NN) to the ground truth LDA vectors for each show.
It is to be noted that the shows are non-overlapping between the
training and test sets, which makes this similar to the zero-shot
learning problem [24], where LDA features are used to predict
the shows to which they correspond to whilst such shows have
not been seen before. The ACC results and the NN classifica-
tion rate are given in Table 2.

Table 2: Quality of Predicted LDA Features.
Method ACC Show Classification
Parametric Model (Linear regr.) 0.5997 ± 0.1382 68.1%
Parametric Model (MLP regr.) 0.7144 ± 0.1360 78.7%
Back-Propagation 0.6289 ± 0.1523 69.0%

The results show that the MLP regression method outper-
forms both linear regression and the back-propagation method,
giving the highest correlation to ground truth and also the high-
est show classification rate. This shows that the RNNLM hidden
state vectors averaged at show level and the show-level LDA
feature vectors are highly correlated, despite the fact that they
are derived differently. The back-propagation method performs
less well, possibly due to the vanishing gradient effect that is
known to happen with RNNs [25].

4.3.2. ASR Experiments

Table 3 shows the perplexity on our 10% selected development
text from LM2 both when training the generic RNNLMs and
when fine-tuning on the in-domain data. The PPL are reported
at the 1st and 10th epochs both for training and fine-tuning but
a similar pattern is observed for further epochs of fine-tuning.
In order to demonstrate the effect of the LDA features, random
features of the same dimensionality as the 100-dim LDA fea-
tures, that sum to 1, are generated for each show and used as
features for the RNNLM at training. LDA features are then
used at fine-tuning for all the methods.

Table 3: RNNLM Training and Fine-tuning PPL.
Method Training Fine-tuning

Epoch 1 Epoch 10 Epoch 1 Epoch 10
No Feat. 336.8 229.4 160.3 151.5
LDA Feat. 603.7 209.7 151.3 127.0
Random Feat. 461.4 231.8 163.9 146.6

Semi-supervised Adaptation Methods
Zero Feat. 336.9 229.4 157.0 132.4
Add Feat. Sub-net. 336.9 229.4 149.0 128.8
LDA Feat. from Back-prop. 401.9 221.4 153.1 131.9
LDA Feat. from MLP regr. 380.3 205.8 148.5 127.1

The results show that LDA features lead to a big drop in
perplexity, compared to random features of the same dimen-
sion. MLP regression method to predict LDA features lead to
a final PPL that almost matches using original LDA features.
The other semi-supervised approaches also lead to encouraging
results with techniques that try to predict LDA features outper-
forming those that do not utilise or mask the features.

The baseline ASR results, using a 4-gram LM, and results
obtained using interpolation RNNLMs (with optimal interpola-
tion weight of 0.4 for the RNNLM) are given in terms of global
PPL and WER in Table 4. The LDA features are extracted from
the text output of first-pass decoding using the 4-gram LM.

Table 4: ASR Results on MGB data.
Genre Adv.Child.Comed.Compet.Doc.Dram.Even.News Global
System WER PPL WER
4-gram 24.6 30.4 43.5 25.8 28.0 41.5 34.1 15.7 100.1 30.1
+RNNLM 24.0 29.6 43.6 25.3 27.6 42.5 33.1 14.8 94.7 29.7
+LDA feat. 23.7 29.1 43.3 24.8 27.2 41.3 32.6 14.7 86.6 29.2

Semi-supervised Adaptation Methods
Zero Feat. 23.8 29.2 43.4 25.1 27.4 41.7 32.8 14.7 89.2 29.5
Add Sub-net. 23.7 29.2 43.3 25.1 27.3 41.6 32.8 14.7 89.3 29.4
Back-prop. 23.7 29.1 43.5 25.0 27.4 41.7 33.0 14.7 88.1 29.4
MLP regr. 23.5 29.2 43.3 25.0 27.3 41.2 32.7 14.7 86.7 29.3

These results confirm the PPL results in Table 3 and show
that using an MLP regressor to predict LDA features at a show-
level, leads to a background RNNLM trained with the predicted
features, to match the performance of using ground-truth fea-
tures, when fine-tuned on matched in-domain data. Other ap-
proaches such as using zero features, adding a feature sub-
network at fine-tuning and using the back-propagation method,
also lead to better results than not using features at all, but are
outperformed by the MLP regression approach.

5. Conclusion
This paper deals with the semi-supervised adaptation of
RNNLMs with domain-specific LDA features, when such fea-
tures are available for matched in-domain text used for fine-
tuning, but not for text data used for training the background
language model. Four approaches are proposed to deal with
the missing features, which include: using zero features to
mask the feature sub-network; adding the feature sub-network
at fine-tuning only; deriving the missing features using a back-
propagation approach and deriving the missing features using a
parametric model. It was shown that using multi-layer percep-
tron regression between RNNLM hidden state vectors averaged
at a show level and show-level LDA features, to predict LDA
features on out-of-domain text, gives the best results.

Future work will involve investigating better approaches to
derive show-based RNNLM hidden states than averaging, such
as the application of attention [14] as in the case of neural ma-
chine translation (NMT). The extension of the proposed ap-
proaches to the NMT domain will also be investigated, where
additional modalities (such as audio and images) are only avail-
able for the in-domain text used for model fine-tuning.

6. Acknowledgements and Data Access
The audio and subtitle data used for the experiments was dis-
tributed as part of the MGB Challenge (mgb-challenge.org)
through a licence with the BBC. The CTM and scoring files
can be accessed via DOI: 10.15131/shef.data.4772890. This
work was partly supported by the EPSRC Programme Grant
EP/I031022/1 (Natural Speech Technology) and the MultiMT
H2020 ERC Starting Grant No. 678017.

2718



7. References
[1] T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and S. Khudan-

pur, “Recurrent neural network based language model,” in INTER-
SPEECH’10: Proc. of the 11th Annual Conference of the Interna-
tional Speech Communication Association, 2010, pp. 1045–1048.

[2] T. Mikolov and G. Zweig, “Context dependent recurrent neural
network language model.” in SLT’12: Proc. of the IEEE workshop
on Spoken Language Technologies, 2012, pp. 234–239.

[3] X. Chen, Y. Wang, X. Liu, M. J. Gales, and P. C. Woodland, “Ef-
ficient GPU-based training of recurrent neural network language
models using spliced sentence bunch.” in INTERSPEECH’14:
Proc. of the 11th Annual Conference of the International Speech
Communication Association, 2014, pp. 641–645.

[4] X. Chen, T. Tan, X. Liu, P. Lanchantin, M. Wan, M. J. F. Gales,
and P. C. Woodland, “Recurrent neural network language model
adaptation for multi-genre broadcast speech recognition,” in IN-
TERSPEECH’15: Proc. of the 16th Annual Conference of the In-
ternational Speech Communication Association, 2015, pp. 3511–
3515.

[5] W. Williams, N. Prasad, D. Mrva, T. Ash, and T. Robinson, “Scal-
ing recurrent neural network language models,” in ICASSP’15:
Proc. of the IEEE International Conference on Acoustics, Speech
and Signal Processing, 2015, pp. 5391–5395.

[6] S. Deena, M. Hasan, M. Doulaty, O. Saz, and T. Hain, “Combin-
ing Feature and Model-Based Adaptation of RNNLMs for Multi-
Genre Broadcast Speech Recognition,” in Interspeech’2016:
Proc. of the 17th Annual Conference of the International Speech
Communication Association, 2016, pp. 2343–2347.

[7] S. Reddy, P. Swietojanski, P. Bell, and S. Renals, “Unsupervised
adaptation of recurrent neural network language models,” in In-
terspeech 2016, 2016, pp. 2333–2337.

[8] J. Park, X. Liu, M. J. F. Gales, and P. C. Woodland, “Improved
neural network based language modelling and adaptation,” in IN-
TERSPEECH’10: Proc. of the 11th Annual Conference of the In-
ternational Speech Communication Association, 2010, pp. 1041–
1044.

[9] T. Alumäe, “Multi-domain neural network language model,” in
INTERSPEECH’13, 14th Annual Conference of the International
Speech Communication Association, 2013, pp. 2182–2186.

[10] O. Tilk and T. Alumäe, “Multi-domain recurrent neural network
language model for medical speech recognition,” in Human Lan-
guage Technologies - The Baltic Perspective - Proceedings of the
Sixth International Conference Baltic HLT 2014, Kaunas, Lithua-
nia, September 26-27, 2014, 2014, pp. 149–152.

[11] M. A. Haidar and M. Kurimo, “LDA-Based Context Dependent
Recurrent Neural Network Language Model Using Document-
based Topic Distribution of Words,” in ICASSP’17: Proc. of the
42nd IEEE International Conference on Acoustics, Speech and
Signal Processing, 2017.

[12] M. Doulaty, O. Saz, R. W. M. Ng, and T. Hain, “Latent dirich-
let allocation based organisation of broadcast media archives for
deep neural network adaptation,” in Proc. of IEEE Workshop on
Automatic Speech Recognition and Understanding, 2015.

[13] ——, “Automatic genre and show identification of broadcast me-
dia,” in Interspeech’16: Proc. of the 17th Annual Conference of
the International Speech Communication Association, 2016, pp.
2115–2119.

[14] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” in ICLR’15: Proc. of the
International Conference on Learning Representations, 2015.

[15] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet alloca-
tion,” J. Mach. Learn. Res., vol. 3, pp. 993–1022, 2003.

[16] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” Nature, vol. 323, no.
Oct, pp. 533–536+, 1986.

[17] X. Chen, X. Liu, Y. Qian, M. J. F. Gales, and P. C. Woodland,
“CUED-RNNLM - an open-source toolkit for efficient training
and evaluation of recurrent neural network language models,”
in ICASSP’16: Proc. of the IEEE International Conference on
Acoustics, Speech and Signal Processing, 2016, pp. 6000–6004.

[18] Y. Shi, P. Wiggers, and C. M. Jonker, “Towards recurrent neu-
ral networks language models with linguistic and contextual fea-
tures.” in INTERSPEECH’12: Proc. of the 13th Annual Con-
ference of the International Speech Communication Association.
ISCA, 2012, pp. 1664–1667.

[19] C. D. V. Hoang, T. Cohn, and G. Haffari, “Incorporating side
information into recurrent neural network language models,” in
NAACL-HLT’16: Proc. of the Conference of the North American
Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, 2016, pp. 1250–1255.

[20] A. Giel and R. Diaz, “Document embeddings via recurrent lan-
guage models,” University of Standford, Tech. Rep., 2016.

[21] P. Bell, M. Gales, T. Hain, J. Kilgour, P. Lanchantin, X. Liu,
A. McParland, S. Renals, O. Saz, M. Webster, and P. Woodland,
“The MGB challenge: Evaluating multi–genre broadcast media
transcription,” in ASRU’15: Proc. of IEEE workshop on Auto-
matic Speech Recognition and Understanding, 2015.

[22] P. C. Woodland, X. Liu, Y. Qian, C. Zhang, M. J. F. Gales,
P. Karanasou, P. Lanchantin, and L. Wang, “Cambridge university
transcription systems for the multi-genre broadcast challenge,” in
ASRU’15: Proc. of IEEE Workshop on Automatic Speech Recog-
nition and Understanding, 2015, pp. 639–646.

[23] O. Saz, M. Doulaty, S. Deena, R. Milner, R. W. M. Ng, M. Hasan,
Y. Liu, and T. Hain, “The 2015 Sheffield system for transcrip-
tion of multi–genre broadcast media,” in ASRU’15: Proc. of the
IEEE Automatic Speech Recognition and Understanding work-
shop, 2015.

[24] M. Palatucci, D. Pomerleau, G. E. Hinton, and T. M. Mitchell,
“Zero-shot learning with semantic output codes,” in NIPS’09:
Advances in Neural Information Processing Systems, 2009, pp.
1410–1418.

[25] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of train-
ing recurrent neural networks,” in ICML’13: Proc. of the 30th
International Conference on Machine Learning, 2013, pp. 1310–
1318.

2719


