
This is a repository copy of Evolving Test Environments to Identify Faults in Swarm 
Robotics Algorithms.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/117325/

Version: Published Version

Conference or Workshop Item:
Wei, Hao, Timmis, Jonathan Ian orcid.org/0000-0003-1055-0471 and Alexander, Robert 
David orcid.org/0000-0003-3818-0310 (2017) Evolving Test Environments to Identify 
Faults in Swarm Robotics Algorithms. In: IEEE Congress on Evolutionary Computation 
2017, 05-08 Jun 2017. 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Evolving Test Environments to Identify Faults in 

Swarm Robotics Algorithms 
 

Hao Wei 

Department of Computer Science 

University of York 

York, UK 

hw967@york.ac.uk 

Jon Timmis 

Department of Electronics 

University of York 

York, UK 

jon.timmis@york.ac.uk 

Rob Alexander 

Department of Computer Science 

University of York 

York, UK 

rob.alexander@york.ac.uk

 

 
Abstract—Swarm robotic systems are often considered to be 

dependable. However, there is little empirical evidence or theo-

retical analysis showing that dependability is an inherent proper-

ty of all swarm robotic system. Recent literature has identified 

potential issues with respect to dependability within certain types 

of swarm robotic algorithms. There appears to be a dearth of 

literature relating to the testing of swarm robotic systems; this 

provides motivation for the development of the novel testing 

methods for swarm robotic systems presented in this paper. We 

present a search based approach, using genetic algorithms, for 

the automated identification of unintended behaviors during the 

execution of a flocking type algorithm, implemented on a simu-

lated robotic swarm. Results show that this proposed approach is 

able to reveal faults in such flocking algorithms and has the po-

tential to be used in further swarm robotic applications. 

Keywords—swarm robotics; genetic testing method;  

I. INTRODUCTION 

Swarm Robotics is the study of the design of groups of ro-
bots that operate without relying on any external infrastructure 
or on any form of centralized control [1]. Work by Winfield [2, 
3] has raised concerns about the reliability of swarms in certain 
conditions, raising doubts over the assumption that swarm ro-
botic systems are inherently reliable. There are significant is-
sues in the reliable and controllable performance of a swarm in 
complex tasks. Issues such as communication, line of sight and 
failing units are examples of such problems. 

Due to the emergent behaviors in swarm robotic systems, 
ensuring certain types of behavior emerge is challenging, and 
ensuring that certain types of behaviors do not emerge especial-
ly so. Software testing is a process, or a series of processes, 
designed to ensure that computer code does what it was de-
signed to do and, conversely, that it does not do anything unin-
tended [4]. There is very little literature on testing swarm ro-
botic systems [5], yet the complexity of controller generation, 
coupled with coping with emergent properties of the system 
would indicate a complex testing strategy may well be re-
quired. Automated ways of testing swarms could potentially 
save significant amounts of time and identify subtle faults in 
the systems operation. 

One of the goals of software testing is to automate, as much 
as possible, thereby significantly reducing its cost, minimizing 
human error and make regression testing easier [6]. Testing 

swarm robotic systems can be seen as having two levels, the 
code level and behavior level. For code level testing, the meth-
od designed for testing the code of single robotic system might 
be used for testing the code of swarm robotic systems. Howev-
er, for behavior level testing, unlike single robotic system or 
centralized control multi-robotic system, the behavior of a 
swarm robotic system is not explicitly described by the behav-
ior of the components of the system, and is therefore difficult 
to predict and test. 

In this paper, we propose an automated testing method, 
based on a genetic algorithm approach. The approach generates 
test cases (specifically, the environment in which the swarm is 
executed) and monitors the movement of the swarm as it 
moves through the environment. Undesired behaviors will be 
recorded and used for assessing whether the swarm algorithm 
(or e.g. the design and implementation of the individual robots) 
has faults.  

The remainder of this paper is organized as follows. Section 
II describes flocking rules and defines metrics for flocking be-
havior and failure taxonomy. Section III shows the approach 
for solving the problem. Section IV gives the experimental 
design of evolutionary computation approach. Section V gives 
experimental results and finally Section VI concludes the study 
and outlines future works for the research. 

II. PROBLEM DESCRIPTION 

In this paper we focus on the problem of finding undesired 
behavior in a specific swarm algorithm: flocking. As different 
kinds of swarm behaviors follow different rules, different types 
of test cases are needed for testing different swarm robotic sys-
tems. Flocking is an emergent behavior from a group of agents 
which are following a limited set of rules. By means of exam-
ple in this paper, we use a simple flocking algorithm, based on 
Boids [7] to illustrate our approach. 

A. Flocking Rules 

Agents in Boids use three rules to achieve basic flocking 
behavior: 

• Separation: steer to avoid crowding local flockmates; 

• Alignment: steer towards the average heading of local 
flockmates; 
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• Cohesion: steer to move toward the average position of 
local flockmates. 

In order to make the flocking behavior more interesting, the 
following two rules can be added: 

• Obstacle avoidance: steer to avoid obstacles in the envi-
ronment; 

• Goal seeking: steer towards the direction of the goal. 

B. Metrics for flocking behavior 

There are various studies around flocking behavior, but 
most of them only develop algorithms that produce flocking 
behaviors and then test the behavior through manual observa-
tion of the swarm [8, 9, 10]. Few of them define metrics for 
measuring the performance (quality) of flocking behaviors. 
However, based on several papers, for example [8, 11, 12], we 
can conclude that good flocking behavior should have at least 
some of the following properties: 

• The agents of the swarm should always face approxi-
mately the same direction; 

• The agents or flocks that meet should stay together; 

• The swarm should neither lose no agents nor separate 
into different swarms; 

• The agents should remain close to each other; 

• The agents should not collide with each other or obsta-
cles; 

• The agents should be able to reach the target. 

The focus of this study is to evaluate overall behavior at the 
swarm level and not at an individual level, therefore we will 
ignore failures of single agents, e.g. motor failures. Hence, we 
assume that agents in the swarm will not be damaged by collid-
ing with other agents or the obstacles, and therefore will ignore 
the property 5. For property 6, if the swarm is unable to reach 
the target in a given time, we will treat this as a total failure for 
the whole swarm. 

There are a limited number of metrics described in the liter-
ature, which can be used to assess, in part, some of the above 
properties. In this paper, we use two: angular order to access 
property 1 and positional order to access property 2-4. 

1) Angular Order 
The angular order of a swarm can be used to indicate 

whether the agents are moving in the same direction. In [13], a 
mathematical model is proposed for the measurement of the 
angular order of self-aligned objects. By combing it with the 
model proposed in [14], an equation for calculating the angular 
order (ψ) of a group of objects can be derived - see equation 1: 

  (1) 

where N is the total number of objects in the group, θn is 
the facing direction of the nth object in the group, where θ  [–

π, π], and i is the imaginary unit (complex number, which i
2
=-

1).  

The value of the angular order can vary between 0 and 1. 
The value 0 means that the group is in a completely disordered 
state while 1 means that the group is perfectly aligned and is in 
a completely ordered state. 

In a two-dimensional case, the angle describing the facing 
direction of an object is θ and θ  [–π, π]. 

2) Positional Order 
The positional order of a swarm shows whether the swarm 

is in a steady state or not. When a swarm is in a steady state, 
the distance between each agent and its neighbors is close 
enough that the agent is attracted to the centre of its neighbor-
hood and is far enough that the agent can avoid colliding with 
its neighbors.  

There are several metrics which can provide a mathematical 
measurement of positional order, such as the social entropy 
developed by Shannon [15], cohesion radius developed by Gu 
et al. [16], and the deviation energy developed by Antonelli et 
al. [17]. For this paper, we employ the social entropy metric for 
positional order measurement. In future work we plan to find 
other suitable metrics for measuring positional order. 

Shannon’s social entropy can be used to measure the posi-
tional order of a swarm by setting the maximum distance (h) 
between the individuals in the same cluster. For a given cluster, 
an agent r is considered to belong to this cluster if and only if 
in this cluster there exists another agent for which the distance 
between this agent and agent r is less than the maximum dis-
tance h. Shannon’s information entropy H(h) of a cluster with a 
maximum distance h is defined as: 

  (2) 

where pi is the proportion of the individuals in the ith clus-
ter and M is the number of clusters for a given maximum dis-
tance h. 

The value of H(h) varies from 0 to ∞ for a given h. A 
swarm with its H(h) equals 0 means that this swarm is in a 
steady state. The larger the value of H(h), the less steady. 

C. Failure Taxonomy 

Our approach will attempt to find undesired behaviors that 
occur during the execution of a swarm. Hence, we need a crite-
rion to categorize failures. In swarm robotics, works such as 
[3], address failure modes of a single robot in the swarm, but 
few papers discuss taxonomies of failures for swarm behavior.  

In this paper, we propose a failure taxonomy based on vari-
ous causes of the failures. When a swarm is moving in an envi-
ronment, the main reason of splitting up the swarm is the ob-
stacles. When the agents meet obstacles, their velocity (both 
speed and moving direction) will be affected, which might 
cause them to lose track of the rest of the swarm. Our taxono-
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TABLE I.  PARAMETER DESCRIPTIONS FOR GA 

Name of Parameter Description Candidates 

Population size 
Number of 

chromosomes [1, ] 

Parent Selection 
method 

How to select 
chromosomes 

All Parent-BestHalf 
2BestParent-
2WorseAway 

2RandomParent-
2WorseAway 

Crossover type and 
probability 

A genetic operator 
and its usage 
probability 

Single-point-
crossover 

Double-point-
crossover 

Uniform-crossover 

Mutation probability 
The probability of 

mutation [0, 1] 

Number of 
Generation 

The number of 
generations before 
the evolution ends 

[1, ] 

my is therefore in terms of how agent speeds and directions 
change when a swarm fails by splitting splits. 

Specifically, when a split occurs, we compare the speed and 
moving direction of these two clusters. We classify the nature 
of the split in terms of relative speeds (is the slower cluster at 
>= 50% of faster cluster speed, or not) and relative angle (in 10 
degree increments until 90 degree, and then 90 degree plus). 
Hence, there will be 20 different types of failures. 

We also apply the following rules: 

• A cluster is only treated as a swarm if the number of 
agents in this cluster is larger than or equal to N (in our 
paper, we use 3, 5 and 7); 

• During an experiment, if no swarm reaches the target, a 
“total failure” has occurred; 

• We are only considering the last cluster which is split 
from the swarm; 

III. METHOD 

In the field of automated testing, two of the most common 
testing methods are random testing and testing using genetic 
algorithms (GA) [18]. Random testing is based on random 
search and is a well-known automatic testing technique [19], 
which can be effective at finding software bugs [20]. Yet, it is 
also well-known that random testing only finds simple bugs 
and provides low test coverage [21]. GAs provide an intelligent 
exploitation of a random search, and widely used to solve op-
timization problems [22]. They have been applied to automated 
software testing in conventional software applications [23] and 
to evolve control algorithms in swarm robotic systems [24], but 
to date not in testing for swarm robotics. 

A. Genetic Testing Method 

A GA evolves solutions by selecting, reproducing and mu-
tating a population over many generations [25]. To use a GA, 
we need to design a good chromosome (the representation of 
each individual in the population), define an appropriate fitness 
function, and set appropriate GA parameters. 

1) Chromosome 
The term chromosome, for a GA, refers to a candidate solu-

tion to a problem [22]. In this study, each test case can be treat-
ed as a chromosome. In our testing approach, a test case is an 
environment containing obstacles in different locations so that 
the performance of a swarm can be tested. In all cases, the task 
of the swarm will be move from the starting point to the desti-
nation. 

In this study, we use cellular representation [26] to repre-
sent our chromosomes. In a cellular representation, an object is 
represented by using directions for constructing it rather than 
using direct descriptions. The cellular representation for our 
test cases is composed of single descriptors. A single descriptor 
specifies an obstacle according to a simple rule. Each de-
scriptor has five parameters (x, y, l, w, o) which specify its cen-
tral position (x, y) in the environment, the length l, the width w, 
and o the orientation of the descriptor. 

If there are N obstacles in each test case, a random test case 
can be generated according to the following rules: 

• Randomly generate N single descriptors (obstacles). 

• Process single descriptors in the order they are generat-
ed, and place a corresponding obstacle in the environ-
ment. 

• If part of the obstacle is outside the edge of the envi-
ronment, split this part from the obstacle, but leave the 
descriptor for this unchanged. 

• If an obstacle is totally inside another obstacle, regener-
ate its descriptor. 

• If adding the obstacle means that there is no path be-
tween the starting point of the swarm and the destina-
tion, regenerate its descriptor. 

2) Fitness Function 
The fitness value of a test case in this study represents the 

performance of the swarm in this simulation with a given 
chromosome. The purpose of the testing method is to find un-
intended behaviors or failures in a swarm; this means that the 
worse a swarm performs in a test case the better (more fit) the 
test case is. 

If the swarm flocks to the destination with the given time, 
this indicates that the swarm performs a perfect flocking behav-
ior in this test case. If the swarm can not reach the destination 
within the given time, or the robots reach the destination sepa-
rately (the robots are not moving in flock), this indicates a total 
failure. Hence, the fitness value of a test case can be calculated 
using angular order and positional order as follows: 

  (3) 

where ψ is the angular order of the flock and H is the posi-
tional order of the flock. In order to make the calculation sim-
ple, if the calculated fitness value is larger than 1, we’ll set it to 
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TABLE II.  PARAMETER VALUES OF GENETIC ALGORITHM 

Name of param-
eters 

Potential  
Candidates 

Best  
Candidates 

Number of genes [1, 15] 6 

Population size [2, 50] 20 

Parent selection  
method 

AllParent-best half 
2BestParents-2WorseAway 

2RandomParents-2worseAway 

2BestParents-
2WorseAway 

Crossover  
operator 

Single-point-crossover 
Double-point-crossover 

Uniform-crossover 

Single-point-
crossover 

Crossover  
probability [0, 1] 0.1 

Mutation  
probability [0, 1] 0.05 

Number of  
generations [1, 100] 50 

1. The range of fitness value is therefore from 0 to 1, where 0 
indicates a perfect flocking and 1 indicates a total failure. 

3) Parameter Analysis 
In this study, there are five parameters in our genetic algo-

rithm which are population size, parent selection method, 
crossover type and probability, mutation probability, and num-
ber of generations in evolution. Table I shows the description 
and potential candidates for these five parameters. 

We employed a parameter robustness technique from Spar-
tan [27, 28] which allows the assessment of the sensitivity of 
parameters in the simulation. This technique is performed by 
changing each parameter individually with all other parameters 
remaining the same. For each parameter, simulation results for 
different values will be compared to determine whether a sci-
entifically significant behavioral alteration has occurred. From 
the simulation results, we can also determine at which value of 
the parameter the genetic algorithm performs best. 

 

IV. SIMULATION AND EXPERIMENTAL SETUP 

In order to simulate the experiments for our case study, we 
use foot-bot in ARGoS, an open source robot simulator focus-
ing on the simulation of large heterogeneous robot swarms [29]. 
The following subsection talks about the flocking algorithm 
which is applied to foot-bots in order to achieve flocking be-
havior in ARGoS. 

A. Control Algorithm for Flocking Behavior 

Agents in a swarm robotic system typically have limited 
sensors and do not share global knowledge. In this paper, the 
flocking algorithm we used to achieve flocking behavior is 
developed based on the algorithm proposed in [12]. In that al-
gorithm, no agent (robot) has access to either the goal direction 
or to alignment information. However, the algorithm only 
works in an environment without obstacles, and is also unable 
to move towards a goal. 

We improved this flocking algorithm by adding obstacle 
avoidance and goal seeking rules (see section 2.1). In order to 
apply obstacle avoidance, a way needs to be established to al-
low a foot-bot to distinguish the difference between its flock-
mates and obstacles. This can be achieved by using the omni-
directional camera provided by ARGoS. The omni-directional 
camera can tell the position of a light source with respect to the 
centre of the foot-bot. Foot-bots in ARGoS are able to emit 
light of different colours with their LEDs. All foot-bots in the 
swarm can be set to emit light of the same colour, and then 
each foot-bot can use its omni-directional camera to find out 
the position of other foot-bots. Finally, a light source can be 
provided at the destination, which emits light having different 
colour from foot-bots. Foot-bots will be able to move towards 
the destination following the light, and therefore a goal seeking 
rule can be applied to our control algorithm. 

The improved flocking algorithm should be able to reach 
the goal while avoiding obstacles in the environment by shar-
ing global knowledge. However, as stated in [12], the flocking 

behavior accomplished is limited in the sense that the swarm 
could not stay cohesive the whole time. 

B. Genetic Algorithm Procedure 

The following procedure shows how to generate test case 
using the genetic algorithm: 

Step 1: Initialize population: randomly generate an initial 
population using the rules stated in section 3.1.1 for generating 
test cases. 

Step 2: Compute fitness: evaluate the fitness value of each 
test case. 

Step 3: Select parents: follow the parent selection method 
to choose parent test cases. 

Step 4: Crossover: Use a crossover procedure to produce 
offspring, if the produced offspring doesn’t contain a clear path 
from the starting point to the destination, redo Step 4. 

Step 5: Mutate: Allow the offspring to mutate with muta-
tion probability pm, if the produced offspring doesn’t contain a 
clear path from the starting point to the destination, redo Step 
5. 

Step 6: Check for termination: Terminate the algorithm if 
we’ve now run N generations (where N is a parameter). 

C. Experimental Setup 

In this study, the environment in which foot-bots are tested 

is a closed 6m×6m squared space. For each experiment, 10 
foot-bots will be tested. The starting point of the swarm is at 
the upper left corner of the environment, and the goal is placed 
at the lower right corner.  

V. EXPERIMENTAL RESULTS 

In this section, we present the experimental results of pa-
rameter selection for the genetic algorithm. Then results of the 
genetic testing method and random testing method are com-
pared. We refer to a test case generated by our automated test-
ing method as an evolved test case, and test case generated 
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Fig. 1. The fitness value of evolved test cases compared with that of 

random test cases 

 

Fig. 2. A line graph shows the average number of failure types of 10 

independent evolutions in 80 generations.  

TABLE III.  RESULT DETAILS OF MANN-WHITNEY U-TEST.  

randomly as a random test case.  

A. Parameter turning for the Genetic Algorithm 

First, we present the parameters selected for the GA. A ro-
bustness technique is performed by perturbing parameter indi-
vidually, using a ‘one at a time’ approach [27] – when evaluat-
ing the different values of one parameter, all other parameters 
will remain unchanged. For each candidate value of each pa-
rameter, 20 evolutions will be executed (The number of 20 is 
chosen by using the Consistency Analysis technique provided 
by Spartan for reducing the uncertainties during the experi-
ments). The final results for all potential candidates will be 
compared using the Vargha-Delaney A-Test [30] to determine 
if a scientifically significant behavioral alteration has occurred, 
if yes, then the candidate which performs best will be selected. 

Table II shows the parameter values determined according 
to the analysis from Spartan. All the parameter values in Table 

II were only optimized for a 6m×6m environment with a 
swarm of 10 foot-bots. 

B. Comparison of Severity of Failure 

In this subsection, we will compare the performance of the 
simulated swarm, which is equipped with the flocking algo-
rithm mentioned in section IV.A, in both evolved and random 
test cases. Our means of comparison is the fitness score. We 
propose a null hypothesis: 

H0: the use of evolved test cases makes no difference to the 
ability to identify the severity of failures when compared to a 
random testing strategy. 

At the beginning of the experiments, 5000 random test cas-
es are produced. In order to keep the fitness evaluations be-
tween random testing method and genetic testing method the 
same (at 5000), and given that we will run 50 generations of 
the GA, 100 evolved test cases should be generated. The 
swarm is executed in both evolved test cases and random test 
cases, and the performance in each test case is calculated and 
recorded. When comparing the results, 100 random test cases 
will be randomly chosen. 

Table III shows the result details of applying Mann-
Whitney U-Test to the experimental results, the average (mean) 
fitness of the solutions (avg), the standard deviation (std), the 
fitness of the best solution (best), sum of ranking (SoR), mean 
of ranking (MoR), and the U-value. The p-value of the test is 0 
and this result is significant at p<0.05, which means that the 
medians of the fitness values of both groups of test cases is 
different. 

Figure 1 presents a box-and-whisker plot which shows the 
distribution of the fitness values of the test cases generated by 
genetic testing method and random testing method. From the 
graph, it is clear that there is no overlap in spreads (75% of 

random test cases are less fit than 75% of evolved test cases), 
therefore both mean and median of the fitness value of evolved 
test cases is higher than those of random test cases. Hence, the 
null hypothesis H0 is rejected. 

C. Comparison of Diversity of Failure Type 

The purpose of our testing method is not only to discover as 
many instances of undesired behaviors as possible, but also to 
discover as many distinct types of undesired behaviors as pos-
sible. In order to measure the diversity of failures found by our 
testing methods, 10 independent evolutions are carried out. For 
each evolution, there are 20 initial populations and the evolu-
tion continues for 80 generations. Figure 2 shows that the 
number of failure types won’t keep increasing as the number of 
generations increases. The number of failure types will reach 
the peak after certain numbers (between 20 and 40) of genera-
tions. Hence, to keep the computing cost at a minimum, the 
evolutions in this subsection will run for 20 generations. We 
propose another null hypothesis: 

H0: the use of evolved test cases makes no difference to the 
ability to identify types of failures when compared to a random 
testing strategy. 
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Fig. 3. A line graph shows the total number of failure types during 8000 

fitness evaluations.  

TABLE IV.  FAILURE TYPES DISCOVERED  

 

In this subsection, 8000 random test cases are generated. To 
keep the fitness evaluations between two testing methods the 
same, 400 evolved test cases are produced. As the population 
size for each evolution is 20, therefore 20 independent evolu-
tions are carried out.  

For failure taxonomy, failures are categorized into 20 cate-
gories, formed by combining two speed categories and 10 an-
gle categories. The two speed categories are “<=50% of mean 
robot speed” and “>50% of mean robot speed”. Angles are 
measured with respect to the mean heading of the swarm mem-
bers. The angle categories are in the range 10-90 degrees with 
an increment of 10 degrees, along with a tenth “90 degrees+” 
category. 

Figure 3 shows the total failures type found for both 
evolved and random test cases. In this graph, we assume that 
the executions of 20 different evolutions are independent and 
parallel. As we discussed in subsection II.C, there are 20 dif-
ferent types of failures in total. Figures 3 shows that evolved 
test cases discover 17 different types of failures, while random 
test cases discover only 9. Table IV shows the specific failure 
types discovered by both evolved and random test cases. From 
the table, it is clear that the set of failure types discovered by 
random test cases is a subset of the set of failure types discov-
ered by evolved test cases. 

One precondition for all the experimental results above is 
that a cluster will only be treated as a swarm if the number of 
agents in this cluster is larger than or equal to 5. We also car-
ried out all the experiments in this subsection when a cluster is 
treated as a swarm if the number of agents in it is larger than or 
equal to 3 and 7. From the experimental results, even though 
the number of failure types for both evolved and random test 
cases are changing, the set of failure types discovered by ran-
dom test cases is always a subset of that discovered by evolved 

test cases. 

Hence, the experimental results from all three sets of exper-
iments show that after a certain number of fitness evaluations 
and under the criterion we developed for failure taxonomy, the 
evolved test cases not only cover all the failure types which 
random test cases identified, but also identify more types of 
failures. The null hypothesis H0 in this subsection is rejected. 

D. Discussion 

According to the experimental results from subsection V.B 
and V.C, the evolved test cases lead to worse swarm perfor-
mance and cover more failure types than random test cases, 
suggesting that they are better tests when testing flocking algo-
rithm in section IV.A. 

VI. CONCLUSION 

In this paper, we have proposed an automated test genera-
tion method for the identification of undesired behaviors during 
the execution of a swarm robotic system. A genetic algorithm 
was applied to generate test cases that represents the environ-
ment. The evolved test cases were compared with random test 
cases in simulation experiments. The evolved test cases lead to 
more severe and more diverse failures, the evolutionary ap-
proach thus produced a better quality of test than random did. 
By analyzing the failures found during the tests, there might be 
a chance of improving the swarm control algorithm. 

In the future, this automated testing method will also be ap-
plied on physical devices. Moreover, metrics for different 
swarm algorithms can be established and applied for the devel-
opment of corresponding automated testing methods. Those 
new developed testing methods will be evaluated to find out 
whether the approach proposed in this paper is adaptive for 
testing other swarm behaviors. 
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