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ABELIAN HURWITZ-HODGE INTEGRALS

P. JOHNSON, R. PANDHARIPANDE, AND H.-H. TSENG

ABSTRACT. Hodge classes on the moduli space of admissible coverawagtiodromy grous are
associated to irreducible representationgzofWe evaluate all linear Hodge integrals over moduli
spaces of admissible covers with abelian monodromy in texfmaultiplication in an associated
wreath group algebra. In casgis cyclic and the representation is faithful, the evaluat®in terms

of double Hurwitz numbers. In casg is trivial, the formula specializes to the well-known resul
of Ekedahl-Lando-Shapiro-Vainshtein for linear Hodgegrals over the moduli space of curves in
terms of single Hurwitz numbers.
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0. INTRODUCTION

0.1. Moduli of covers. Let M, ,, be the moduli space of nonsingular, connected, ggrusgves
over C with n distinct points. Let7 be a finite group. Given an elemet, py,...,p,] € M,,,
we will consider principalz-bundles,

G —— P
(1) &
C\{plaapn} )
over the punctured curve. Denote theaction on the fibers of by
7:GxP—P.

The monodromy defined by a positively oriented loop arourd‘thpuncture determines a conju-
gacy classy; € Conj(G). Lety = (7, ...,7,) be then-tuple of monodromies. The moduli space
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of coversA, . (G) parameterize&/-bundles[(ll) with the prescribed monodromy conditions.r&he
is a canonical morphism

e: Ay (G) = M,
obtained from the base of tlie-bundle. BothA4, . (G) and M, ,, are nonsingular Deligne-Mumford
stacks.

A compactificationA, ,(G) C A,,(G) by admissible coversvas introduced by Harris and
Mumford in [15]. An admissible cover

[m. 7] € Zgry(G)
is a degreeG| finite map of complete curves
Tm:D — (Caplv .- 7pn)

together with az-action
7T:GxD—D

on the fibers ofr satisfying the following properties:
(i) D is a possibly disconnected nodal curve,

(i) [C,p1,...,pn) € M, is astable curve,
(iif) = maps the nonsingular points to nonsingular points and niedesdes,

ﬂ.(Dns) C Cms’ ﬂ.(Dsing) C Csing’
(iv) [m, 7] restricts to a principalz-bundle over the punctured nonsingular locus
7_{_open . Dopen N Cns \ {pb . >pn}

with monodromyy,

(v) distinct branches of a nodee D9 map to distinct branches af(n) € C*"9 with equal
ramification orders over(7n),

(vi) the monodromies of thé&-bundlerPe® determined by the two branches@fatn € C*"9
lie in opposite conjugacy classes.

Harris and Mumford originally considered only symmetriogp >; monodromy, but the natural
setting for the construction is for all finit@.

An admissible cover may be alternatively viewed as a pradcipbundle over the stack quotiﬂnt
[D/G] inducing a stable map to the classifying space

2) f:[D/G] — BG.
Then, A, . (G) is simply a moduli space of stable maps [?A5]
ZQFY(G) ; ﬂgy’y(BG)‘

The deformation theory of stable maps endaws, (G) with a canonical nonsingular Deligne-
Mumford stack structure. We take the stable maps perspeutie.

There are two flavors of such stable map theories. If the baserequired to be connected as
above, we Write/V;ﬁ(BG). If disconnected base&s are allowed, we Write/\_/l;ﬁ(BG). In the

1[D/G] differs fromC only by possible stack structure at the markipgand the nodes. In both cases, the order of
the isotropy group is the order of the local monodromyzin
2We do not trivialize the marked gerbes on the domain in thenidief of M, ., (BG).
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disconnected case, the gerusay be negative. If the superscript is omitted, the conmecase is
assumed.

Our results are restricted to abelian grodps Here, Conj(G) is the set of elements@f Of
course, the cyclic grouds, will play the most important role. In caggis trivial, there is no extra
monodromy data, and the moduli space of maso....0)(BZ; ) specializes toV,,.

0.2. Hodge integrals. Let R be an irreducibleC-representation ofy. If G is abelian,R is a
character

ot G — C*.
By associating to each mdg] € M, .(G) presented ag]2) above tizsummand of the7-
representatioit/® (D, wp), we obtain a vector bundle

Ef — MM(BG) )

The rank off” is locally constant and determined by the orbifold Riem&uth formula discussed
in Section 1. Thédodge classesn M, ,(BG) are Chern classes &f,

A= ¢(ER) € H*(M,,(BG),Q).
Thei'" cotangent line bundl&, on the moduli space of curves has fiber
Lilcptpm) = T];ki<C)'
Descendent classes @, ,, are defined by
Vi = ci(Ly) € Hz(mg,m Q).
Descendent classgs on the space of stable maps are defined by pull-back via thphison
€: M, (BG) — M,,
to the moduli space of curves,
Ui =€ (Y;) € HQ(MQJY(BG)? Q).

TheHodge integral®ver M, ., (BG) are the top intersection products of the clags€$} re /()
and{v; }1<<,. Linear Hodge integrals are of the form

AT,
/ﬂg,wm) ]1:[1 !

The termHurwitz-Hodge integralvas used in [3] to emphasize the role of the covering spaces.

0.3. Hurwitz numbers. Let g be a genus and letandy be two (unordered) partitions af> 1.
Let /(v) and/(x) denote the lengths of the respective partitions. A Hurwitzer of P! of genusy
with ramificationsy andy over0, co € P! is a morphism

7:C — P!
satisfying the following properties:

(i) Cis a nonsingular, connected, genusurve,
(ii) the divisorsm—1(0), 77 *(c0) C C have profiles equal to the partitionsandy respectively,
(iii) the mapn is simply ramified oveC* = P! \ {0, co}.
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By condition (ii), the degree af must bed. Two covers
7:C—P,7a:.C" - P!

are isomorphic if there exists an isomorphism of curgesC' — C’ satisfyingn’ o ¢ = w. Each
coverr has an naturally associated automorphism grougAut

By the Riemann-Hurwitz formula, the number of simple ranaifion points ofr overC* is
rg(v,p) =29 — 2+ £(v) + {(p).

Let U, C C* be a fixed set of,(v, 1) distinct points. The set of, (v, )™ roots of unity is the
standard choice. Thaouble Hurwitz numbefi, (v, 1) is a weighted count of the distinct Hurwitz
coversr of genusg with ramificationsy and iz over0, oo € P! and simple ramification ové,.
Each such cover is weighted by|Aut(r)|. The countH (v, 1) does not depend upon the location
of the points ofU,..

There are two flavors of Hurwitz numbers. The connected cafratl above will be denoted
HZ(v,p). If Cis allowed to be disconnected, the Hurwitz count is dendfgd, ;). Again, the
absence of a superscript indicates the connected theory.

Disconnected Hurwitz numbers are easily expressed as giouiuthe centey:; of the group
algebra ofx,,

[ ] 1 Tq(V.
(3) H (v, p) = T (C, 17 C,)

Here,C, andC), are the sums in the group algebra of all element¥ pfith cycle typess and
1 respectively, and” is the sum of all transpositions. The subscript denotes deéicient of the
identity [Id].

Multiplication in 23, is diagonalized by the representation basis. Hurwitz nusten be writ-
ten as sums over charactersXf and conveniently expressed as matrix elements in the iafinit
wedge representation. The latter formalism naturally ests\Hurwitz numbers to integrable sys-
tems [20] 21, 24].

fd] -

0.4. Formula for Z,. The formula for linear Hodge integrals is simplest in casertfonodromy
group isZ, and the representatidnis given by
oV Ty — T, V(1) =€
Lety = (71, ...,7.) be a vectdtof nontrivial elements ofZ,,

Yi € {1,...,0,—1}.
Let 1 be a partition ol > 1 with partsy,; and lengtl?,

l
Y on=d
j=1
Let v — i denote the vector of elements®f defined by

Y= = (Ve Y =Ly - — )

3The lengthn may be taken to be 0 in which case= ().
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While the parts of: are unordered, an ordering is chosen-for n.. The vectory — y may contain
trivial parts. We will consider Hodge integrals over the mbdpaceM, ,_,(BZ,).

For nonemptiness, the parity condition

4) d—Zsz mod a

=1

1=1

is required. non-negativity,

and boundedness,
VZ%], %+% SCL
will also be imposed. Ify = (), non-negativity and boundedness are satisfied.

An automorphism of a partition is an element of the permatagroup preserving equal parts.
Let |Aut(~y)| and|Aut(x)| denote the orders of the automorphism graupet v, be the partition

of d determined by adjoinin§—==1" parts of sizex,
T+ = (’}/17"'77717@7"'70')'
A calculation shows

d — %
T’g(7+,u)=2g—2+n+f+a—25~
i=1

Let the monodromy grouf, and representation” be specified as above. Our main result for
linearZ,-Hodge integrals is the following formula.

Theorem 1. Lety = (v,...,7,) be nontrivial monodromies ifZ, satisfying the parity, non-
negativity, and boundedness conditions with respect tpangtion ;.. Then,

Hy(v4, 1) =
¢ 17
1QERY0) RO S 8 S A () H“J / Liso(—a)' N
[Aut(y)] [Aut(w)| o L mwmo T2 (1= )

The integer and fractional parts of a rational number ar@tihin the above formula by

q=lq] +{q), ¢€Q.

The cotangent lines in the denominator on the far right ase@ated to the stack points of the
stable map domain corresponding to the partg.of

Theorentl is proven by virtual localization on the modulicpaf stable maps to the staka|
with Z,-structure at following the arguments of [9, 12]. The space of stable mapB'{a] is
discussed in Section 1, and the proof is given in Section 2.f@tmula is easily seen to determine
all linearZ,-Hodge integrals with respect toin terms of double Hurwitz numbers. In fact, the set
of evaluations withy = () is sufficient. Conversely, every double Hurwitz number alized fora
sufficiently large.

4Here,'y is considered as a partition by forgetting the ordering efélements.
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For the disconnected formula, we assume () and the parity conditiod = 0 (mod a)ﬁ Then,
Theoreni1 holds in exactly the same form,

¢ L%]J
T (®+, ) 1— +Z _J Z 0( ))\U
(5) H3 (04, 1) = "o i gt mot i (5 = :
)= act 1T e e TS0
The ELSV formulal[6] for linear Hodge integrals on the modigace of curves arises from the

a = 1 specialization of Theorefd 1,

(29—2+d+£ uj > (1),
i [Aut(p H Moo [T (1= pye)

g

Fora = 1, we must have = ().

The conditiongy allow for greater freedom in the > 1 case. For example, the proof of Theorem
yields a remarkable vanishing property. The monodromylitmms~y satisfy negativity if

d—i’}/i <0
i=1

and strong negativity if
d—>""
d—n— 722:17 < 0.
Strong negativity is easily seen to imply negativity.

Theorem 2. Lety = (74, ...,7,) be nontrivial monodromies i, satisfying the parity condition
with respect to the partitiop. In addition, lety satisfy at least one of the following two conditions:

(i) negativity and boundedness, or
(ii) strong negativity.

Then, a vanishing results for Hurwitz-Hodge integrals Isold

/ Zz O( ))\U —
Mg y—u(BZa) Hﬁ:l( - Mﬂ/)j)

A few examples of Theoremi$ 1 and 2 where alternative appesaicththe integrals are available
are presented in Section 3.

0.5. Abelian G. Since any faithful representatiadf of Z, differs fromU by an automorphism of
Z4, Theorenlll determines linear Hodge integrals with resgeét. t Representations &, with
kernels require an additional analysis.

Let G be an abelian group with group law written additively. Catesian irreducible representa-
tion R,

¢R:G—>C*,

51f ~ # B, the non-negativity condition may satisfied globally butiEated on connected components.
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with associated exact sequence
(6) 0K — G2 imeh) =z, — 0.

The homomorphism? induces a canonical morphism
p: M, (BG) — Mg o () (BZa).
The morphisnp satisfies
(W) = AR
and has the same degree over each componemgq;‘ y(BZ,). Therefore, linear Hodge integrals
with respect taR can be calculated by multiplying the formula of Theofem 1oy degree op.
In Section 4, the solution for arbitray and R is cast in a more appealing way. When

¢R(,}/) = —H S Zaa

/ Dimo(—a)' AT
My ~(BG) Hﬁ:l( - #ﬂ/}j)

are expressed in terms of Hurwitz numbers fqy, the wreath product o with the symmetric
group ;. Since the infinite wedge formalism fai,; extends to a Fock space formalism for the
wreath product(,, there is again a connection to integrable systems [25].

Hodge integrals of the form

Conjugacy classes it ; are indexed by Colf<)-weighted partitions ofl,

H= {(:ulv "{1)7 SR (:uf(u)v "W(u))}'

Here, . is a partition ofd with partsy;, the weightss; € Conj(K') are conjugacy classes i, and
7 is an unordered set of pairs. Let Agy denote the automorphism group@f Let C; € ZK,
be the element of the group algebra associated to the cayjutgssi. The transposition element
T € ZK,is associated to conjugacy classiof indexed by

7=1(2,0),(1,0),...,(1,0)}
where all the CorfjK’)-weights are O.
The wreath producf(, has a forgetful map t&,; which sends elements of cycle typeto

elements of type:. The K,;-Hurwitz numberH, x(7,7) counts the degreé| K |-fold covers of
P! with monodromy inK; given byw andzi at0, co € P and7 at all the points of

U,y € P

SinceK C K, is contained in the center, any such cover has a canoRieattion which defines a
K-bundle over a punctured Hurwitz cover countedfy(v, 11). The connectivity requirement we
place on covers counted Wy, (7, i) is notthat thed| K|-fold cover is connected, but only that
the associated Hurwitz-fold cover is connected. Similarly,is the genus of thé-fold cover.
The natural extension of formulal (3) for disconnected Htawovers for the wreath produét,

is

Hg.,K(vv ﬁ) |K | (C TT](V M)Cﬁ)
where the product on the right takes place in the group atgebk’,.

(id] 7
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Select an element € G with ¢%(x) = 1. Letk = ax € K. Denote by—u the /(u:)-tuple of
elements of~ defined by:
—J = (K1 = pa, Ky — Jo, s Kg(u) = fhe(u)L)-
Although the parts ofi are unordered, an ordering is chosen-fgr. The parity condition is now

¢
Zf@j—,ujx:OEG.

j=1
Denote by, (k) the conjugacy class given by

0. (k) = {(a, k). (a,—k)}.

d/a times

Theorem 3. For weighted-partition$: satisfying the parity condition,
“JLTJ / Zfio(—a)i)\f .
j=1 L% © I My, 7 (BG) H§:1(1 = 1¥;)

Theorenl B determines all linear Hurwitz-Hodge integrats@oand holds in exactly the same
form for the disconnected theoriég, (0. (k), ) andM;, _,(BG).

’:]N

(04, p)! A9t (%)
HQJ(((Z)-F(]{;) :u) |Aut( )| -

0.6. Future directions. The ELSV formula has two immediate applications in Gromontsii
theory. The first is the determination of descendent integneer M, ,, via asymptotics to remove
the Hodge classes [18,121]. The second is the exact evaiuattiie vertex integrals in the local-
ization formula forP! in [22,[23]. The latter requires the Hodge classes.

Sincee : M, ,(BG) — M, is a finite map, a geometric approach to the descendent asegr
is not strictly necessary [16]. However, for the calculatad the Gromov-Witten theory of target
curves with orbifold structure [17], Theorém 3 is essenfidle results may be viewed as a first step
for orbifolds along the successful line of exact Hodge irdéfprmulas which have culminated in
the topological and equivariant vertices in ordinary Gremwditten theory.

Hurwitz-Hodge integrals can be viewed as pairings of tagiolal classes
e(A) € H* (M, Q)
against the descendents Given an action
a:Gx{l,... k} —={1,... k}

on a set witht elements, there is a second map to the moduli space of curees.

¢ — M,,(BG), D—C
be the universal domain curve and the unive¢sddundle respectively. A second universal curve

D* =D xg{l,....k} = M,,(BG)

is obtained by the mixing construction. We obtain

€ M, (BG) — Mo pa,
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whereg® andn® are the genus and the number of distinguished sefitafrise universal curv@®.
Two questions immediately arise:

(i) Do the classes?(\}") lie in the tautological ring oM ya 2 ?
(ii) Do the pairings ok () against the descendents.®f . .. admit simple evaluations?

The answer to (i) is known [11] to be false fgr= 1, but may be true foy = 0. Seel[8] for positive
results related to (i) for the standard action of the symimgtoupX;, in theg = 0 case.

0.7. Acknowledgments. We thank J. Bryan, R. Cavalieri, T. Graber, C. Faber, D. Ma#i Ok-
ounkov, Y. Ruan, and R. Vakil for related conversations.

P.J. was patrtially supported by RTG grant DMS-0602191 atlthieersity of Michigan. R.P. was
partially supported by DMS-0500187. H.-H. T. thanks thditosMittag-Leffler for hospitality and
support during a visit in Spring 2007. The paper was furtthextea lunch in Kyoto while the last
two authors were visiting RIMS in January 2008. Secfion 324 wdded after discussions at the
Banff workshop orRecent progress on the moduli of cursedlarch 2008.

1. STABLE RELATIVE MAPS

1.1. Definitions. Fora > 1, letP![a] be the projective line with a single stack point of ordeat
0. Let

() CC* Gu=ew
be the group ofi*-roots of unity. Locally at OP![a] is the quotient stack’/ ((,). Alternatively,
P![a] is thea'™-root stack ofP* along the divisof).

Let M, - (P![a], 11) be the stack of stable relative mapg®[a], oo) wherey = (y4,...,7,) isa
vector of nontrivial elements

1§72§a_17 ’}/Z‘GZQ,
andy is a partition ofd > 1 with parts;; and lengtlY. The moduli space parametrizes maps

[ f:(Cpr,...pn) — Pl[a] ] € Mg,v(Pl[a]vﬂ)
for which

(i) the domainC' is a nodal curve of genugwith stack structure ai; determined byy;,
(ii) relative conditions overso € P![a] are given by the partitiop.

The isotropy group op; € C'is the subgroup of, generated by;;. Leta; denote the order of;.
The domainC, called atwisted curvemay have additional stack structure at the nodes; see [2].

We recall the Riemann-Roch formula for twisted curfest C' be a twisted curve whose non-
singular stack points arg, ..., p, with cyclic isotropy groupdy, . . ., I,,. The groupl; is identified
with the a"-roots of unity via the action of,,C,

2mi

I = <Caz> CC (o =em.

Swe suppress the ordering issues here.
’See Theorem 7.2.1 df [1] for precisely our situation.
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Let £ be a locally free sheaf over the stack Then,/; acts on the restrictiod|,,,. Let

@ VséBes

0<s<a;—1

be the direct sum decomposition, whéfgs the irreducible representation &f, associated to the
character

¢°: L; = C, ¢°(C) = G-
Theageof E atp; is defined by
S
age, (£) = es— .
L O<S<Zai—1 di

The Riemann-Roch formula for twisted curves is given a®iod:
(7) X(C,E) = rk(E)(1 — g) + ded E) — Zagq,

The virtual dimension ofM,, ,(P![a], 1) is calculated by the Riemann-Roch formula (7). Let

[f:(C,p1,...,pn) — Pa]] € mg,fy(ﬁ”l[a],u).

Certainly, ded f*Tp1jq(—o0)) = d/a. By the quotient presentation @ [a], the character of
J*Topr[q @tp; is

viaq

Cai — C’aia - C;{Z
Therefore, agg (f*Tp1q)(—00)) = % and

vdimM, . (P'[a], u) = 39 — 3+ n+ £+ X(C, f*Tprq(—00))

d <7
:3g—3+n+€+1—g+——2:l
a ““a
:2g—2+n+€+c—l—zn:%
a “~a

__To simplify notation, letr denote the above virtual dimension. Sincenust be an integer,
M, . (P*[a], i) is empty unless the parity conditiah= """ , v, (moda) holds.

1.2. Hurwitz numbers. We now impose the non-negativity condition,

d—zn:%' > 0.
i=1

Let H,.(v, ) denote the weighted count of degréeepresentable maps from nonsingular, con-
nected, genug twisted curves with stack points of typeto P*[a] with profile 1 overoo and simple
ramification over- fixed points inP*[a] \ {0, co}.

Lemma 1. H, ,(v, i) is well-defined and equal té\ut(vy)| - H,(v+, 1)-
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Given a stack mafy : C' — P'[a]] € M, - (P'[a], 1) satisfying the simple ramification condition
over ther points, the associated coarse map
fc . C«c N ]P>1
is a usual Hurwitz covering counted (-, ). The representability condition implies the point
p; has ramification profile; over O for the coarse map. Conversely, we have the follonasglt.

Lemma 2. Let C¢ be a nonsingular curve and lgt® : C¢ — P! be a nonconstant map. Then,
there is a unique (up to isomorphism) twisted cuf@ep,, . .., p,,) and a representable morphism
f : C — P![a] whose induced map between coarse curves.is

Proof. Since the natural map'[a] — P! is an isomorphism ovef![a] \ [0/Z,], we may consider
the composite

C\ (£9)7H(0) 15 P {0} = P [a] \ {[0/2Z,]} € P'[a].
The Lemma follows by applying Lemma 7.2.6 bf [2]. O
To proceed, we need to identify the ramification profilefébver0. SinceP![q] is a root stack,
we may use classification results on maps to root stacks ptiajd]. According to Theorem 3.3.6

of [4], maps considered in our stack Hurwitz problem are jedtive correspondence with maps
fe¢: C° — P! from a coarse curvé satisfying

(8) (fo)[0] = Z ~vilpi] + aD,

wherep, ..., p, € C° are distinct points and C C° is a divisor consisting of‘zaﬁ additional
distinct points.

The proof of Lemmall is complete. The factdut(~)| occurs since the stack points@fare la-
belled while the corresponding ramification points on thewitz covers enumerated by, (7., 1)
are not.O
1.3. Branch maps. There exists a basic branch morphism for stable maps,

br : Mg(IP)l’ 1) — Syrr]2g—24rzi+£(IE,>1)7
constructed in[9]. By composing with the coarsening mapgoitain
br : M, (B'[a], 1) — Symes~2+4+¢ (1),
To proceed, we impose the boundedness condition,
Vi#j, ity <a
Lemma 3. If the parity, non-negativity, and boundedness conditemessatisfied,

Im(br) C (d —n— %) [0] 4 Synd (P*) C Syno— 24+,

Proof. Let f : C — P'[a] be a Hurwitz cover counted b¥, ,(~, ). The expression

E:d_n_w

a
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is the order of 0] in br([f]). The claim of the Lemma is simply that the minimum ordef®@fin
br(f) is achieved at such Hurwitz covefs

The proof requires checking all possible degeneratiornfsafer 0. If the stack points, ..., p,
do not bubble off the domain, the claim follows easily as ia tlharse case. We leave the details to
the reader.

A more interesting calculus is encountered if a subset akgpaintsp, ..., p; bubbles off the
domain together ovef)/Z,] € P'[a]. We do the analysis for a single bubble. We can assume the
bubble is of genus 0 since higher genus increases the bregaider. The multi-bubble calculation
is identical.

The genus 0 bubble is attached to the rest of the curwe stack points of type
Oyeieybm €2y, 1<9;<a
on the noncollapsed side. The parity condition

l m

(9) 2%—253':]56!

=1
must be satisfied with € Z.
The branch contribution over 0 of the bubbled map is at least

- E:'L:Hl Vi — Z;n:1 oy

a

n m d
E'=Y (v-1+> (6—1)+2m-2+
i=l+1 Jj=1
All the terms on the right are obtained from the ramificationsghe noncollapsed side except for
the2m from them nodes of the bubble and the2 from the bubble itself, se€![9]. Rewriting using
the parity condition[(9), we find

(a—1).

E=FE+1l+m-2—k.
By connectedness and bubble stability, we have
m>1, [+m > 3.
If £ <0, weconcludeE’ > E. If & > 0, thenk < [ — 2 by the boundedness condition and the
positivity of §;. Again, £’ > E. O
By Lemma_3, we may view the branch map with restricted image,
bry : M, (P'[a], u) — Syni (P').

The proof of Lemmal3 shows the maps C — P![q] satisfying[0] ¢ bry(f) have no contraction
over( and coarse profile exactly.. The usual nonsingularity and Bertini arguments [9] theplim
the following result.

Lemma 4. If the parity, non-negativity, and boundedness conditemessatisfied,

Hyal, 1) = / bR (H"),

(Mg, (Pa], )]0
whereH € H?(Sym (P'), Q) is the hyperplane class.
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2. LOCALIZATION

2.1. Fixed loci. The standard *-action onP*, defined by¢ - [z, 21] = [20, £21], lifts canonically
to C*-actions orP![a] and M, ., (P'[a], 1) . We will evaluate the integral

(10) / bro(H")
[ﬂgw(ﬂj)l M:H)]mr

by virtual localization for relative map$ [10, [13] follongn[9, [12]. We assume the parity, non-
negativity, and boundedness conditions.

The first step is to define a lift of thE*-action to the integrand. Certainly ti{&-action lifts
canonically to Syf(P!). A lift of H" can be defined by choosing tli#&-fixed pointr[0] €
Synf(P'). The tangent weights ab/Z,],co € P'[a] are L and —t respectively. The equivari-
ant Euler class of the normal bundlerfo] in SynT (P!) has weight-!¢".

The second step is to identify tig-fixed locusM, . (P'[a], )& < M, (P'[a], ). The com-
ponents of th&*-fixed locus lie over the + 1 points of Symi(P')®". By our lifting of H", we need
only consider

g — « _
My = My, (P'a], 1) N brg (7[0)).
Because of the strong restriction on the branching, the maps
[f : C — P'a]] € My
have a very simple structure:

() C=CoUll,_, Cy,
(i) f|c, is a constant map from a gengsurve to[0/Z,] € P*[al,
(iii) the coarse magf“|¢, : Cf — P! is aC*-fixed Galois cover of degree; for j > 0,

(iv) Cy meetsC; at a nodey;.

The stack structure at; € C} is easily determined using the relationship between staokviiz
covers ofP![a] and ordinary Hurwitz covers @' discussed in Sectidn 1.2. The stack structure at
q; € C;is oftypeu; € Z,. The stack structure gt € C, whereC; is attached is of thepposite
type —p; € Z,. The map

f‘CO : <C7p17 <Py 4, - ,CM) — [O/Za]
is an element o1, _,(BZ,).

The C*-fixed locus may be identified with a quotient of a fibered paidu
_(C* ~ -
= _.(BZ, irzey P X ..o X P, ,
My = (Mo (BEa) X qaugy Prx - x P2)

wherel BZ, is the rigidified inertia stack o8Z, andP; is the moduli stack of*-fixed Galois cov-
ers of degreg;. By the standard multiplicity obtained from gluing std€kbundles, the projection

(11) M, — (Mm_u(BZ(l) X Py X ... X Pg)

JAut()
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14 a ;
has degre¢];_, ;- whereb; is the order ofu; € Z.

Fortunately, the residue integral ovﬁg* in the virtual localization formula fof(10) is pulled-
back via[(11). Instead of integrating OMS , we will integrate over

./f\;l/é():* = Mgﬁ_u(BZ(J X Pl X ... X Pg
and multiply by

l
a
|Aut 1;[ b’

2.2. Virtual normal bundle. The virtual localization formula fof (10) with our choice efuivari-
ant lifts takes the following form:

rlitr
(12) / bry(H") / _nr
Wy (P} |Aut IHb ~ier e(Norm™r)’
The equivariant Euler class of the virtual normal bundle is
1 [’I1 C, *Tla — 1
(13) __ (G [ T (m00)) |

e(Norm™)  e(H®(C, f*Tp1(a)(—00))) T,_; e(NN))

see[[10]. The last product is over the nodeg'oaind.; is the equivariant line bundle associated to
the smoothing of;. The terms in[(113) are computed via the normalization secgiethe domain
C'. The various contributions over the componei§sCi, . . . , C, are computed separately.

First consider the collapsed componépt The spacei’(Cy, f[¢, Tp1(,(—0c0)) is identified with
the subspace dfp:(,(—00)|/z,] COnsisting of vectors invariant under the action of the inaf
the monodromy representationf™(Cy) — Z,. Therefore,H° vanishes unless the monodromy
representation is trivial, in which cag€’ is 1-dimensional with weight.

The trivial monodromy representatiati®(Cy) — Z, is possible only if
v=0 and Vj, u; =0 moda .

Even then, the locus with trivial monodromy is just a compdihef M, .. o) (B8Z,). The trivial
monodromy representation locus will play a slightly spbei@ée throughout the calculation. But, in
the final formula, no different treatment is required.

The spacé?' (Cy, |5, Tri(q(—00)) yields the vector bundle
B = (EU)\/

over M, ., ,.(BZ,) whose rank may be calculated by the orbifold Riemann-Roaimtita. Over
the component of the fixed locus where the monodromy reptatsenri™*(Cy) — Z, is trivial,
the rank ofB is g. Otherwise, the rank is

(14) rB_g—1+Z%+ 3 (1—<%>>

;70 mod a

8f g > 0, there will typically be other components as well.
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The H!' — H? contribution from the collapsed component to the locaiiraformula is

(15) 3 (3) a(B) =3 (3) (1A

i=0 i=0
For the component where the monodromy representatiorvialtran additional factor of must
be inserted in(15).

Next consider théZ! — H? contribution from theC*-fixed Galois covers. Since
ded f|¢, Tprp)(—00)) = =+,

a
we have

ki gy _ _ o7k (1 . Hj
HY(Cs f16, T (—o<)) = H* (P, 0n (|22])).
The H° weights are
Lol )L
pitomgLad g
where the weight 0 is omittétThe groupH® vanishes. Théf' — H° contribution is
17
il e
ll
Finally, consider thé7' — H° contribution from the nodal point;. If 1; # 0 (moda), theng; is
a stack point and

H%(gj, [ Tpr1a)(—00)]4,) = 0
as there is no invariant section. /f = 0 (moda) then H°(q;, f*Tp1(,(—0)],,) is 1-dimensional
and contributes a factdr. Certainly,H' vanishes here for dimension reasons.

The contribution from smoothing the nodgis the tensor product of the tangent lines of the two

branches incident tg;,
1 - t
e(N;) = — (—w + —) :
Ton T

After putting the component calculations togethefin (18),0btain the following expression for
for 1/e(Norm”"):

<Z(t) AU) - Lawbi(—zzi#) ()

Regrouping of terms yields

u
0, HJ>

TR A
TB—1(__ Zl_ ‘LJ
(Zt o ) I

]:

Hf 1 J:“J :
1) H ‘
a j=1 =0

For the component with trivial monodromy representatiofaaor of ¢ must be inserted in the
formulas for1 /e(Norm”").

*The 0 weight is from reparameterization of the dom@&jrand is not in the virtual normal bundle.
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2.3. Proof of Theorem[1. Putting the calculations of Sectibn 2.2 together and pgdsithe non-
equivariant limit, we obtain the following evaluation

) ¢ L%J

T r! a Hj Z(z)i <_a>2)\zU
/ ) = Gt sy L ARTE)
My (B al )i il e Eim o oy 3 L SR uwza) Ty (1= nyy)

j=1 La
On the right side, we have included the fundamental clager&c

e
i1 M
of the moduli space#;. For the component with trivial monodromy representatimfactor ofa
must be inserted in the formula.
We can simplify the integral evaluation by using the caltiata(14) ofrg,

¢
TB+Z§O7<Hj> 4
i=1

a

S e Sy T SR (RYCH)EY D SRRY B

1570 mod a ;=0 moda

n 4
Vi K
I LD WL

— a4 a

i=1 7j=1
The above calculation is not valid for the component witiiatimonodromy sincey = g notg—1.
The discrepancy is exactly fixed by the extra factwequired for the trivial monodromy case. We
conclude

(17) bro(H") =
[Mgﬁ/(ﬂj)l[a]v#)}mr
, e ] o
L] | | 2N
[AUt(p)] o LR ez TTGo (1= i)

holds uniformly. Theoreml1 is then obtained from Leminas 1/4and

In degenerate cases, unstable integrals may appear oglihside of the formula in Theorem 1.
The unstable integrals come in two forms and are defined biptadization contributions:

/ Zigo(‘a)i)‘? 11
M0,(0)(5211) (1_l'¢1) a x?’

/ Zizo(_a)i)‘? 1 1
Mo.omom (820) (L= 201) (1 —ythe) @ z+y
With the above definitions, Theordm 1 holds in all cases.

The disconnected formulal(5) follows easily from the corteécase by the usual combinatorics
of distributing ramification points to the components of tiiz covers.
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2.4. Proof of Theorem[2. Supposey satisfies the parity and strong negativity condition with re
spect tou. Since

d—S" -,
§—d—n_ dT 2= g
a

the virtual dimension of M, .,(P'[a], u) is greater tharzg — 2 + d + ¢. As a consequence, we
immediately obtain the vanishing

(18) / br* (H™) = 0
[ﬂgw(ﬂj)l [a],p)]vir

sinceH" = 0 € H*(Syn?td— 2T+ (Pl Q).
We may nevertheless calculatel(18) by localization withlifhe
H =(29—2+d+0)[0]-t°

which doesotvanish equivariantly. The analysis is identical to the gilttons of Sections 2/[1-2.3.
We find the integral (18) is proportional (with nonzero fagto

/ Zfio(—a)’*?
Myrou82a) [y (1= py5)

and therefore conclude the vanishing.

Assume now strong negativity does not hold, bdatisfies the parity, negativity, and bounded-
ness condition. By the proof of Lemrhh 3, using the boundesloasdition, the maps

f:C — P'd]

which satisfy[0] ¢ bry(f) have no contraction over 0 and coarse profile determinedl By the
negativity condition, no such maps exists. Herjégis always in bg(f). Therefore,

/ by (H') = 0
[ﬂg,’y(]}n [a],p)]vim

and we conclude as aboie.

3. EXAMPLES

3.1. Z, example. The Hodge bundI&Y has a very simple interpretation in tde case. Let
C — M,,(BZy), D—C
be the universal domain curve and the universabundle. Let
€: My, (BZy) — My, €: My (BZy) — My_11n
be the maps to moduli obtained frafrandD respectively. The exact sequence
0—€(Ey) = € (Eyoryn) — EY — 0.

exhibitsEV as theK-theoretic difference of the pulled-back Hodge bundlesy ¥ 0, then the
situatioftd is even simpler,

(19) EV Z & (Ey 142).

OThe mape is not well-defined here for stability reasons.
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Consider the case of Theoréin 1 where 0, v = (1,1), andu = (1,1). The statement is

2 1-2)\¥
Ho((1,1),(1,1)) = =2 ——1
O(( ) )7( ) )) 2191 /ﬂoy(l’lyl’l)(BZQ) (1 _wl)(l —¢2)

The double Hurwitz number on the Ieft%s Expansion of the right side yields:

/ 1—2XY 1 / 1 5 / \U
Mo, (1,1,1,1) (BZz) (1 - wl)(l - Q/)Z) 2 Mo, (1 - ¢1)(1 - Q/)Z) Mo, (1,1,1,1) (BZz2) '

= 1-2 / AV
Mo, (1,1,1,1)(BZ2)

To evaluate the last integral, we note the map
€: Mo,(1,1,1,1)(822) - ﬂlm

where the first branch point is selected for the marking oretlgtic curve, is of degree 6. More-
over,\{ is the pull-back of\; underé by (I9). Hence,

1 1
Mo, 1,1,1,1)(BZ2) 24 2

3.2. Vanishing example. The simplest example of the vanishing of Theorem 2 occur&jfot et
g = 01

andp = (1). By the parity conditionp must be odd. Boundedness holds. For the negativity
condition, we require. > 2. By Theorem 2 (i),

/ Eizo(_2)i)\z{]
mo,’yfu (BZ2) 1-— ¢1

We now use the identification of” with the Chern classes of the Hodge bunﬁl(éin%) whose
fiber over

vanishes for all odad, > 3.

f:[D/Zs] — BZy
is simply given by the space of differential forms on the gseﬁ?l curve D. The Chern roots of
e* (Eanl) can be identified by the vanishing sequence at a Weierstoassgd D. The Weierstrass
point can be chosen to lie above the marking corresponditigetsingle part of:. The Chern roots
of é*(E%) are thenL,3L, ..., (n — 2)L whereL is the Chern class of the cotangent line of the

Weierstrass point. The clagson M, ,_,(BZ,) is 1¢,. Expanding the Chern roots, we find

[ TN _ / [12 (1= (2i = 1)
Mo,y—p (BZ2) 1 =1 Mo,y—p(BZ2) (1 - ¢1)
- | (1 (2 — 1))

Mo,y pu(BZ2) ;=9
= 0,
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where the last integral vanishes for dimension reasons.

3.3. Z., example. An interesting feature of Theorem 1 is the possibility ofdsting the behavior
for largea. Lety = (74, ...,,) determine a partition of,

1=1
Let u = (d) consist of a single part. Far> d, the rank of the Hodge bundle

E” — Mo,—u(BZd)

is 0 by (14). Since the parity, non-negativity, and boun@sdrconditions hold far > d, we may
apply Theorem 1 to conclude

~ (n—=1)! 1
Ho(, () = |Aut()| a//vtoﬁu(zsza) 1 — diy
_ (n—1)! -2
|Aut(7)] ’

which is a well-known formula for genus 0 double Hurwitz nwerd

3.4. 1-point series. If ;1 = (d) consists of a single part, the entire generating series dable
Hurwitz numbers has been compudh [14]:

o g . my (V) =01
(20) = (12 () = ey 11 (S'r;f(f/tz/z)) |

920

wherer = r,(v, (d)) andmy(v) is the number of times appears as a part of Single part double
Hurwitz numbers are considerably simpler because suchrgave automatically connected and the
only characters with nonzero evaluation on #heycle are exterior powers of the standaé#id- 1)-
dimensional representation.

Lety = (71, ...,7,) be avector of nontrivial elements @f, satisfying the boundedness condi-
tion. We will consider degrees for which the parity and non-negativity conditions are Sfai.

Then,
d— Z Vi = ab
i=1

for an integeb > 0. Consider the generating series

o0

g
Bt =3 3 i /_ JrerHOH U

9=0 l=—o0 Mg y—(a)(BZa)

wherevy is the class corresponding to the point with monodreray

we write Theorem 3.1 of [14] in terms ein instead ofsinh and divide by|Aut(v)| since we do not mark
ramifications in our definition of Hurwitz numbers.
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The double Hurwitz number formula of TheorEﬂn 1lis

’I“' Vi
HQ(V-H(d)) = mal 9= Z’ 1 “+

CL g l/ ¢r b— 1+l)\U
Mg y—(a)(BZa)

= (=1 ad’ i <__d>l/ U
|Aut(7)| (b—l— {Z%J)! e \ @ My o~ (a)(BZa) .

or, equivalently,

ar—l {7
S (1 H, s (d)) = ! (51) F(t, ~dfa)

90 |Aut(v)| <b+ F%D- “
wherer = r,(v4, (d)). After combining with [(20), we obtain

(21) F.(t,—d/a) = 1@ (E) PTWJ H <M)mk (v4+) =0k 1 |

a b d kit /2

forb > 0.

Theorem 4. F.(t, z) equals

AP DY 277 : _|Z%| (sin(a e sin (1) =0k 1
R IC I (-

Proof. Using the standard polynomial expansion

(Z(ZZZZ;%?J)! (X [E) (o n e,

we see theé? coefficients of both sides of Theorérh 4 are Laurent polyntsnimez. Equation [(211)
shows Theoreml4 holds for all evaluations of the farm —d/a where

d—zn:%- =ab
i=1

andb is a non-negative integer. Since there are infinitely margh ®valuations, the coefficient
Laurent polynomials in must be equal for ali?9. O

1
a

k>1

If we specialize Theorem 4 to the case where (), we obtain

1 J . 1/ at/2 \* t/2
22 - t2g l/ 29 2+l)\U _ =
(22) a * g; ; : Myt (BZa) vi 9=t g \sin(at/2) ) sin(t/2)
If v =0 anda = 1 we recover

z+1
23) EOB I N o)

g>0 =0

first calculated in[[7].
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In (22), the term\[’ vanishes for dimensional reasons except over the trivialodmmy com-
ponent, where it agrees with the usigl Indeed, setting = 0 in (22) yields

1 . 1 t/2
- + t29/ 29 2)\U =
a ; M, .1 (BZa) ! 9 asin(t/2)

which is the expected contribution from_(23) with a factorn @& coming from the automorphisms.

4. ABELIAN GROUPS

4.1. Pull-back. For an abelian grou@’ and irreducible representatidt recall the sequenckl(6),

of R\ ~
0—K—G—Im(¢p")=2Z,— 0.
By construction? = ¢*(U). The homomorphism® induces a canonical map
p: Mg\ (BG) — M, 4r,)(BZy,)
by sending a principal-bundle to its quotient by

Lemma 5. ER = p*(EY).

Proof. RecallE — M, ,(BH) is the bundle whose fiber over
[f]: [D/H] — BH € M, ,(BH)
is H(D, wp). The latter can be understood as the space of 1-farorsthe normalizatioD of D

with possible simple poles with opposite residues at thegmeimages of each node
Let p be the map between the universal princigalandZ,-curves that induces. We obtain

dp: p"(E) - E
by pulling-back differential forms. An easy verificationasts p is well-defined even at points in

the moduli spacé\, ., (BG) for which theG-curve is nodal.

The mapdp is injective on each fiber since the pull-back of a nonzer@dghtial form by a finite
surjective map is nonzero. Certainly carries the subbundje (EV) to the subbundI&”. These
bundles have the same dimension by the Riemann-Roch forfiorutavisted curves. Hencelp is
an isomorphism. O

_ The mapp does not preserve the isotropy groups at the marked pointsetr, since the classes
1, are pulled-back frora\1, ,,,

pr() = .
By Lemmal’, we concluded the integrand in Theofém 3 is exab#yintegrand of Theorefd 1
pulled-back vigp.
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4.2. Degree. The degree op is determined by the following result.

Lemma 6. We have
0 v £ 0
deg(p) = { K| %Z zl i 0 -

Proof. Consider a nonsingular curV€, py, ..., p,] € M, . Let

HF H[Aj,Bj]>,

7
j=1

F = 7T1<C\{p17 Ce. 7pn}> = <FZ’,Aj,Bj

wherel’; is a loop aroung; and the loops!;, B; are the standard generatorsefC').

The elements oM, . (BG) lying above[C, pi, . .. p,] are in bijective correspondence with the
homomorphisni$ ¢ : T' — G with

(24) e(l:) = v
SinceG is abeliany([A;, B;]) = 0. Hence, the parity condition
(25) > =0

i=1

must be satisfied faM,, ., (BG) to be nonempty.

If the parity condition holds, then the imagesA4f andB; are completely unconstrained. There
are|G|?? homomorphism® satisfying [24). Stated in terms of homomorphisms, the pegrre-
sponds to composing : I' — G with ¢ : G — Z,. Since there argk’| elements of5 in the
preimage of any element &f,, there aré K |*¢ elements in a generic fiber pf SinceG is abelian, a
cover inM, ., (BG) has automorphism grou@. A cover in the image of only has automorphism
groupZ,. Thus, the degree ofis | K29~ O

Although M, 4r () (BZ,) may have several components, Lenitha 6 implies the degreesdhe
same over each component. In the nonabelian case, tha@itimtmuch more complicated. For
example, let) be the conjugacy class of3acycle in3;, let

$: 23— Lo
be the sign representation, and let
P Mlm(BZg) — MLO(BZQ}

be the map induced by. The spacWLo(BZz) consists of two components: one with trivial
monodromy, and one with nontrivial monodromy. There areees\n M, ,(BY;) lying above
the nontrivial monodromy component. df # ¢, € Y3 are two transpositions, then, ¢,] is a
3-cycle. On the other hand, there are no elementslef,(33;) lying above the trivial monodromy
component. All the monodromy in such a cover would lie in thel@n groupZs; = ker(s),
and there are no such covers with nontrivial monodromy atimibne marked point by _(25). As
the formula in Theorerfil1 considers all components\éf ;. (BZ,) at once, a more nuanced
approach would be required to understand Hurwitz-Hodgegnatis for nonabelian groups, even
for 1-dimensional representations.

12 Composition inl" is written multiplicatively while composition id- is additive.
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In the disconnected cage: ﬂ;ﬁ(BG) — ﬂ;,¢R(7)(BZa), Lemmad.6 has a few minor compli-
cations:

(i) The monodromy conditioi |, v; = 0 € G cannot be checked globally, but must be verified
separately on each domain component.

(i) The number of components matters. For disconnectedeswvithh components, each of
which satisfies the monodromy requirements, the degreesgfi’|29-2+",

Whenp is nonzero, the degré&’|?9—2*" is independent of/ and the monodromy conditioris (25).
The only role these conditions play is to determine when dgek is nonzero.

4.3. Wreath Hurwitz numbers. The wreath produck’, is defined by
Ky={(k,0) | k= (k... ka) € K" 0 € 54},

(k,o)(K',o") = (k+ o(k'),c0").
Conjugacy classes df; are determined by their cycle types [19]. Sinkeis abelian, for each
m-cycle (iyig - - -i,,) Of o, the element; + k;, , + --- + k;, is well-defined. The resulting
Conj(K)-wieghted partition ofd is the called thecycle typeof (k, o). Two elements of<,; are
conjugate exactly when they have the same cycle type.

We index the conjugacy classesief by Conj K')-weighted partitions ofl. Let
V= {(V17 Ll)v SR (VZ(V)a L@(,u))}a

= {(:ulv "{1)7 SR (:uf(u)v /{Z(u))}
be two such partitions. Let be the partition with parts; with a partial labelling given by;. Then
Aut(v*) = Aut(?).
The Hurwitz number,(v*, ;1*) counts cover with the additional labelling data,

e At At
Hol ) = st o)

Lemma 7. H, x(v, 1) is the count of the covers : C' — P! enumerated by7,(v*, 1*) with
multiplicity m,. The multiplicitym, is the automorphism-weighted count of princigéibundles
onC \ 71({0, oo}) with monodromy; atp; € 7—'(0) andx; atgq; € 7*(c0).

Proof. Let’ : D — P! be a cover counted b¥, (7, ). By definition,r’ is ad| K|-fold cover of
P* with monodromie®, 7 and7 over0, co and the points of/, respectively.

Each such cover has an associated cave€® — P! counted byH,(v*, u*). Algebraically, the
cover is obtained by the forgetful map frokl; — X,;. Geometrically, the cover is obtained by
taking the quotient o) by the diagonal subgrouf” C K,. There is a natural map: D — C.
Away from the preimages af, oo andU,., the mapf is a principal K -bundle.

Consider the poinp; € 7=!(0) corresponding to a cycle which is labelled with; € K. A
small loop winding once aroung on C' has an image that winds times around). But we know
that the monodromy for’ : D — P! around0 is given byz. By the definition of the cycle type,
the monodromy off aroundp; is ¢;. An identical argument shows the monodromyjabver oo is
r; and the monodromy around all preimages of a poirif,ims zero.
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The above process is reversible. We start withfeld coverr’ : C — P* counted byH, (v*, 1*)
and a principalK-bundlef : D — C with monodromy:; aroundp; andx; aroundg;. Then, the
compositionr = 7’ o f is a cover counted b¥/, x (7, 7). O

In other words, ify’ : Mg,u.(BK) — M, 2444 1S the natural map, then
Hy x (v, ) = dedp') Hy(v", ).

4.4. Proof of Theorem[3. By Lemmd®, we can compute the integral in Theorém 3 by comguti
the analogous Hurwitz-Hodge integral (appearing in Thexd@goverM, _,,(BZ,) and multiplying
by the degree of

p: My _u(BG) — M, (BZL,).
On the other hand, by Lemraa 7, we can calculde, (0. (k), ) by computingH (0., 1), multi-
plying by the degree of
P/ : Mg7(—k)d/“UH(BK) - Mg,d/a+£(u)>
and correcting for the difference in the sizes of the autghism groups Aui:) and

Aut(z) = Aut(u™).
Thus, to deduce Theorem 3 from Theoreim 1, we need only chetkihh degrees gf and o/

agree. By LemmBl6, the degrees agree when nonzero. Thedpss$ $6 check the parity condition
(259) is the same fop andp’. For p, the parity condition is

0=> (~m); = (r;—pa) = Z”fj — dz.

J=1 J=1

For p/, the parity condition is

d l
0=—"k 3

Sinceax = k, the conditions are equivaler.

As in the faithful case, unstable integrals may appear onighe side of the formula in Theorem
[3. These unstable terms are defined in a completely analaganser, and extend Theoréin 3 to

all contributions:
/ ZiEO(_CL)i)\ZR 11
Mo, (0)(BG) (1 - [L’@Dl) ‘G| x?’

/ Zizo(_a)i)\ﬁ 1 1
Moy B6) (1= 21) (1 —yto) |G| x4y

Alternatively, using a theory of stable maps relative toacktdivisof} at oo, TheoreniB could
be proven in a manner closely parallel to the proof of Thedtem

3we avoid the foundational discussion of this theory.
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