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ABELIAN HURWITZ-HODGE INTEGRALS

P. JOHNSON, R. PANDHARIPANDE, AND H.-H. TSENG

ABSTRACT. Hodge classes on the moduli space of admissible covers withmonodromy groupG are
associated to irreducible representations ofG. We evaluate all linear Hodge integrals over moduli
spaces of admissible covers with abelian monodromy in termsof multiplication in an associated
wreath group algebra. In caseG is cyclic and the representation is faithful, the evaluation is in terms
of double Hurwitz numbers. In caseG is trivial, the formula specializes to the well-known result
of Ekedahl-Lando-Shapiro-Vainshtein for linear Hodge integrals over the moduli space of curves in
terms of single Hurwitz numbers.
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0. INTRODUCTION

0.1. Moduli of covers. Let Mg,n be the moduli space of nonsingular, connected, genusg curves
overC with n distinct points. LetG be a finite group. Given an element[C, p1, . . . , pn] ∈ Mg,n,
we will consider principalG-bundles,

(1)

G −−−→ Pyπ

C \ {p1, . . . , pn} ,

over the punctured curve. Denote theG-action on the fibers ofπ by

τ : G× P → P.

The monodromy defined by a positively oriented loop around the ith puncture determines a conju-
gacy classγi ∈ Conj(G). Let γ = (γ1, . . . , γn) be then-tuple of monodromies. The moduli space
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2 P. JOHNSON, R. PANDHARIPANDE, AND H.-H. TSENG

of coversAg,γ(G) parameterizesG-bundles (1) with the prescribed monodromy conditions. There
is a canonical morphism

ǫ : Ag,γ(G) → Mg,n

obtained from the base of theG-bundle. BothAg,γ(G) andMg,n are nonsingular Deligne-Mumford
stacks.

A compactificationAg,γ(G) ⊂ Ag,γ(G) by admissible coverswas introduced by Harris and
Mumford in [15]. An admissible cover

[π, τ ] ∈ Ag,γ(G)

is a degree|G| finite map of complete curves

π : D → (C, p1, . . . , pn)

together with aG-action
τ : G×D → D

on the fibers ofπ satisfying the following properties:

(i) D is a possibly disconnected nodal curve,
(ii) [C, p1, . . . , pn] ∈ Mg,n is a stable curve,

(iii) π maps the nonsingular points to nonsingular points and nodesto nodes,

π(Dns) ⊂ Cns, π(Dsing) ⊂ Csing,

(iv) [π, τ ] restricts to a principalG-bundle over the punctured nonsingular locus

πopen : Dopen → Cns \ {p1, . . . , pn}

with monodromyγ,
(v) distinct branches of a nodeη ∈ Dsing map to distinct branches ofπ(η) ∈ Csing with equal

ramification orders overπ(η),
(vi) the monodromies of theG-bundleπopen determined by the two branches ofC at η ∈ Csing

lie in opposite conjugacy classes.

Harris and Mumford originally considered only symmetric groupΣd monodromy, but the natural
setting for the construction is for all finiteG.

An admissible cover may be alternatively viewed as a principalG-bundle over the stack quotient1

[D/G] inducing a stable map to the classifying space

(2) f : [D/G] → BG.

Then,Ag,γ(G) is simply a moduli space of stable maps [2, 5]2,

Ag,γ(G)
∼
= Mg,γ(BG).

The deformation theory of stable maps endowsAg,γ(G) with a canonical nonsingular Deligne-
Mumford stack structure. We take the stable maps perspective here.

There are two flavors of such stable map theories. If the baseC is required to be connected as
above, we writeM

◦

g,γ(BG). If disconnected basesC are allowed, we writeM
•

g,γ(BG). In the

1[D/G] differs fromC only by possible stack structure at the markingspi and the nodes. In both cases, the order of
the isotropy group is the order of the local monodromy inG.

2We do not trivialize the marked gerbes on the domain in the definition ofMg,γ(BG).
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disconnected case, the genusg may be negative. If the superscript is omitted, the connected case is
assumed.

Our results are restricted to abelian groupsG. Here, Conj(G) is the set of elements ofG. Of
course, the cyclic groupsZa will play the most important role. In caseG is trivial, there is no extra
monodromy data, and the moduli space of mapsMg,(0,...,0)(BZ1) specializes toMg,n.

0.2. Hodge integrals. Let R be an irreducibleC-representation ofG. If G is abelian,R is a
character

φR : G→ C∗.

By associating to each map[f ] ∈ Mg,γ(G) presented as (2) above theR-summand of theG-
representationH0(D,ωD), we obtain a vector bundle

ER → Mg,γ(BG) .

The rank ofER is locally constant and determined by the orbifold Riemann-Roch formula discussed
in Section 1. TheHodge classesonMg,γ(BG) are Chern classes ofER,

λR
i = ci(E

R) ∈ H2i(Mg,γ(BG),Q).

Theith cotangent line bundleLi on the moduli space of curves has fiber

Li|(C,p1,...,pn) = T ∗
pi

(C).

Descendent classes onMg,n are defined by

ψi = c1(Li) ∈ H2(Mg,n,Q).

Descendent classes̄ψi on the space of stable maps are defined by pull-back via the morphism

ǫ : Mg,γ(BG) → Mg,n

to the moduli space of curves,

ψ̄i = ǫ∗(ψi) ∈ H2(Mg,γ(BG),Q).

TheHodge integralsoverMg,γ(BG) are the top intersection products of the classes{λR
i }R∈Irr(G)

and{ψ̄j}1≤j≤n. Linear Hodge integrals are of the form
∫

Mg,γ(BG)

λR
i ·

n∏

j=1

ψ̄
mj

j .

The termHurwitz-Hodge integralwas used in [3] to emphasize the role of the covering spaces.

0.3. Hurwitz numbers. Let g be a genus and letν andµ be two (unordered) partitions ofd ≥ 1.
Let ℓ(ν) andℓ(µ) denote the lengths of the respective partitions. A Hurwitz cover ofP1 of genusg
with ramificationsν andµ over0,∞ ∈ P1 is a morphism

π : C → P1

satisfying the following properties:

(i) C is a nonsingular, connected, genusg curve,
(ii) the divisorsπ−1(0), π−1(∞) ⊂ C have profiles equal to the partitionsν andµ respectively,

(iii) the mapπ is simply ramified overC∗ = P1 \ {0,∞}.
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By condition (ii), the degree ofπ must bed. Two covers

π : C → P1, π′ : C ′ → P1

are isomorphic if there exists an isomorphism of curvesφ : C → C ′ satisfyingπ′ ◦ φ = π. Each
coverπ has an naturally associated automorphism group Aut(π).

By the Riemann-Hurwitz formula, the number of simple ramification points ofπ overC∗ is

rg(ν, µ) = 2g − 2 + ℓ(ν) + ℓ(µ).

Let Ur ⊂ C∗ be a fixed set ofrg(ν, µ) distinct points. The set ofrg(ν, µ)th roots of unity is the
standard choice. Thedouble Hurwitz numberHg(ν, µ) is a weighted count of the distinct Hurwitz
coversπ of genusg with ramificationsν andµ over0,∞ ∈ P1 and simple ramification overUr.
Each such cover is weighted by1/|Aut(π)|. The countHg(ν, µ) does not depend upon the location
of the points ofUr.

There are two flavors of Hurwitz numbers. The connected case defined above will be denoted
H◦

g (ν, µ). If C is allowed to be disconnected, the Hurwitz count is denotedH•
g (ν, µ). Again, the

absence of a superscript indicates the connected theory.

Disconnected Hurwitz numbers are easily expressed as products in the centerZΣd of the group
algebra ofΣd,

(3) H•
g (ν, µ) =

1

d!

(
CνT

rg(ν,µ)Cµ

)
[Id]
.

Here,Cν andCµ are the sums in the group algebra of all elements ofΣd with cycle typesν and
µ respectively, andT is the sum of all transpositions. The subscript denotes the coefficient of the
identity [Id].

Multiplication inZΣd is diagonalized by the representation basis. Hurwitz numbers can be writ-
ten as sums over characters ofΣd and conveniently expressed as matrix elements in the infinite
wedge representation. The latter formalism naturally connects Hurwitz numbers to integrable sys-
tems [20, 21, 24].

0.4. Formula for Za. The formula for linear Hodge integrals is simplest in case the monodromy
group isZa and the representationU is given by

φU : Za → C∗, φU(1) = e
2πi
a .

Let γ = (γ1, . . . , γn) be a vector3 of nontrivial elements ofZa,

γi ∈ {1, . . . , a− 1}.

Let µ be a partition ofd ≥ 1 with partsµj and lengthℓ,

ℓ∑

j=1

µj = d.

Let γ − µ denote the vector of elements ofZa defined by

γ − µ = (γ1, . . . , γn,−µ1, . . . ,−µℓ).

3 The lengthn may be taken to be 0 in which caseγ = ∅.



ABELIAN HURWITZ-HODGE INTEGRALS 5

While the parts ofµ are unordered, an ordering is chosen forγ − µ. The vectorγ − µ may contain
trivial parts. We will consider Hodge integrals over the moduli spaceMg,γ−µ(BZa).

For nonemptiness, the parity condition

(4) d−
n∑

i=1

γi = 0 mod a

is required. non-negativity,

d−
n∑

i=1

γi ≥ 0,

and boundedness,
∀i 6= j, γi + γj ≤ a

will also be imposed. Ifγ = ∅, non-negativity and boundedness are satisfied.

An automorphism of a partition is an element of the permutation group preserving equal parts.
Let |Aut(γ)| and|Aut(µ)| denote the orders of the automorphism groups.4 Let γ+ be the partition
of d determined by adjoiningd−

Pn
i=1 γi

a
parts of sizea,

γ+ = (γ1, . . . , γn, a, . . . , a).

A calculation shows

rg(γ+, µ) = 2g − 2 + n + ℓ+
d

a
−

n∑

i=1

γi

a
.

Let the monodromy groupZa and representationφU be specified as above. Our main result for
linearZa-Hodge integrals is the following formula.

Theorem 1. Let γ = (γ1, . . . , γn) be nontrivial monodromies inZa satisfying the parity, non-
negativity, and boundedness conditions with respect to thepartitionµ. Then,

Hg(γ+, µ) =

rg(γ+, µ)!

|Aut(γ)| |Aut(µ)|
a1−g−

Pn
i=1

γi
a

+
Pℓ

j=1〈
µj
a 〉

ℓ∏

j=1

µ
⌊

µj
a ⌋

j⌊µj

a

⌋
!

∫

Mg,γ−µ(BZa)

∑∞
i=0(−a)

iλU
i∏ℓ

j=1(1 − µjψ̄j)
.

The integer and fractional parts of a rational number are denoted in the above formula by

q = ⌊q⌋ + 〈q〉 , q ∈ Q.

The cotangent lines in the denominator on the far right are associated to the stack points of the
stable map domain corresponding to the parts ofµ.

Theorem 1 is proven by virtual localization on the moduli space of stable maps to the stackP1[a]
with Za-structure at0 following the arguments of [9, 12]. The space of stable maps to P1[a] is
discussed in Section 1, and the proof is given in Section 2. The formula is easily seen to determine
all linearZa-Hodge integrals with respect toU in terms of double Hurwitz numbers. In fact, the set
of evaluations withγ = ∅ is sufficient. Conversely, every double Hurwitz number is realized fora
sufficiently large.

4Here,γ is considered as a partition by forgetting the ordering of the elements.
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For the disconnected formula, we assumeγ = ∅ and the parity conditiond = 0 (moda).5 Then,
Theorem 1 holds in exactly the same form,

(5) H•
g (∅+, µ) =

rg(∅+, µ)!

|Aut(µ)|
a1−g+

Pℓ
j=1〈

µj
a 〉

ℓ∏

j=1

µ
⌊

µj
a ⌋

j⌊µj

a

⌋
!

∫

M
•

g,−µ(BZa)

∑∞

i=0(−a)
iλU

i∏ℓ
j=1(1 − µjψ̄j)

.

The ELSV formula [6] for linear Hodge integrals on the modulispace of curves arises from the
a = 1 specialization of Theorem 1,

Hg(µ) =
(2g − 2 + d+ ℓ)!

|Aut(µ)|

ℓ∏

j=1

µ
µj

j

µj!

∫

Mg,ℓ

∑g
i=0(−1)iλi∏ℓ

j=1(1 − µjψj)
.

Fora = 1, we must haveγ = ∅.

The conditionsγ allow for greater freedom in thea > 1 case. For example, the proof of Theorem
1 yields a remarkable vanishing property. The monodromy conditionsγ satisfy negativity if

d−
n∑

i=1

γi < 0

and strong negativity if

d− n−
d−

∑n
i=1 γi

a
< 0.

Strong negativity is easily seen to imply negativity.

Theorem 2. Let γ = (γ1, . . . , γn) be nontrivial monodromies inZa satisfying the parity condition
with respect to the partitionµ. In addition, letγ satisfy at least one of the following two conditions:

(i) negativity and boundedness, or

(ii) strong negativity.

Then, a vanishing results for Hurwitz-Hodge integrals holds:
∫

Mg,γ−µ(BZa)

∑∞
i=0(−a)

iλU
i∏ℓ

j=1(1 − µjψ̄j)
= 0.

A few examples of Theorems 1 and 2 where alternative approaches to the integrals are available
are presented in Section 3.

0.5. Abelian G. Since any faithful representationR of Za differs fromU by an automorphism of
Za, Theorem 1 determines linear Hodge integrals with respect to R. Representations ofZa with
kernels require an additional analysis.

LetG be an abelian group with group law written additively. Consider an irreducible representa-
tionR,

φR : G→ C∗,

5If γ 6= ∅, the non-negativity condition may satisfied globally but beviolated on connected components.
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with associated exact sequence

(6) 0 → K → G
φR

→ Im(φR)
∼
= Za → 0.

The homomorphismφR induces a canonical morphism

ρ : Mg,γ(BG) → Mg,φR(γ)(BZa).

The morphismρ satisfies
ρ∗(λU

i ) = λR
i

and has the same degree over each component ofMg,φR(γ)(BZa). Therefore, linear Hodge integrals
with respect toR can be calculated by multiplying the formula of Theorem 1 by the degree ofρ.

In Section 4, the solution for arbitraryG andR is cast in a more appealing way. When

φR(γ) = −µ ∈ Za,

Hodge integrals of the form ∫

Mg,γ(BG)

∑∞

i=0(−a)
iλR

i∏ℓ
j=1(1 − µjψ̄j)

are expressed in terms of Hurwitz numbers forKd, the wreath product ofK with the symmetric
groupΣd. Since the infinite wedge formalism forΣd extends to a Fock space formalism for the
wreath productKd, there is again a connection to integrable systems [25].

Conjugacy classes inKd are indexed by Conj(K)-weighted partitions ofd,

µ = {(µ1, κ1), . . . , (µℓ(µ), κℓ(µ))}.

Here,µ is a partition ofd with partsµj, the weightsκi ∈ Conj(K) are conjugacy classes inK, and
µ is an unordered set of pairs. Let Aut(µ) denote the automorphism group ofµ. Let Cµ ∈ ZKd

be the element of the group algebra associated to the conjugacy classµ. The transposition element
T ∈ ZKd is associated to conjugacy class ofKd indexed by

τ = {(2, 0), (1, 0), . . . , (1, 0)}

where all the Conj(K)-weights are 0.

The wreath productKd has a forgetful map toΣd which sends elements of cycle typeµ to
elements of typeµ. TheKd-Hurwitz numberHg,K(ν, µ) counts the degreed|K|-fold covers of
P1 with monodromy inKd given byν andµ at0,∞ ∈ P1 andτ at all the points of

Urg(ν,µ) ⊂ P1.

SinceK ⊂ Kd is contained in the center, any such cover has a canonicalK-action which defines a
K-bundle over a punctured Hurwitz cover counted byHg(ν, µ). The connectivity requirement we
place on covers counted byHg,K(ν, µ) is not that thed|K|-fold cover is connected, but only that
the associated Hurwitzd-fold cover is connected. Similarly,g is the genus of thed-fold cover.

The natural extension of formula (3) for disconnected Hurwitz covers for the wreath productKd

is

H•
g,K(ν, µ) =

1

|Kd|

(
CνT

rg(ν,µ)Cµ

)
[Id]
,

where the product on the right takes place in the group algebra ofKd.
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Select an elementx ∈ G with φR(x) = 1. Let k = ax ∈ K. Denote by−µ the ℓ(µ)-tuple of
elements ofG defined by:

−µ = (κ1 − µ1x, κ2 − µ2x, . . . , κℓ(µ) − µℓ(µ)x).

Although the parts ofµ are unordered, an ordering is chosen for−µ. The parity condition is now

ℓ∑

j=1

κj − µjx = 0 ∈ G.

Denote by∅+(k) the conjugacy class given by

∅+(k) = {(a,−k), . . . , (a,−k)︸ ︷︷ ︸
d/a times

}.

Theorem 3. For weighted-partitionsµ satisfying the parity condition,

Hg,K(∅+(k), µ) =
rg(∅+, µ)!

|Aut(µ)|
a1−g+

Pℓ
j=1〈

µj
a 〉

ℓ∏

j=1

µ
⌊

µj
a ⌋

j⌊µj

a

⌋
!

∫

Mg,−µ(BG)

∑∞
i=0(−a)

iλR
i∏ℓ

j=1(1 − µjψ̄j)
.

Theorem 3 determines all linear Hurwitz-Hodge integrals for G and holds in exactly the same
form for the disconnected theoriesH•

g,K(∅+(k), µ) andM
•

g,−µ(BG).

0.6. Future directions. The ELSV formula has two immediate applications in Gromov-Witten
theory. The first is the determination of descendent integrals overMg,n via asymptotics to remove
the Hodge classes [18, 21]. The second is the exact evaluation of the vertex integrals in the local-
ization formula forP1 in [22, 23]. The latter requires the Hodge classes.

Sinceǫ : Mg,γ(BG) → Mg,n is a finite map, a geometric approach to the descendent integrals
is not strictly necessary [16]. However, for the calculation of the Gromov-Witten theory of target
curves with orbifold structure [17], Theorem 3 is essential. The results may be viewed as a first step
for orbifolds along the successful line of exact Hodge integral formulas which have culminated in
the topological and equivariant vertices in ordinary Gromov-Witten theory.

Hurwitz-Hodge integrals can be viewed as pairings of tautological classes

ǫ∗(λ
R
i ) ∈ H2i(Mg,n,Q)

against the descendentsψi. Given an action

α : G× {1, . . . , k} → {1, . . . , k}

on a set withk elements, there is a second map to the moduli space of curves.Let

C → Mg,γ(BG), D → C

be the universal domain curve and the universalG-bundle respectively. A second universal curve

Dα = D ×G {1, . . . , k} → Mg,γ(BG)

is obtained by the mixing construction. We obtain

ǫα : Mg,γ(BG) → Mgα,nα,
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wheregα andnα are the genus and the number of distinguished sections6 of the universal curveDα.
Two questions immediately arise:

(i) Do the classesǫα∗ (λR
i ) lie in the tautological ring ofMgα,nα?

(ii) Do the pairings ofǫα∗ (λR
i ) against the descendents ofMgα,nα admit simple evaluations?

The answer to (i) is known [11] to be false forg = 1, but may be true forg = 0. See [8] for positive
results related to (i) for the standard action of the symmetric groupΣk in theg = 0 case.

0.7. Acknowledgments. We thank J. Bryan, R. Cavalieri, T. Graber, C. Faber, D. Maulik, A. Ok-
ounkov, Y. Ruan, and R. Vakil for related conversations.

P.J. was partially supported by RTG grant DMS-0602191 at theUniversity of Michigan. R.P. was
partially supported by DMS-0500187. H.-H. T. thanks the Institut Mittag-Leffler for hospitality and
support during a visit in Spring 2007. The paper was furthered at a lunch in Kyoto while the last
two authors were visiting RIMS in January 2008. Section 3.4 was added after discussions at the
Banff workshop onRecent progress on the moduli of curvesin March 2008.

1. STABLE RELATIVE MAPS

1.1. Definitions. For a ≥ 1, let P1[a] be the projective line with a single stack point of ordera at
0. Let

〈ζa〉 ⊂ C∗, ζa = e
2πi
a

be the group ofath-roots of unity. Locally at 0,P1[a] is the quotient stackC/ 〈ζa〉. Alternatively,
P1[a] is theath-root stack ofP1 along the divisor0.

LetMg,γ(P
1[a], µ) be the stack of stable relative maps to(P1[a],∞) whereγ = (γ1, . . . , γn) is a

vector of nontrivial elements
1 ≤ γi ≤ a− 1, γi ∈ Za,

andµ is a partition ofd ≥ 1 with partsµj and lengthℓ. The moduli space parametrizes maps

[ f : (C, p1, . . . , pn) → P1[a] ] ∈ Mg,γ(P
1[a], µ)

for which

(i) the domainC is a nodal curve of genusg with stack structure atpi determined byγi,
(ii) relative conditions over∞ ∈ P1[a] are given by the partitionµ.

The isotropy group ofpi ∈ C is the subgroup ofZa generated byγi. Let ai denote the order ofγi.
The domainC, called atwisted curve, may have additional stack structure at the nodes, see [2].

We recall the Riemann-Roch formula for twisted curves.7 Let C be a twisted curve whose non-
singular stack points arep1, ..., pn with cyclic isotropy groupsI1, . . . , In. The groupIi is identified
with theath

i -roots of unity via the action onTpi
C,

Ii
∼
→ 〈ζai

〉 ⊂ C∗, ζai
= e

2πi
ai .

6We suppress the ordering issues here.
7See Theorem 7.2.1 of [1] for precisely our situation.
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LetE be a locally free sheaf over the stackC. Then,Ii acts on the restrictionE|pi
. Let

E|pi
=

⊕

0≤s≤ai−1

V ⊕es
s

be the direct sum decomposition, whereVs is the irreducible representation ofZai
associated to the

character

φs : Ii → C∗, φs(ζai
) = ζs

ai
.

Theageof E atpi is defined by

agepi
(E) =

∑

0≤s≤ai−1

es
s

ai
.

The Riemann-Roch formula for twisted curves is given as follows:

(7) χ(C,E) = rk(E)(1 − g) + deg(E) −
n∑

i=1

agepi
(E).

The virtual dimension ofMg,γ(P
1[a], µ) is calculated by the Riemann-Roch formula (7). Let

[ f : (C, p1, . . . , pn) → P1[a] ] ∈ Mg,γ(P
1[a], µ).

Certainly, deg
(
f ∗TP1[a](−∞)

)
= d/a. By the quotient presentation ofP1[a], the character of

f ∗T0,P1[a] atpi is

ζai
7→ ζ

γiai
a

ai = ζγi
a .

Therefore, agepi

(
f ∗TP1[a](−∞)

)
= γi

a
and

vdimMg,γ(P
1[a], µ) = 3g − 3 + n+ ℓ+ χ(C, f ∗TP1[a](−∞))

= 3g − 3 + n+ ℓ+ 1 − g +
d

a
−

n∑

i=1

γi

a

= 2g − 2 + n+ ℓ+
d

a
−

n∑

i=1

γi

a
.

To simplify notation, letr denote the above virtual dimension. Sincer must be an integer,
Mg,γ(P

1[a], µ) is empty unless the parity conditiond =
∑n

i=1 γi (moda) holds.

1.2. Hurwitz numbers. We now impose the non-negativity condition,

d−
n∑

i=1

γi ≥ 0.

Let Hg,a(γ, µ) denote the weighted count of degreed representable maps from nonsingular, con-
nected, genusg twisted curves with stack points of typeγ to P1[a] with profileµ over∞ and simple
ramification overr fixed points inP1[a] \ {0,∞}.

Lemma 1. Hg,a(γ, µ) is well-defined and equal to|Aut(γ)| ·Hg(γ+, µ).
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Given a stack map[f : C → P1[a]] ∈ Mg,γ(P
1[a], µ) satisfying the simple ramification condition

over ther points, the associated coarse map

f c : Cc → P1

is a usual Hurwitz covering counted byHg(γ+, µ). The representability condition implies the point
pi has ramification profileγi over 0 for the coarse map. Conversely, we have the following result.

Lemma 2. Let Cc be a nonsingular curve and letf c : Cc → P1 be a nonconstant map. Then,
there is a unique (up to isomorphism) twisted curve(C, p1, . . . , pm) and a representable morphism
f : C → P1[a] whose induced map between coarse curves isf c.

Proof. Since the natural mapP1[a] → P1 is an isomorphism overP1[a] \ [0/Za], we may consider
the composite

Cc \ (f c)−1(0)
fc

−→ P1 \ {0}
∼

−→ P1[a] \ {[0/Za]} ⊂ P1[a].

The Lemma follows by applying Lemma 7.2.6 of [2]. �

To proceed, we need to identify the ramification profile off c over0. SinceP1[a] is a root stack,
we may use classification results on maps to root stacks proven in [4]. According to Theorem 3.3.6
of [4], maps considered in our stack Hurwitz problem are in bijective correspondence with maps
f c : Cc → P1 from a coarse curveCc satisfying

(8) (f c)∗[0] =

n∑

i=1

γi[p̄i] + aD,

wherep̄1, ..., p̄n ∈ Cc are distinct points andD ⊂ Cc is a divisor consisting ofd−
Pn

i=1 γi

a
additional

distinct points.

The proof of Lemma 1 is complete. The factor|Aut(γ)| occurs since the stack points ofC are la-
belled while the corresponding ramification points on the Hurwitz covers enumerated byHg(γ+, µ)
are not.✷

1.3. Branch maps. There exists a basic branch morphism for stable maps,

br : Mg(P
1, µ) → Sym2g−2+d+ℓ(P1),

constructed in [9]. By composing with the coarsening map, weobtain

br : Mg,γ(P
1[a], µ) → Sym2g−2+d+ℓ(P1).

To proceed, we impose the boundedness condition,

∀i 6= j, γi + γj ≤ a.

Lemma 3. If the parity, non-negativity, and boundedness conditionsare satisfied,

Im(br) ⊂

(
d− n−

d−
∑n

i=1 γi

a

)
[0] + Symr(P1) ⊂ Sym2g−2+d+ℓ(P1).

Proof. Let f : C → P1[a] be a Hurwitz cover counted byHg,a(γ, µ). The expression

E = d− n−
d−

∑n
i=1 γi

a
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is the order of[0] in br([f ]). The claim of the Lemma is simply that the minimum order of[0] in
br(f) is achieved at such Hurwitz coversf .

The proof requires checking all possible degenerations off over 0. If the stack pointsp1, . . . , pn

do not bubble off the domain, the claim follows easily as in the coarse case. We leave the details to
the reader.

A more interesting calculus is encountered if a subset of stack pointsp1, . . . , pl bubbles off the
domain together over[0/Za] ∈ P1[a]. We do the analysis for a single bubble. We can assume the
bubble is of genus 0 since higher genus increases the branching order. The multi-bubble calculation
is identical.

The genus 0 bubble is attached to the rest of the curve inm stack points of type

δ1, . . . , δm ∈ Za, 1 ≤ δj ≤ a

on the noncollapsed side. The parity condition

(9)
l∑

i=1

γi −
m∑

j=1

δj = ka

must be satisfied withk ∈ Z.

The branch contribution over 0 of the bubbled map is at least

E ′ =
n∑

i=l+1

(γi − 1) +
m∑

j=1

(δj − 1) + 2m− 2 +
d−

∑n
i=l+1 γi −

∑m
j=1 δj

a
(a− 1).

All the terms on the right are obtained from the ramificationson the noncollapsed side except for
the2m from them nodes of the bubble and the−2 from the bubble itself, see [9]. Rewriting using
the parity condition (9), we find

E ′ = E + l +m− 2 − k.

By connectedness and bubble stability, we have

m ≥ 1, l +m ≥ 3.

If k ≤ 0, we concludeE ′ > E. If k ≥ 0, thenk ≤ l − 2 by the boundedness condition and the
positivity of δ1. Again,E ′ > E. �

By Lemma 3, we may view the branch map with restricted image,

br0 : Mg,γ(P
1[a], µ) → Symr(P1).

The proof of Lemma 3 shows the mapsf : C → P1[a] satisfying[0] /∈ br0(f) have no contraction
over0 and coarse profile exactlyγ+. The usual nonsingularity and Bertini arguments [9] then imply
the following result.

Lemma 4. If the parity, non-negativity, and boundedness conditionsare satisfied,

Hg,a(γ, µ) =

∫

[Mg,γ(P1[a],µ)]vir

br∗0(H
r),

whereH ∈ H2(Symr(P1),Q) is the hyperplane class.
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2. LOCALIZATION

2.1. Fixed loci. The standardC∗-action onP1, defined byξ · [z0, z1] = [z0, ξz1], lifts canonically
to C∗-actions onP1[a] andMg,γ(P

1[a], µ) . We will evaluate the integral

(10)
∫

[Mg,γ(P1[a],µ)]vir

br∗0(H
r)

by virtual localization for relative maps [10, 13] following [9, 12]. We assume the parity, non-
negativity, and boundedness conditions.

The first step is to define a lift of theC∗-action to the integrand. Certainly theC∗-action lifts
canonically to Symr(P1). A lift of Hr can be defined by choosing theC∗-fixed point r[0] ∈
Symr(P1). The tangent weights at[0/Za],∞ ∈ P1[a] are t

a
and−t respectively. The equivari-

ant Euler class of the normal bundle tor[0] in Symr(P1) has weightr!tr.

The second step is to identify theC∗-fixed locusMg,γ(P
1[a], µ)C∗

⊂ Mg,γ(P
1[a], µ). The com-

ponents of theC∗-fixed locus lie over ther+1 points of Symr(P1)C∗

. By our lifting ofHr, we need
only consider

M
C∗

0 = Mg,γ(P
1[a], µ)C∗

∩ br−1
0 (r[0]).

Because of the strong restriction on the branching, the maps

[f : C → P1[a]] ∈ M
C∗

0

have a very simple structure:

(i) C = C0 ∪
∐ℓ

j=1Cj,

(ii) f |C0 is a constant map from a genusg curve to[0/Za] ∈ P1[a],

(iii) the coarse mapf c|Cj
: Cc

j → P1 is aC∗-fixed Galois cover of degreeµj for j > 0,

(iv) C0 meetsCj at a nodeqj.

The stack structure atqj ∈ Cj is easily determined using the relationship between stack Hurwitz
covers ofP1[a] and ordinary Hurwitz covers ofP1 discussed in Section 1.2. The stack structure at
qj ∈ Cj is of typeµj ∈ Za. The stack structure atqj ∈ C0 whereCj is attached is of theopposite
type−µj ∈ Za. The map

f |C0 : (C, p1, . . . , pn, q1, . . . , qℓ) → [0/Za]

is an element ofMg,γ−µ(BZa).

TheC∗-fixed locus may be identified with a quotient of a fibered product,

M
C∗

0
∼
=
(
Mg,γ−µ(BZa) ×(ĪBZℓ

a) P1 × ...× Pℓ

)
/Aut(µ)

,

whereĪBZa is the rigidified inertia stack ofBZa andPj is the moduli stack ofC∗-fixed Galois cov-
ers of degreeµj. By the standard multiplicity obtained from gluing stackZa-bundles, the projection

(11) M
C∗

0 →
(
Mg,γ−µ(BZa) × P1 × ...× Pℓ

)
/Aut(µ)
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has degree
∏ℓ

j=1
a
bj

wherebj is the order ofµj ∈ Za.

Fortunately, the residue integral overM
C∗

0 in the virtual localization formula for (10) is pulled-

back via (11). Instead of integrating overM
C∗

0 , we will integrate over

M̃C∗

0 = Mg,γ−µ(BZa) × P1 × ...× Pℓ

and multiply by

1

|Aut(µ)|

ℓ∏

j=1

a

bj
.

2.2. Virtual normal bundle. The virtual localization formula for (10) with our choice ofequivari-
ant lifts takes the following form:

(12)
∫

[Mg,γ(P1[a],µ)]vir

br∗0(H
r) =

1

|Aut(µ)|

ℓ∏

j=1

a

bj

∫

fMC∗

0

r! tr

e(Normvir)
.

The equivariant Euler class of the virtual normal bundle is

(13)
1

e(Normvir)
=
e(H1(C, f ∗TP1[a](−∞)))

e(H0(C, f ∗TP1[a](−∞)))

1
∏ℓ

j=1 e(Nj)
,

see [10]. The last product is over the nodes ofC, andNj is the equivariant line bundle associated to
the smoothing ofqj . The terms in (13) are computed via the normalization sequence of the domain
C. The various contributions over the componentsC0, C1, . . . , Cℓ are computed separately.

First consider the collapsed componentC0. The spaceH0(C0, f |
∗
C0
TP1[a](−∞)) is identified with

the subspace ofTP1[a](−∞)|[0/Za] consisting of vectors invariant under the action of the image of
the monodromy representationπorb

1 (C0) → Za. Therefore,H0 vanishes unless the monodromy
representation is trivial, in which caseH0 is 1-dimensional with weightt

a
.

The trivial monodromy representationπorb
1 (C0) → Za is possible only if

γ = ∅ and ∀j, µj = 0 moda .

Even then, the locus with trivial monodromy is just a component8 of Mg,(0,...,0)(BZa). The trivial
monodromy representation locus will play a slightly special role throughout the calculation. But, in
the final formula, no different treatment is required.

The spaceH1(C0, f |
∗
C0
TP1[a](−∞)) yields the vector bundle

B = (EU)∨

overMg,γ−µ(BZa) whose rank may be calculated by the orbifold Riemann-Roch formula. Over
the component of the fixed locus where the monodromy representationπorb

1 (C0) → Za is trivial,
the rank ofB is g. Otherwise, the rank is

(14) rB = g − 1 +
n∑

i=1

γi

a
+

∑

µj 6=0 mod a

(
1 −

〈µj

a

〉)
.

8If g > 0, there will typically be other components as well.
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TheH1 −H0 contribution from the collapsed component to the localization formula is

(15)
rB∑

i=0

(
t

a

)rB−i

ci(B) =

rB∑

i=0

(
t

a

)rB−i

(−1)iλU
i .

For the component where the monodromy representation is trivial, an additional factor ofa
t

must
be inserted in (15).

Next consider theH1 −H0 contribution from theC∗-fixed Galois covers. Since

deg(f |∗Cj
TP1[a](−∞)) =

µj

a
,

we have
Hk(Cj, f |

∗
Cj
TP1[a](−∞)) = Hk

(
P1,OP1

(⌊µj

a

⌋))
.

TheH0 weights are
t

µj
, 2

t

µj
, ...,

⌊µj

a

⌋ t

µj
,

where the weight 0 is omitted.9 The groupH1 vanishes. TheH1 −H0 contribution is

t−⌊
µj
a ⌋
µ
⌊

µj
a ⌋

j⌊µj

a

⌋
!
.

Finally, consider theH1 −H0 contribution from the nodal pointqj. If µj 6= 0 (moda), thenqj is
a stack point and

H0(qj , f
∗TP1[a](−∞)|qj

) = 0

as there is no invariant section. Ifµj = 0 (moda) thenH0(qj , f
∗TP1[a](−∞)|qj

) is 1-dimensional
and contributes a factort

a
. Certainly,H1 vanishes here for dimension reasons.

The contribution from smoothing the nodeqj is the tensor product of the tangent lines of the two
branches incident toqj ,

e(Nj) =
1

bj

(
−ψ̄j +

t

µj

)
.

After putting the component calculations together in (13),we obtain the following expression for
for 1/e(Normvir):

(
rB∑

i=0

(
t

a

)rB−i

(−1)iλU
i

)
·

ℓ∏

j=1


t−⌊

µj
a ⌋
µ
⌊

µj
a ⌋

j⌊µj

a

⌋
!

1

1
bj

(
−ψ̄j + t

µj

)


 ·

ℓ∏

j=1

(
t

a

)δ
0,〈

µj
a 〉
.

Regrouping of terms yields

(16)

∏ℓ
j=1 bjµj

a
rB+

Pℓ
j=1 δ

0,〈
µj
a 〉




ℓ∏

j=1

µ
⌊

µj
a ⌋

j⌊µj

a

⌋
!



(

rB∑

i=0

trB−i(−a)iλU
i

)
· t−

Pℓ
j=1⌊

µj
a ⌋

ℓ∏

j=1

t
δ
0,〈

µj
a 〉

(t− µjψ̄j)
.

For the component with trivial monodromy representation, afactor of a
t

must be inserted in the
formulas for1/e(Normvir).

9The 0 weight is from reparameterization of the domainCj and is not in the virtual normal bundle.
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2.3. Proof of Theorem 1. Putting the calculations of Section 2.2 together and passing to the non-
equivariant limit, we obtain the following evaluation

∫

[Mg,γ(P1[a],µ)]vir

br∗0(H
r) =

r!

|Aut(µ)|

aℓ

a
rB+

Pℓ
j=1 δ

0,〈
µj
a 〉

ℓ∏

j=1

µ
⌊

µj
a ⌋

j⌊
µi

a

⌋
!

∫

Mg,γ−µ(BZa)

∑∞

i=0(−a)
iλU

i∏ℓ
j=1(1 − µjψ̄j)

.

On the right side, we have included the fundamental class factors
ℓ∏

j=1

1

µj

of the moduli spacesPj. For the component with trivial monodromy representation,a factor ofa
must be inserted in the formula.

We can simplify the integral evaluation by using the calculation (14) ofrB,

rB +
ℓ∑

i=1

δ
0,〈

µj
a 〉

− ℓ

= g − 1 +

n∑

i=1

γi

a
+

∑

µj 6=0 mod a

(
1 −

〈µj

a

〉)
+


 ∑

µj=0 mod a

1


− ℓ

= g − 1 +
n∑

i=1

γi

a
−

ℓ∑

j=1

〈µj

a

〉
.

The above calculation is not valid for the component with trivial monodromy sincerB = g notg−1.
The discrepancy is exactly fixed by the extra factora required for the trivial monodromy case. We
conclude

(17)
∫

[Mg,γ(P1[a],µ)]vir

br∗0(H
r) =

r!

|Aut(µ)|
a1−g−

Pn
i=1

γi
a

+
Pℓ

j=1〈
µj
a 〉

ℓ∏

j=1

µ
⌊

µj
a ⌋

j⌊
µi

a

⌋
!

∫

Mg,γ−µ(BZa)

∑∞
i=0(−a)

iλU
i∏ℓ

j=1(1 − µjψ̄j)
.

holds uniformly. Theorem 1 is then obtained from Lemmas 1 and4. ✷

In degenerate cases, unstable integrals may appear on the right side of the formula in Theorem 1.
The unstable integrals come in two forms and are defined by thelocalization contributions:

∫

M0,(0)(BZa)

∑
i≥0(−a)

iλU
i

(1 − xψ̄1)
=

1

a
·

1

x2
,

∫

M0,(m,−m)(BZa)

∑
i≥0(−a)

iλU
i

(1 − xψ̄1)(1 − yψ̄2)
=

1

a
·

1

x+ y
.

With the above definitions, Theorem 1 holds in all cases.

The disconnected formula (5) follows easily from the connected case by the usual combinatorics
of distributing ramification points to the components of Hurwitz covers.
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2.4. Proof of Theorem 2. Supposeγ satisfies the parity and strong negativity condition with re-
spect toµ. Since

δ = d− n−
d−

∑n
i=1 γi

a
< 0,

the virtual dimensionr of Mg,γ(P
1[a], µ) is greater than2g − 2 + d + ℓ. As a consequence, we

immediately obtain the vanishing

(18)
∫

[Mg,γ(P1[a],µ)]vir

br∗(Hr) = 0

sinceHr = 0 ∈ H∗(Sym2g−2+d+ℓ(P1),Q).

We may nevertheless calculate (18) by localization with thelift

Hr = (2g − 2 + d+ ℓ)[0] · t−δ

which doesnotvanish equivariantly. The analysis is identical to the calculations of Sections 2.1-2.3.
We find the integral (18) is proportional (with nonzero factor) to

∫

Mg,γ−µ(BZa)

∑∞
i=0(−a)

iλU
i∏ℓ

j=1(1 − µjψ̄j)
,

and therefore conclude the vanishing.

Assume now strong negativity does not hold, butγ satisfies the parity, negativity, and bounded-
ness condition. By the proof of Lemma 3, using the boundedness condition, the maps

f : C → P1[a]

which satisfy[0] /∈ br0(f) have no contraction over 0 and coarse profile determined byγ. By the
negativity condition, no such maps exists. Hence,[0] is always in br0(f). Therefore,

∫

[Mg,γ(P1[a],µ)]vir

br∗0(H
r) = 0

and we conclude as above.✷

3. EXAMPLES

3.1. Z2 example. The Hodge bundleEU has a very simple interpretation in theZ2 case. Let

C → Mg,γ(BZ2), D → C

be the universal domain curve and the universalZ2-bundle. Let

ǫ : Mg,γ(BZ2) → Mg, ǫ̃ : Mg,γ(BZ2) → Mg−1+ n
2

be the maps to moduli obtained fromC andD respectively. The exact sequence

0 → ǫ∗(Eg) → ǫ̃∗(Eg−1+ n
2
) → EU → 0.

exhibitsEU as theK-theoretic difference of the pulled-back Hodge bundles. Ifg = 0, then the
situation10 is even simpler,

(19) EU ∼
= ǫ̃∗(Eg−1+ n

2
).

10The mapǫ is not well-defined here for stability reasons.
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Consider the case of Theorem 1 whereg = 0, γ = (1, 1), andµ = (1, 1). The statement is

H0((1, 1), (1, 1)) =
2

2!2!
21

∫

M0,(1,1,1,1)(BZ2)

1 − 2λU
1

(1 − ψ̄1)(1 − ψ̄2)
.

The double Hurwitz number on the left is1
2
. Expansion of the right side yields:

∫

M0,(1,1,1,1)(BZ2)

1 − 2λU
1

(1 − ψ̄1)(1 − ψ̄2)
=

1

2

∫

M0,4

1

(1 − ψ1)(1 − ψ2)
− 2

∫

M0,(1,1,1,1)(BZ2)

λU
1

= 1 − 2

∫

M0,(1,1,1,1)(BZ2)

λU
1 .

To evaluate the last integral, we note the map

ǫ̃ : M0,(1,1,1,1)(BZ2) → M1,1,

where the first branch point is selected for the marking on theelliptic curve, is of degree 6. More-
over,λU

1 is the pull-back ofλ1 underǫ̃ by (19). Hence,

1 − 2

∫

M0,(1,1,1,1)(BZ2)

λU
1 = 1 − 2 · 6 ·

1

24
=

1

2
.

3.2. Vanishing example. The simplest example of the vanishing of Theorem 2 occurs forZ2. Let
g = 0,

γ = (1, . . . , 1︸ ︷︷ ︸
n

)

andµ = (1). By the parity condition,n must be odd. Boundedness holds. For the negativity
condition, we requiren ≥ 2. By Theorem 2 (i),

∫

M0,γ−µ(BZ2)

∑
i≥0(−2)iλU

i

1 − ψ̄1

vanishes for all oddn ≥ 3.

We now use the identification ofλU
i with the Chern classes of the Hodge bundleǫ̃∗(En−1

2
) whose

fiber over
f : [D/Z2] → BZ2

is simply given by the space of differential forms on the genus n−1
2

curveD. The Chern roots of
ǫ̃∗(En−1

2
) can be identified by the vanishing sequence at a Weierstrass point ofD. The Weierstrass

point can be chosen to lie above the marking corresponding tothe single part ofµ. The Chern roots
of ǫ̃∗(En−1

2
) are thenL, 3L, . . . , (n − 2)L whereL is the Chern class of the cotangent line of the

Weierstrass point. The classL onM0,γ−µ(BZ2) is 1
2
ψ̄1. Expanding the Chern roots, we find

∫

M0,γ−µ(BZ2)

∑
i≥0(−2)iλU

i

1 − ψ̄1

=

∫

M0,γ−µ(BZ2)

∏n−1
2

i=1 (1 − (2i− 1)ψ̄1)

(1 − ψ̄1)

=

∫

M0,γ−µ(BZ2)

n−1
2∏

i=2

(1 − (2i− 1)ψ̄1)

= 0,
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where the last integral vanishes for dimension reasons.

3.3. Z∞ example. An interesting feature of Theorem 1 is the possibility of studying the behavior
for largea. Let γ = (γ1, . . . , γn) determine a partition ofd,

d =
n∑

i=1

γi.

Let µ = (d) consist of a single part. Fora > d, the rank of the Hodge bundle

EU → M0,γ−µ(BZa)

is 0 by (14). Since the parity, non-negativity, and boundedness conditions hold fora > d, we may
apply Theorem 1 to conclude

H0(γ, (d)) =
(n− 1)!

|Aut(γ)|
a

∫

M0,γ−µ(BZa)

1

1 − dψ̄1

=
(n− 1)!

|Aut(γ)|
dn−2,

which is a well-known formula for genus 0 double Hurwitz numbers.

3.4. 1-point series. If µ = (d) consists of a single part, the entire generating series for double
Hurwitz numbers has been computed11 in [14]:

(20)
∑

g≥0

t2g(−1)gHg(ν, (d)) =
r! dr−1

|Aut(ν)|

∏

k≥1

(
sin(kt/2)

kt/2

)mk(ν)−δk,1

,

wherer = rg(ν, (d)) andmk(ν) is the number of timesk appears as a part ofν. Single part double
Hurwitz numbers are considerably simpler because such covers are automatically connected and the
only characters with nonzero evaluation on thed-cycle are exterior powers of the standard(d− 1)-
dimensional representation.

Let γ = (γ1, . . . , γn) be a vector of nontrivial elements ofZa satisfying the boundedness condi-
tion. We will consider degreesd for which the parity and non-negativity conditions are satisfied.
Then,

d−
n∑

i=1

γi = ab

for an integerb ≥ 0. Consider the generating series

Fγ(t, z) =

∞∑

g=0

g∑

l=−∞

t2gzl

∫

Mg,γ−(d)(BZa)

ψ̄
2g−2+ℓ(γ)+l
0 λU

g−l

whereψ̄0 is the class corresponding to the point with monodromy−d.

11We write Theorem 3.1 of [14] in terms ofsin instead ofsinh and divide by|Aut(ν)| since we do not mark
ramifications in our definition of Hurwitz numbers.
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The double Hurwitz number formula of Theorem 1 is

Hg(γ+, (d)) =
r!

|Aut(γ)|
a1−g−

Pn
i=1

γi
a

+〈 d
a〉d

⌊ d
a⌋

⌊
d
a

⌋
!

g∑

l=−∞

dr−b−1+l(−a)g−l

∫

Mg,γ−(d)(BZa)

ψ̄r−b−1+l
0 λU

g−l

= (−1)g adr−1r!
(

d
a

)j

P

γi
a

k

|Aut(γ)|
(
b+

⌊
P

γi

a

⌋)
!

g∑

l=−∞

(
−d

a

)l ∫

Mg,γ−(d)(BZa)

ψ̄r−b−1+l
0 λU

g−l

or, equivalently,

∑

g≥0

(−1)gt2gHg(γ+, (d)) =
adr−1r!

|Aut(γ)|
(
b+

⌊
P

γi

a

⌋)
!

(
d

a

)j

P

γi
a

k

Fγ(t,−d/a)

wherer = rg(γ+, (d)). After combining with (20), we obtain

(21) Fγ(t,−d/a) =
1

a

(
b+

⌊
P

γi

a

⌋)
!

b!

(a
d

)j P

γi
a

k∏

k≥1

(
sin(kt/2)

kt/2

)mk(γ+)−δk,1

.

for b ≥ 0.

Theorem 4. Fγ(t, z) equals

1

a

(
−z −

∑ γi

a
+
∑⌊

P

γi

a

⌋)
!

(
−z −

∑ γi

a

)
!

(−z)
−

j

P

γi
a

k

(
sin(at/2)

at/2

)−z−
P γi

a ∏

k≥1

(
sin(kt/2)

kt/2

)mk(γ)−δk,1

.

Proof. Using the standard polynomial expansion
(
−z −

∑ γi

a
+
∑⌊

P

γi

a

⌋)
!

(
−z −

∑ γi

a

)
!

=

(
−z −

∑ γi

a
+
∑⌊∑

γi

a

⌋)
. . .
(
−z −

∑ γi

a
+ 1
)
,

we see thet2g coefficients of both sides of Theorem 4 are Laurent polynomials in z. Equation (21)
shows Theorem 4 holds for all evaluations of the formz = −d/a where

d−
n∑

i=1

γi = ab

and b is a non-negative integer. Since there are infinitely many such evaluations, the coefficient
Laurent polynomials inz must be equal for allt2g. �

If we specialize Theorem 4 to the case whereγ = ∅, we obtain

(22)
1

a
+
∑

g>0

g∑

l=0

t2gzl

∫

Mg,1(BZa)

ψ̄2g−2+l
1 λU

g−l =
1

a

(
at/2

sin(at/2)

)z
t/2

sin(t/2)

If γ = ∅ anda = 1 we recover

(23) 1 +
∑

g>0

g∑

l=0

t2gzl

∫

Mg,1

ψ2g−2+l
1 λg−l =

(
t/2

sin(t/2)

)z+1

first calculated in [7].
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In (22), the termλU
g vanishes for dimensional reasons except over the trivial monodromy com-

ponent, where it agrees with the usualλg. Indeed, settingz = 0 in (22) yields

1

a
+
∑

g>0

t2g

∫

Mg,1(BZa)

ψ2g−2
1 λU

g =
1

a

t/2

sin(t/2)

which is the expected contribution from (23) with a factor of1/a coming from the automorphisms.

4. ABELIAN GROUPS

4.1. Pull-back. For an abelian groupG and irreducible representationR, recall the sequence (6),

0 → K → G
φR

→ Im(φR)
∼
= Za → 0.

By constructionR
∼
= φR∗(U). The homomorphismφR induces a canonical map

ρ : Mg,γ(BG) → Mg,φR(γ)(BZa)

by sending a principalG-bundle to its quotient byK.

Lemma 5. ER ∼
= ρ∗(EU).

Proof. RecallE → Mg,n(BH) is the bundle whose fiber over

[f ] : [D/H] → BH ∈ Mg,n(BH)

isH0(D,ωD). The latter can be understood as the space of 1-formsα on the normalizatioñD of D
with possible simple poles with opposite residues at the twopreimages of each nodeqi.

Let ρ̃ be the map between the universal principalG- andZa-curves that inducesρ. We obtain

dρ̃ : ρ∗(E) → E

by pulling-back differential forms. An easy verification shows ρ̃ is well-defined even at points in
the moduli spaceMg,γ(BG) for which theG-curve is nodal.

The mapdρ̃ is injective on each fiber since the pull-back of a nonzero differential form by a finite
surjective map is nonzero. Certainlydρ̃ carries the subbundleρ∗(EU) to the subbundleER. These
bundles have the same dimension by the Riemann-Roch formulafor twisted curves. Hence,dρ̃ is
an isomorphism. �

The mapρ does not preserve the isotropy groups at the marked points. However, since the classes
ψ̄i are pulled-back fromMg,n,

ρ∗(ψ̄) = ψ̄.

By Lemma 5, we concluded the integrand in Theorem 3 is exactlythe integrand of Theorem 1
pulled-back viaρ.
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4.2. Degree. The degree ofρ is determined by the following result.

Lemma 6. We have

deg(ρ) =

{
0

∑
i γi 6= 0

|K|2g−1
∑

i γi = 0
.

Proof. Consider a nonsingular curve[C, p1, . . . , pn] ∈ Mg,n. Let

Γ = π1(C \ {p1, . . . , pn}) =

〈
Γi, Aj , Bj

∣∣∣
n∏

i=1

Γi

g∏

j=1

[Aj, Bj ]

〉
,

whereΓi is a loop aroundpi and the loopsAj, Bj are the standard generators ofπ1(C).

The elements ofMg,γ(BG) lying above[C, p1, . . . pn] are in bijective correspondence with the
homomorphisms12ϕ : Γ → G with

(24) ϕ(Γi) = γi.

SinceG is abelian,ϕ([Aj , Bj]) = 0. Hence, the parity condition

(25)
n∑

i=1

γi = 0

must be satisfied forMg,γ(BG) to be nonempty.

If the parity condition holds, then the images ofAj andBj are completely unconstrained. There
are|G|2g homomorphismsφ satisfying (24). Stated in terms of homomorphisms, the mapρ corre-
sponds to composingϕ : Γ → G with φR : G → Za. Since there are|K| elements ofG in the
preimage of any element ofZa, there are|K|2g elements in a generic fiber ofρ. SinceG is abelian, a
cover inMg,γ(BG) has automorphism groupG. A cover in the image ofρ only has automorphism
groupZa. Thus, the degree ofρ is |K|2g−1. �

AlthoughMg,φR(γ)(BZa) may have several components, Lemma 6 implies the degree ofρ is the
same over each component. In the nonabelian case, the situation is much more complicated. For
example, letη be the conjugacy class of a3-cycle inΣ3, let

s : Σ3 → Z2

be the sign representation, and let

ρ : M1,η(BΣ3) → M1,0(BZ2)

be the map induced bys. The spaceM1,0(BZ2) consists of two components: one with trivial
monodromy, and one with nontrivial monodromy. There are covers inM1,η(BΣ3) lying above
the nontrivial monodromy component. Ift1 6= t2 ∈ Σ3 are two transpositions, then[t1, t2] is a
3-cycle. On the other hand, there are no elements ofM1,η(BΣ3) lying above the trivial monodromy
component. All the monodromy in such a cover would lie in the abelian groupZ3 = ker(s),
and there are no such covers with nontrivial monodromy aboutthe one marked point by (25). As
the formula in Theorem 1 considers all components ofMg,φR(γ)(BZa) at once, a more nuanced
approach would be required to understand Hurwitz-Hodge integrals for nonabelian groups, even
for 1-dimensional representations.

12 Composition inΓ is written multiplicatively while composition inG is additive.
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In the disconnected caseρ : M
•

g,γ(BG) → M
•

g,φR(γ)(BZa), Lemma 6 has a few minor compli-
cations:

(i) The monodromy condition
∑

i γi = 0 ∈ G cannot be checked globally, but must be verified
separately on each domain component.

(ii) The number of components matters. For disconnected curves withh components, each of
which satisfies the monodromy requirements, the degree ofρ is |K|2g−2+h.

Whenρ is nonzero, the degree|K|2g−2+h is independent ofG and the monodromy conditions (25).
The only role these conditions play is to determine when the degree is nonzero.

4.3. Wreath Hurwitz numbers. The wreath productKd is defined by

Kd = {(k, σ) | k = (k1, . . . , kd) ∈ Kd, σ ∈ Σd},

(k, σ)(k′, σ′) = (k + σ(k′), σσ′).

Conjugacy classes ofKd are determined by their cycle types [19]. SinceK is abelian, for each
m-cycle (i1i2 · · · im) of σ, the elementkim + kim−1 + · · · + ki1 is well-defined. The resulting
Conj(K)-wieghted partition ofd is the called thecycle typeof (k, σ). Two elements ofKd are
conjugate exactly when they have the same cycle type.

We index the conjugacy classes ofKd by Conj(K)-weighted partitions ofd. Let

ν = {(ν1, ι1), . . . , (νℓ(ν), ιℓ(µ))},

µ = {(µ1, κ1), . . . , (µℓ(µ), κℓ(µ))}

be two such partitions. Letν∗ be the partition with partsνj with a partial labelling given byιj . Then

Aut(ν∗) = Aut(ν).

The Hurwitz numberHg(ν
∗, µ∗) counts cover with the additional labelling data,

Hg(ν
∗, µ∗) =

|Aut(ν)|
|Aut(ν∗)|

|Aut(µ)|

|Aut(µ∗)|
Hg(ν, µ).

Lemma 7. Hg,K(ν, µ) is the count of the coversπ : C → P1 enumerated byHg(ν
∗, µ∗) with

multiplicitymπ. The multiplicitymπ is the automorphism-weighted count of principalK-bundles
onC \ π−1({0,∞}) with monodromyιi at pi ∈ π−1(0) andκj at qj ∈ π−1(∞).

Proof. Let π′ : D → P1 be a cover counted byHg,K(ν, µ). By definition,π′ is ad|K|-fold cover of
P1 with monodromiesν, µ andτ over0,∞ and the points ofUr respectively.

Each such cover has an associated coverπ : C → P1 counted byHg(ν
∗, µ∗). Algebraically, the

cover is obtained by the forgetful map fromKd → Σd. Geometrically, the cover is obtained by
taking the quotient ofD by the diagonal subgroupK ⊂ Kd. There is a natural mapf : D → C.
Away from the preimages of0,∞ andUr, the mapf is a principalK-bundle.

Consider the pointpi ∈ π−1(0) corresponding to a cycleνi which is labelled withιi ∈ K. A
small loop winding once aroundpi onC has an image that windsνi times around0. But we know
that the monodromy forπ′ : D → P1 around0 is given byν. By the definition of the cycle type,
the monodromy off aroundpi is ιi. An identical argument shows the monodromy atqi over∞ is
κi and the monodromy around all preimages of a point inUr is zero.
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The above process is reversible. We start with ad-fold coverπ′ : C → P1 counted byHg(ν
∗, µ∗)

and a principalK-bundlef : D → C with monodromyιi aroundpi andκi aroundqi. Then, the
compositionπ = π′ ◦ f is a cover counted byHg,K(ν, µ). �

In other words, ifρ′ : Mg,ι∪κ(BK) → Mg,ℓ(λ)+ℓ(µ) is the natural map, then

Hg,K(ν, µ) = deg(ρ′)Hg(ν
∗, µ∗).

4.4. Proof of Theorem 3. By Lemma 5, we can compute the integral in Theorem 3 by computing
the analogous Hurwitz-Hodge integral (appearing in Theorem 1) overMg,−µ(BZa) and multiplying
by the degree of

ρ : Mg,−µ(BG) → Mg,−µ(BZa).

On the other hand, by Lemma 7, we can calculateHg,K(∅+(k), µ) by computingHg(∅+, µ), multi-
plying by the degree of

ρ′ : Mg,(−k)d/a∪κ(BK) → Mg,d/a+ℓ(µ),

and correcting for the difference in the sizes of the automorphism groups Aut(µ) and

Aut(µ) = Aut(µ∗).

Thus, to deduce Theorem 3 from Theorem 1, we need only check that the degrees ofρ andρ′

agree. By Lemma 6, the degrees agree when nonzero. The last step is to check the parity condition
(25) is the same forρ andρ′. Forρ, the parity condition is

0 =
ℓ∑

j=1

(−µ)j =
ℓ∑

j=1

(κj − µjx) =
ℓ∑

j=1

κj − dx.

Forρ′, the parity condition is

0 = −
d

a
k +

ℓ∑

j=1

κj.

Sinceax = k, the conditions are equivalent.✷

As in the faithful case, unstable integrals may appear on theright side of the formula in Theorem
3. These unstable terms are defined in a completely analogousmanner, and extend Theorem 3 to
all contributions:

∫

M0,(0)(BG)

∑
i≥0(−a)

iλR
i

(1 − xψ̄1)
=

1

|G|
·

1

x2
,

∫

M0,(m,−m)(BG)

∑
i≥0(−a)

iλR
i

(1 − xψ̄1)(1 − yψ̄2)
=

1

|G|
·

1

x+ y
.

Alternatively, using a theory of stable maps relative to a stack divisor13 at∞, Theorem 3 could
be proven in a manner closely parallel to the proof of Theorem1.

13We avoid the foundational discussion of this theory.
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