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Abstract—Traffic control and vehicle route planning require
accurate estimates of the traffic state in order to be successfully
implemented. This estimation problem can be solved by using
particle filters in conjunction with macroscopic traffic models
such as the stochastic compositional model. The accuracy of the
estimates can be decreased for road segments where there are
no measurements available. However, the inclusion of measure-
ments for all segment boundaries carries a computational cost
associated with the evaluation of the likelihood function required
by the particle filter. To solve this problem, this paper proposes
using the column based matrix decomposition method to select
the most significant locations in the road network. This results
in the particle filter being applied over a reduced measurement
space, allowing a trade-off between computational efficiency and
estimation accuracy to be achieved. A performance evaluation
based on a simulated stretch of road is provided to validate the
proposed method. It shows that by selecting half the original
number of measurements, the computational time is reduced by
approximately 9% without significantly decreasing the estimation
accuracy. A more significant improvement in terms of savings
in computational complexity can be expected when considering
larger urban road networks.

I. INTRODUCTION

There is an increasing number of vehicles on road networks

causing increased congestion problems. In order to alleviate

these problems various traffic control, [1], [2], and route

planning, [3]–[5], methods have been proposed. However, for

these methods to work they require an accurate estimate of

the current traffic state.

Traffic state estimation involves modeling the road network,

which is a complex problem with many interacting compo-

nents and random perturbations [6]–[8]. For example, consider

drivers in a traffic jam. As drivers approaching an incident

observe the congestion forming in front of them they begin

to slow down. The drivers following them see this change

in speed and react in turn, resulting in a reduction in speed

moving further up the road, away from the original incident.

There are three broad levels of models that can be used for

this task: microscopic models that deal with individual vehicles

[9], macroscopic models that consider aggregated measure-

ments (flow and speed) [1], [8], [10]–[14] and mesoscopic

models, which can be considered as a combination of the two,

[15]. The ideas behind microscopic models can also be ex-

tended to consider platoons or groups of vehicles in an attempt

to improve their computational efficiency [16]. However, due

to their lower computational requirements macroscopic traffic

models are often used in real time applications [7].

A common macroscopic model is the cell transmission

model (CTM) [17], [18]. In the CTM a length of road is split

into a sequence of links, each of which is further broken into

smaller road segments called cells. The interactions between

neighboring cells is then modeled by sending and receiving

functions, which along with a maximum number of vehicles

allowed in each cell controls the movement of vehicles be-

tween cells.

In [6] a flexible stochastic compositional model (SCM) is

presented for online modeling of traffic flows. Here, a dynamic

equation is used to describe the evolution in time of traffic

speeds in each cell. It is flexible in terms of cell and time

update sizes, with both being able to vary in time if required

(as along as no vehicles completely skip a cell during a time

step). The random nature of traffic state evolution can also

be explicitly accounted for via probability distributions that

govern the sending and receiving functions as well as noise

terms.

When combined with such models Kalman filters (KFs)

can be used to recursively estimate the traffic states [19]–

[22]. Alternatively particle filters (PFs), [23], [24], have also

been successfully applied to traffic estimation problems [7],

[9] and shown to be powerful and scalable. These methods

use observations up to the current point in time, along with

system dynamics, to obtain the conditional distribution of the

traffic state.

Although they can handle there not being measurements at

every road segment boundary, it has been observed that the

estimates they provide are more accurate at the boundaries

which do have measurements present [7]. The temptation then

is to ensure there are measurements available at each of the

boundaries in order to improve the overall estimation accu-

racy. However, this means that more measurements are used

evaluating the likelihood terms, thus increasing computational

complexity. This leaves the question of how many of the

measurements should be used and what is the best way to

select them.

One method of representing a road network in a compressed

form would be to use principal component analysis (PCA)



[25]–[27]. This compressed form is given as basis vectors

and latent variables. However, it can be difficult to assign a

physical meaning to the latent variables, making them hard

to interpret. Additionally, all the information from the traffic

sensors being considered have to be collected at each point in

time during real world application.

The authors of [28] use column based matrix decomposition,

[29]–[31], in order to give the overall road network in terms of

a smaller subnetwork. This involves the singular value decom-

position (SVD) of the matrix containing the measurements for

the entire traffic network. The locations in the network with

the highest variations in measurements are then kept with a

higher probability and used to approximate the network as

a whole. This scheme will not outperform PCA in terms of

compression. However, the matrices involved can easily be

interpreted and lend themselves to use within a PF as a result.

Additionally, only measurements for the retained locations

have to be made in real world application rather than recording

all of the information from each of the traffic sensors.

This paper proposes using the column based matrix de-

composition to select which segment boundary measurements

should be used in the evaluation of the likelihood function in

a PF. As a result, there is a reduced measurement space. The

estimate of the overall traffic state is then provided by the

PF in conjunction with the SCM. A performance evaluation

on a simulated stretch of road is provided to validate the

proposed traffic state estimation method. It is reasonable to

expect greater performance improvements to be found in

higher dimension problems (urban environments), where there

are more measurements available to begin with [32].

The remainder of this paper is structured as follows: Section

II gives details of the traffic model used. This includes the

details of the SCM (II-A) and the measurements model (II-B).

Then in Section III the proposed PF for a reduced measure-

ment space is detailed, including the measurement selection

(III-A) and the overall PF framework (III-B). A performance

evaluation is provided in Section IV and finally concluding

remarks are given in Section V.

II. TRAFFIC FLOW MODEL

A. Traffic Model

This paper considers the SCM [6], where the road is split

into segments or cells as shown in Figure 1. Here Li is

the length of road segment i and segment i consists of li
lanes. The task is then to estimate the traffic states, given by

xk = [xT
1,k, xT2,k, ..., xTn,k]

T , xi,k = [Ni,k, vi,k]
T , where Ni,k

and vi,k are the number of vehicles and their average speed,

respectively, at K times t1, t2, ..., tk, ...tK . Note, n gives the

number of road segments, segment n+ 1 is the fictitious last

road segment and the average vehicle length is assumed to be

Al.
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Fig. 1: Road segments and measurement points.

The following equations describe the evolution of the traffic

states:

x1,k+1 = f1(Q
in
k , vink , x1,k, x2,k,η1,k), (1)

xi,k+1 = fi(xi−1,k, xi,k, xi+1,k,ηi,k), (2)

xn,k+1 = fn(xn−1,k, xn,k, Q
out
k , voutk ,ηn,k), (3)

where fi is specified by the traffic model and ηk allows for

random fluctuations and modeling errors. Here, Qin
k and Qout

k ,

are the number of vehicles entering the first segment and leav-

ing the last segment within the time interval ∆tk = tk+1− tk
with average speeds vink and voutk , respectively. These values

are boundary conditions required by the filter, rather than states

to be estimated.

The traffic behavior is modeled with forward and backward

propagation of traffic perturbations. This is achieved by finding

the sending (Si,k) and receiving (Ri,k) functions, which give

the number of vehicles that can leave and enter each road

segment, respectively. The model also finds/makes use of

the anticipated traffic density (ρantici,k+1) as a result of mixing

densities from two neighboring cells, a threshold density (ρth )

and the intermediate velocity (vintermi,k+1 ), which can be viewed

as a kind of mixing velocities from neighboring cells. Further

details on the SCM for traffic flow can be found in [6]. Note,

this model could be extended to model urban road networks

by considering the turning fractions of vehicles at junctions or

by using origin-destination information for the vehicles if this

available [18].

B. Measurement model

In this work the measurements of interest are the flow of

vehicles past segment boundaries (Q̄j,s) and their associated

average speeds (v̄j,s). Traditionally, such measurements can

be obtained using induction loops under the road surface, and

more recently from radar, video cameras or global positioning

system (GPS) on probe vehicles. The measurements available

(i.e. measurements for all of the n boundaries) at time ts are

given by zs = [zT1,s, zT2,s, ..., zTn,s]
T , where zj,s = [Q̄j,s, v̄j,s]

T .

The measurement equation is given by:

zs = h(xs, ξs), (4)

where h(.) is determined by the measurement model used. If

a Gaussian measurement noise is assumed this gives:

zj,s =

(

Q̄j,s

v̄j,s

)

+ ξs, (5)



where ξs = [ξQ̄j,s
, ξv̄j,s

]T . Therefore, from a known distribu-

tion of the initial state vector the estimation problem discussed

in Section II-A becomes a recursive Bayesian estimation

problem. This can be solved using a PF as detailed in Section

III-B.

III. PARTICLE FILTERING FRAMEWORK FOR TRAFFIC

STATE ESTIMATION WITH REDUCED MEASUREMENT

SPACE

A. Measurement Selection

This section details how the column based matrix decom-

position can be used to select the measurements (flows across

segment boundaries and average vehicle speeds) to give a

reduced measurement space, to which a PF can be applied

for traffic state estimation. First assume that Za ∈ R
2Ka×n

is the matrix containing all of the available the measurements

for all points in the road network for a given period of time.

Also, Ka gives the number of points in time considered in

the matrix Za being decomposed. The dimension of interest

is twice this length as the measurements being considered

contain both flow measurements and the associated average

speeds of the vehicles.

This measurement matrix can then be approximated by Ẑ,

which is given by [28]:

Ẑ = Z̃Φ. (6)

Here, Z̃ ∈ R2Ka×m gives the measurements at all points in

time for a subset of the road segment boundaries, Φ ∈ Rm×n

express the columns in Ẑ in terms of the basis given in Z̃.

Note, as Z̃ only contains a subset of all of the available

measurements this means that m < n.

To find the m locations from which the measurements are

used to construct Z̃ the SVD of Za is found. The right singular

vector is then used to assign a probability (Pzi ) of each

location/column being selected. This probability is given by

Pzi =
1

r

r
∑

j

v̌i,j , for i = 1, 2, ..., n, (7)

where r is the rank of Za and v̌i,j the ith entry in the jth right

singular vector. Once these probabilities have been found the

m locations with the highest proabilities can then be kept and

used to approximate the road network as a whole.

In [28] the authors discuss learning the matrix Φ from the

available data. Then when new measurements (now only for

the m retained locations) become available the new measure-

ments for the road network as a whole can be given by

Ẑnew = Z̃newΦ. (8)

Here, Z̃new is the newly available measurements and Ẑnew

the resulting approximation of what the road network is doing

as a whole.

Instead, this work constructs a new measurement vector,

žk = [žTn1,k
, žTn2,k

, ..., žTnm,k]
T , when the measurements for the

m selected locations become available at time tk. This process

is summarised in Figure 2, where the selected locations are

(2mx1)

zn1

z z z z z z1 32 n−2 n−1 n

zk

zn znzn2 m−1 m

zk

Selection
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(2nx1)

Fig. 2: Framework for construction of reduced measurement

space.

given by n1, n2, ..., nm. This measurement vector is then used

as the measurement vector in the particle filter as detailed

below. Estimates for the state at each location are then

provided by the PF rather than the approximation scheme in

[28].

B. Particle Filtering Framework

In PFs, the aim is to find the posterior probability density

function (PDF) of the state at time tk given a set of measure-

ments up to the same point in time. This involves evaluating

p(xk|Ž
k
), where Ž

k
= [žT1 , ...., žTk ]

T and žk is constructed as

detailed above.

From Bayes’ rule

p(xk|Ž
k
) =

p(žk|xk)p(xk|Ž
k−1

)

p(žk|Ž
k−1

)
, (9)

where

p(xk|Ž
k−1

) =

∫

Rnx

p(xk|xk−1)p(xk−1|Ž
k−1

)dxk−1 (10)

and p(žk|Ž
k−1

) is a normalising constant. This means

p(xk|Ž
k
) can be updated using the following proportionality

relationship:

p(xk|Ž
k
) ∝ p(žk|xk)p(xk|Ž

k−1
). (11)

However, this process is computationally expensive, mean-

ing it is necessary to use methods such as the PF that give

approximate solutions [23], [24]. Algorithm 1 gives the PF

(with Mpf particles) for traffic state estimation with reduced

measurement space that is considered in this work. The
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Fig. 3: Flow of vehicles at inflow and outflow road boundaries.

interested reader is referred to [7] for further details on the

use of PFs for traffic state estimation.

The novelty of this work is in the inclusion of the measure-

ments selection step (Step 1 in Algorithm 1), the results of

which form a reduced measurement space (Step 4 in Algo-

rithm 1). Using this step reduces the number of measurements

required to evaluate the likelihood function in the PF (Step

5 in Algorithm 1), which in turn reduces the computational

complexity. The measurement selection step, which gives the

reduced measurements space is detailed above in Section

III-A.

Note, tk ≡ ts is required to account for the fact that there

is not necessarily measurements available at every time step

within the particle filter. For example it is possible to consider

a time step of ten seconds (model applied every ten seconds)

but only have measurements available every minute.

IV. PERFORMANCE EVALUATION

In this section a performance evaluation based on a 4km

stretch of simulated road with 3 lanes is provided for a 3

hour period of time. Congestion was introduced by varying

the inflow and outflow rates for the simulated road, as shown

in Figure 3. The corresponding average speeds are shown in

Figure 4. Multiple sets of measurements are generated, one

is then used for the measurement selection step as detailed in

Section III-A and the remaining for the MC = 100 runs. The

road segments were initialised to have 14 vehicle present, with

an average speed of 100km/h. The interested reader is referred

to [7] for further details about how the simulated data used

for testing was generated.

A comparison is drawn between PFs with a varying number

of measurements being utilised. Firstly, with all available

measurements being used. Then with m = 4 measurements

being selected by the proposed method. Note, 4 measurements

are used as an example here to illustrate that it is possible to

make a computational saving. However, as a general rule it

Algorithm 1 Particle Filter for Traffic State Estimation with

Reduced Measurement Space (adapted from [7])

1: Measurement Selection: Carry out the decomposition to

get an approximation of the road network

Ẑ = Z̃Φ

to select the m most significant locations.

2: Initialization: k = 0
For l = 1, . . . ,Mpf

Generate samples {x
(l)
0 } from the initial distribution

p(x0) and initial weights w
(l)
0 = 1/Mpf .

End For

3: Prediction step:

For l = 1, . . . ,Mpf ,

sample x
(l)
k ∼ p(xk|x

(l)
k−1) according to Section II-A

for the road segments of interest.

End For

4: Construct the vector for the reduced measurement space,

only for tk ≡ ts, žk = [žTn1,k
, žTn2,k

, ..., žTnm,k]
T .

5: Measurement processing step, only for tk ≡ ts: Compute

the weights

For l = 1, . . . ,Mpf

w(l)
s = w

(l)
s−1p(žs|x

(l)
s ),

End For

where the likelihood p(žs|x
(l)
s ) is determined by the mea-

surement model in Section II-B.

For l = 1, . . . ,Mpf

Normalize the weights: ŵ
(l)
s = w

(l)
s /

∑Mpf

l=1 w
(l)
s .

End For

6: Output: x̂s =
∑Mpf

l=1 ŵ
(l)
s x

(l)
s ,

7: Selection step (resampling), only for tk ≡ ts:

Multiply/ Suppress samples x
(l)
s with high/ low importance

weights ŵ
(l)
s , in order to obtain M random samples

approximately distributed according to p(x
(l)
s |Ž

s
), e.g. by

residual resampling.

For l = 1, . . . ,Mpf ,

w
(l)
s = ŵ

(l)
s = 1/Mpf ,

End For

8: k ← k + 1 and return to step (1).

would be reasonable to expect a larger computation saving

when even less measurements are used. This would be at the

cost of reduced accuracy in terms of the estimations made.

A greater sensetivity analysis for the proposed method is

currently being undertaken for a larger urban traffic network.

Estimation accuracy is illustrated by using the root mean

square error (RMSE) as given by

RMSEǫi,j ,k =

√

√

√

√

√

MC
∑

j=1

n
∑

i=1

(ǫi,j,k − ǫ̂i,j,k)T (ǫi,j,k − ǫ̂i,j,k)

MC × n
,

(12)

where ǫi,j,k is the actual value of interest and and ǫ̂i,j,k the
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Fig. 4: Average vehicle speeds at inflow and outflow road

boundaries.

corresponding estimated value of interest. In this work the

parameters for which an RMSE value is found for are: the

density of the vehicles inside the cells (ρi,k = Ni,k/(Li× li)),
the flow of the vehicles past segment boundaries (Q̄i,k) and

the vehicle speeds (vi,k).

Computational efficiency will be judged by considering the

computation time. Note, the time for implementing the column

based decomposition for measurement selection is included

in the time given for the example where the measurements

are being selected by the proposed method. All results were

obtained in Matlab on a computer with an Intel Xeon CPU

E3-1271 (3.60GHz) and 16GB of RAM.

In all cases the values Mpf = 100, σ2
ξQj,s

= 3(veh)2 and

σ2
ξvj,s

= 2(km/h)2 were used. Finally the remaining parameter

values required by the particle filter and the traffic model are

as follows: vfree = 120km/h, vmin = 7.4km/h, ρcrit =
20.89veh/km/lane, ρjam = 180veh/km, Al = 0.01km. The

PF with varying numbers of measurements will be compared

for all road locations and an example individual location

(sixth) in what follows.

A. Overall Comparison

Here the results for the PF with measurements available

at all segment boundaries and at four selected measurement

boundaries are summarised in Table I. The RMSE values and

computation times are given as mean values over the entirety

of the time period of interest.

Firstly, it can be seen that decreasing the number of

measurements used to evaluate the likelihood function has

decreased the computation time required by the PF (a re-

duction of 9.06%). Recent work considering the big/tall data

problem with Markov chain Monte Carlo based methods has

suggested that the improvement in terms of computational

savings is greater for higher dimension problems, where there

are originally more measurements available to begin with

TABLE I: Performance summary for PF with 8 measurements

and 4 measurements.

8 4
Example Measurements Measurements

RMSEρ

(veh/km) 5.37 5.59

RMSEQ̄

(veh/h) 798.46 801.53

RMSEv

(km/h) 12.10 13.05

Computation
Time (minutes) 23.83 21.67

[32]. As a result, it would be reasonable to expect a more

significant reduction in terms of computational complexity

when considering the problem of traffic state estimation for

urban environments.

This can be further illustrated if by considering the fact that

the difference in computational complexity can be given as:

O(nMpf −mMPf ) = O(nMpf − cnMpf )

= O(nMpf (1− c)), (13)

where n is the total possible number of measurements, m
the number of measurements selected by the decomposition

method and c the ratio of measurements kept. Therefore, if

the number of particles and ratio of measurements used by

the PF is kept constant, increasing the number of potential

measurements that can be used gives a larger potential saving

in computational complexity. Increasing the number of parti-

cles can therefore also have a similar effect.

From Table I it can also be seen that the RMSE values

have increased for each value being estimated when less mea-

surements are used. This suggests that the resulting estimates

are less accurate then when all of the measurements are used.

However, despite the increases in RMSE values an acceptable

estimation accuracy is still achieved.

To illustrate the estimation accuracy is still acceptable con-

sider Figures 5-6. These figures show example performances

for a single run of the PF using only the four measurements.

Figures 5-6 show the spatio-temporal evolution of the traffic.

The colour bar represents the number of vehicles crossing the

segment boundaries (or their associated speeds). Here, it can

be seen that there the number of vehicles crossing segment

boundaries and the associated speeds have been estimated with

a good accuracy. Note, the reduction in flow shown in Figure

5 corresponds to the reduction in inflow and outflow between

the times of 1.70h and 1.82h shown in Figure 3. Similarly

the reduction in speeds shown in Figure 6 is explained by

the large reduction in outflow speed indicated in Figure 4.

In addition the flow density diagram in Figure 7 shows the

usual characteristics associated with traffic flow, further indi-

cating that appropriate estimates have been achieved. Note, the

colours in Figure 7 are used to distinguish between different

measurement locations.
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B. Comparison for the sixth Segment Boundary

Here, the sixth road segment will be considered to illustrate

the performance in terms of estimation accuracy for a single

location on the road. The RMSE values are illustrated in

Figures 8-10 and summarised in Table II. Note, computation

times are not shown here as they are illustrated in the overall

comparison above. It can be seen that there are acceptable

estimation accuracies in both cases. Although the RMSE
values are higher when only four measurements are used, the

increase has not been significant enough to give inappropriate

estimates.

V. CONCLUSIONS

Traffic state estimation is an important first step in solving

problems such as route planning for congestion avoidance and

traffic control measures. Particle filters have been shown to be

a powerful method of solving this estimation problem. This

paper proposed using the column based matrix decomposition

method to select the measurements used to construct a reduced
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Fig. 8: RMSE for the density estimates at thesixth road

segment.

TABLE II: Performance summary at the sixth road segment

for a PF with 8 measurements and 4 measurements.

8 4
Example Measurements Measurements

RMSEρ

(veh/km) 2.04 2.14

RMSEQ̄

(veh/h) 297.01 299.37

RMSEv

(km/h) 4.32 5.18

measurement space for use within the particle filter for traffic

state estimation. A performance evaluation is provided for

a simulated stretch of road and shows that an 9.06% im-

provement in terms of computational time is possible when

selecting half the original number of measurements to use.

This has not come at the cost of a significant decrease in

estimation accuracy. It would also be reasonable to expect

a more significant improvement in terms of reduction in

computational complexity when considering large urban road

networks.
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Fig. 9: RMSE for the flow estimates at the sixth road

segment.
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