
This is a repository copy of A Novel Measurement Processing Approach to the Parallel 
Expectation Propagation Unscented Kalman Filter.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/117250/

Version: Accepted Version

Proceedings Paper:
De Freitas, A., Fritsche, C., Mihaylova, L.S. orcid.org/0000-0001-5856-2223 et al. (1 more 
author) (2017) A Novel Measurement Processing Approach to the Parallel Expectation 
Propagation Unscented Kalman Filter. In: 2017 20th International Conference on 
Information Fusion (Fusion). 2017 20th International Conference on Information Fusion, 
10-13 Jul 2017, Xi'an, China. IEEE . ISBN 978-0-9964-5270-0 

https://doi.org/10.23919/ICIF.2017.8009713

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers 
or lists, or reuse of any copyrighted components of this work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



A Novel Measurement Processing Approach

to the Parallel Expectation Propagation

Unscented Kalman Filter

Allan De Freitas1, Carsten Fritsche2, Lyudmila Mihaylova1, and Fredrik Gunnarsson2,3

1Department of Automatic Control and Systems Engineering, University of Sheffield, United Kingdom
2Department of Electrical Engineering, Linköping University, Linköping, Sweden
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Abstract—Advances in sensor systems have resulted in the
availability of high resolution sensors, capable of generating
massive amounts of data. For complex systems to run online,
the primary focus is on computationally efficient filters for the
estimation of latent states related to the data. In this paper a
novel method for efficient state estimation with the unscented
Kalman Filter is proposed. The focus is on applications consisting
of a massive amount of data. From a modelling perspective, this
amounts to a measurement vector with dimensionality signifi-
cantly greater than the dimensionality of the state vector. The
efficiency of the filter is derived from a parallel filter structure
which is enabled by the expectation propagation algorithm. A
novel parallel measurement processing expectation propagation
unscented Kalman filter is developed. The primary advantage
of the novel algorithm is in the ability to achieve computational
improvements with negligible loses in filter accuracy. An example
of robot localization with a high resolution laser rangefinder
sensor is presented. A 47.53% decrease in computational time
was exhibited for a scenario with a processing platform consisting
of 4 processors, with a negligible loss in accuracy.

I. INTRODUCTION

The Kalman Filter (KF) [1] is the optimal estimator of a

latent state vector in a linear dynamic system with independent

additive white noise on the dynamics and observation models.

However, in reality, the majority of dynamic systems contain

some form of nonlinearity, e.g. the integrated navigation

system in an unmanned aerial vehicle (UAV) [2]. Simulation-

based methods, such as the particle filter (PF) [3], have been

proposed for estimation in nonlinear systems. These methods

have greater flexibility in their probabilistic representation,

however, this comes at the cost of a greater computational

expense which increases with the dimensionality of the state

vector [4]. Nonlinear adaptations of the KF have also been pro-

posed for estimation in nonlinear systems. The most notable

nonlinear KF adaptation is the extended KF (EKF), which is

based on the linearization of a nonlinear system. It has been

shown that this linearilization can have a negative impact on

filter accuracy and stability [5]. Alternatively, deterministic

sampling based sigma point KFs have been proposed as a

superior alternative. A variety of sigma point KFs have been

developed, see [6] for an in-depth theoretical unification and

comparison. One of the most popular sigma point KFs, and

the starting point of this work, is the unscented KF (UKF).

The UKF is a derivative free approach, introduced in [7],

based on the unscented transformation (UT). The UT relies on

a deterministic number of weighted sigma points to approxi-

mate the mean and covariance of a Gaussian random variable

that is propagated through a nonlinear function. In the standard

UKF, multiple measurements are modelled by a stacked mea-

surement vector. However, with recent advancements in sensor

technology applications where excessively large amounts of

measurements are received at each time step are resulting

in high dimensional measurement vectors. This can result in

significant computational performance degradation, since the

computation of the Kalman gain requires a matrix inversion

of a large matrix.

Several approaches aimed at improving the efficiency of the

UKF have been developed. One basis for improvement is on

the reduction of the dimensionality of the sigma points. In

[8] a simplex set of sigma points was presented, reducing the

number of sigma points from 2nx +1 to nx +2, where nx is

the dimensionality of the state vector, with a minimal impact

on the performance. In [9] an approach based on the minimal

ensemble set of sigma points, consisting of nx + 1 points,

was presented with performance inline with the EKF. Another

basis for performance improvement is the algebraic manipu-

lation of the UKF. In [10] the square-root UKF is presented

with the introduction of efficient linear algebra techniques,

specifically the QR decomposition, Cholesky factor updating,

and efficient least squares. In [11] a method of processing the

measurements in a serial fashion with a result equivalent to

the joint processing of the measurements is presented, based

on the Sherman-Morrison-Woodbury identity.

In this paper a novel efficient variant of the UKF is

presented. This is based on the utilisation of a computing

platform with multiple processors. In this case the high dimen-

sional measurement vector is sub-divided into non-overlapping

lower dimensional measurement vectors that are processed

in parallel. For the first time the Expectation Propagation

(EP) algorithm and UKF are combined to enable a parallel

processing UKF structure referred to as the EP-UKF.

The remainder of this paper is organised in the following

manner: In Section II the problem is formulated. In Section III

the derivation of the proposed estimation method is presented.

Section IV describes the experiments performed. Section V



illustrates the performance of the EP-UKF in comparison with

the standard UKF. Finally, conclusions are summarised in

Section VI.

II. PROBLEM FORMULATION

Consider the evolution of an unobservable state sequence,

xk ∈ R
nx at discrete time tk, with k = 1, ..., T ∈ N, given

by:

xk = f(xk−1,uk,wk), (1)

where f(·) represents a function which is generally non-

linear, uk is an input and wk represents zero-mean white

Gaussian noise with covariance Qk. At each discrete time step

measurements zk ∈ R
nz are received and related to the state

according to

zk = g(xk) + ξk, (2)

where g(·) represents a function which is generally non-

linear, and ξk represents zero-mean white Gaussian noise with

covariance Rk.

In a Bayesian framework, the aim is to sequentially com-

pute the filtering posterior state probability density function

(pdf), p(xk|z1:k) with z1:k = {z1, ..., zk}. Ideally, this can

be achieved through a two step process when the filtering

posterior state pdf at the previous time step, p(xk−1|z1:k−1), is

available. The first step is referred to as the prediction step via

the Chapman-Kolmogorov equation, resulting in the predictive

posterior state pdf

p(xk|z1:k−1) =

∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1, (3)

where p(xk|xk−1) represents the state transition pdf, which is

the probabilistic equivalent of (1). The new measurements are

utilised to update the predictive posterior state pdf via Bayes’

rule

p(xk|z1:k) =
p(xk|z1:k−1)p(zk|xk)

∫

p(xk|z1:k−1)p(zk|xk)dxk

, (4)

where p(zk|xk) is referred to as the likelihood function, which

is the probabilistic equivalent of (2).

In this formulation it is assumed that the measurement

is an uncorrelated high-dimensional vector composed of a

large number of low dimensional measurements, i.e. zk =
[z⊤

1,k, z
⊤
2,k, . . . , z

⊤
M,k]

⊤, and thus the covariance reduces to

Rk = diag(R1,k,R2,k, . . . ,RM,k). It is also assumed that a

computing platform with D processors capable of processing

measurements in parallel is available. The measurement vector

is decomposed into D measurement vectors, i.e. {zk,d}
D
d=1,

where zk =
⋃D

d=1 zk,d and zk,i

⋂

zk,j = ∅ ∀ i 6= j, with

each processor assigned a measurement vector. The filtering

posterior state pdf in (4) is accordingly given by

p(xk|z1:k) =
p(xk|z1:k−1)

∏D

d=1 p(zk,d|xk)
∫

p(xk|z1:k−1)
∏D

d=1 p(zk,d|xk)dxk

. (5)

This results in the definition of a local likelihood for each

processor d, p(zk,d|xk).

III. EXPECTATION PROPAGATION UNSCENTED KALMAN

FILTER DERIVATION

EP is a deterministic approximate inference scheme, based

on the minimisation of the Kullback-Leibler (KL) divergence

[12]. Typically the EP approach is used to approximate poste-

rior distributions with a simpler distribution, which is close in

the sense of the KL divergence. EP is a flexible scheme which

has been shown to naturally extend to the parallel processing of

partitioned data [13], [14]. Here, the EP framework is utilised

to approximate the likelihood terms for each processor with a

member of the exponential family.

The local filtering posterior state pdf at each processor d is

given by:

pd(xk|z1:k) =
p(zk,d|xk)pd(xk|z1:k−1)

∏

i 6=d πi(xk)
∫

p(zk,d|xk)pd(xk|z1:k−1)
∏

i 6=d πi(xk)dxk

,

(6)

with

πi(xk) = h(xk)ℓ(η) exp
{

ηTu(xk)
}

, (7)

where η represents the natural parameters (NPs), and h(xk),
ℓ(η) and u(xk) are functions which vary depending on the

member of the exponential family. Clearly, the local filtering

posterior state pdf takes information about the measurements

from the other processors into account via πi(xk), thus

being an approximation of the global posterior distribution,

pd(xk|z1:k) ≈ p(xk|z1:k). The degree to which the approxi-

mation is true is dependent on how accurately the likelihood

terms are approximated.

In this paper a KF based approach is considered. In this case

all the pdfs related to the Bayesian recursion are approximated

with Gaussian distributions, i.e.

pd(xk−1|z1:k−1) ≈N (xk−1; x̂d,k−1|k−1,P d,k−1|k−1), (8a)

pd(xk|z1:k−1) ≈N (xk; x̂d,k|k−1,P d,k|k−1), (8b)

pd(xk|z1:k) ≈N (xk; x̂d,k|k,P d,k|k), (8c)

πd(xk) ≈N (xk;µd,P d). (8d)

Due to the Gaussian approximations, the local posterior state

pdf in (6) is further reduced into the same form as the general

posterior state pdf in (4),

pd(xk|z1:k) =
p(zk,d|xk)

1
ζ
p
d̃
(xk|z1:k−1)

∫

p(zk,d|xk)
1
ζ
p
d̃
(xk|z1:k−1)dxk

, (9)

where ζ represents a normalisation constant independent of

xk, and p
d̃
(xk|z1:k−1) = N (xk; x̂d̃,k|k−1,P d̃,k|k−1) with

x̂
d̃,k|k−1 =



P−1
d,k|k−1 +

∑

i 6=d

P−1
i





−1

×



P−1
d,k|k−1x̂d,k|k−1 +

∑

i 6=d

P−1
i µi



 ,

P
d̃,k|k−1 =



P−1
d,k|k−1 +

∑

i 6=d

P−1
i





−1

. (10)



Another form of the local posterior state pdf is

pd(xk|z1:k) =
pd(xk, zk,d|z1:k−1)

∫

pd(xk, zk,d|z1:k−1)dxk

(11)

where the local joint pdf is

pd(xk, zk,d|z1:k−1) = N ((x⊤
k , z

⊤
k,d)

⊤;µxz,P xz), (12)

with

µxz =

(

x̂
d̃,k|k−1

ẑd,k|k−1

)

P xz =

(

P
d̃,k|k−1 P xz,k|k−1

P⊤
xz,k|k−1 P zz,k|k−1

)

, (13)

and where

ẑd,k|k−1 =

∫

g(xk)N (xk; x̂d̃,k|k−1,P d̃,k|k−1)dxk

P xz,k|k−1 =

∫

(xk − x̂
d̃,k|k−1)(g(xk)− ẑd,k|k−1)

⊤

×N (xk; x̂d̃,k|k−1,P d̃,k|k−1)dxk

P zz,k|k−1 =

∫

(g(xk)− ẑd,k|k−1)(g(xk)− ẑd,k|k−1)
⊤

×N (xk; x̂d̃,k|k−1,P d̃,k|k−1)dxk. (14)

It has been shown, e.g. in [15], that the substitution of (12)

into (11) leads to the following update of the local posterior

state pdf parameters:

x̂d,k|k = x̂
d̃,k|k−1 +Kk(zk,d − ẑd,k|k−1)

P d,k|k = P
d̃,k|k−1 −KkP zz,k|k−1K

⊤
k

Kk = P xz,k|k−1P
−1
zz,k|k−1. (15)

However, due to the non-linearities associated with (1) and

(2), no analytical solution exists for the expressions in (10)

and (14). A natural approach to overcoming this challenge

is through the utilisation of sigma point transformation. Here

this is exemplified with the scaled unscented transformation

(SUT). This is a method for determining the statistics of a

random variable which undergoes a non-linear transformation.

Given a random variable y of dimension ny that follows a

Gaussian distribution with mean ŷ and covariance P y . The

random variable is subjected to a non-linear transformation

resulting in a new random variable

r = g(y). (16)

The aim of the SUT is to determine the first two moments

of the distribution of r. Initially a set of 2ny + 1 weighted

samples, S = (W ,Y ) referred to as sigma points, are deter-

ministically selected. The sigma points capture the statistics

of the distribution of y. The sigma points are determined

according to the following set of equations [16]

Y 0 = ŷ

Y i = ŷ +

(

√

(ny + λ)P y

)

i

i = 1, ..., ny

Y i = ŷ −

(

√

(ny + λ)P y

)

i

i = ny + 1, ..., 2ny

W
(m)
0 =

λ

(ny + λ)

W
(c)
0 =

λ

(ny + λ)
+ (1− α2 + β)

W
(m)
i = W

(c)
i =

1

2(ny + λ)
i = 1, ..., 2ny,

(17)

where λ = α2(ny + κ) − ny ,
(

√

(ny + λ)P y

)

i
is the ith

row or column of the matrix square root of (ny + λ)P y , and

α, β and κ are scaling parameters. The indices (m) and (c)
represent the weights for the mean and covariance. Each sigma

point is then propagated through the non-linear transformation,

Ri = g(Y i) i = 0, ..., 2ny. (18)

The first two moments of the transformed random variable, r,

can then be approximated by

r̂ =

2ny
∑

i=0

W
(m)
i Ri

P r =

2ny
∑

i=0

W
(c)
i (Ri − r̂)(Ri − r̂)⊤.

(19)

Once this principal has been applied to obtain the param-

eters in (15) for the local posterior state pdfs, the likelihood

approximation for each processor d is updated according to

µd =



P−1
d,k|k − P−1

d̃,k|k−1
−
∑

i 6=d

P−1
i





−1

×



P−1
d,k|kx̂d,k|k − P−1

d̃,k|k−1
x̂
d̃,k|k−1 −

∑

i 6=d

P−1
i µi



 ,

P d =



P−1
d,k|k − P−1

d̃,k|k−1
−
∑

i 6=d

P−1
i





−1

. (20)

The updated parameters are shared among the processors and

the procedure is iterated until reaching convergence. However,

convergence is not always guaranteed [17]. Here the number

of iterations is treated as a fixed parameter, L. The algorithm

for the EP-UKF is presented in Algorithm 1.

IV. APPLICATION TO MOBILE ROBOT LOCALIZATION

Mobile robots are required to know their position and

orientation, also known as their pose, when performing tasks

in a known environment. The online estimation of the pose



is referred to as localization. The localization problem can be

defined as either local or global. Here the local form of the

problem is considered, where the aim is to compensate for

odometry errors which occur during robot navigation. This

problem has been previously approached with the standard

forms of the EKF and UKF [18].

The pose of the robot at discrete time instance k is repre-

sented by xk = (xk, yk, θk)
⊤, where (xk, yk) represents the

position of the robot in a two dimensional plane, and θk is

the orientation of the robot. The pose of the robot evolves

Algorithm 1 Expectation Propagation Unscented Kalman

Filter for node d

Initialisation (k = 0): x̂d,0|0, P d,0|0

x̂
a
d,0|0 =

(

x̂
⊤
d,0|0 0

)⊤

P a
d,0|0 =

(

P d,0|0 0

0 Q0

)

for k = 1,...,T do

for l = 1,...,L do

Calculate sigma points, Sa
k−1, according to (17) based

on x̂
a
d,k−1|k−1 and P a

d,k−1|k−1.

Perform time updates:

Xx
d,k|k−1 = f

(

Xx
d,k−1,uk,X

w
d,k−1

)

x̂d,k|k−1 =
∑2na

i=0 W
(m)
i Xx

i,d,k|k−1

P d,k|k−1 =
∑2na

i=0 W
(c)
i (Xx

i,d,k|k−1 − x̂d,k|k−1)×
(Xx

i,d,k|k−1−x̂d,k|k−1)
⊤

Calculate x̂
d̃,k|k−1 and P

d̃,k|k−1 with (10).

Re-calculate sigma points, Sa
k|k−1, according to (17)

based on x̂
d̃,k|k−1 and P

d̃,k|k−1.

Zd,k|k−1 = g
(

Xx
d,k|k−1

)

ẑd,k|k−1 =
∑2na

i=0 W
(m)
i Zi,d,k|k−1

Perform measurement updates:

P zz,k|k−1 =
∑2na

i=0 W
(c)
i (Zi,d,k|k−1 − ẑd,k|k−1)×

(Zi,d,k|k−1− ẑd,k|k−1)
⊤

P xz,k|k−1 =
∑2na

i=0 W
(c)
i (Xx

i,d,k|k−1 − x̂
d̃,k|k−1)×

(Zi,d,k|k−1−ẑd,k|k−1)
⊤+Rd,k

Kk = P xz,k|k−1P
−1
zz,k|k−1

x̂d,k|k = x̂
d̃,k|k−1 +Kk(zd,k − ẑd,k|k−1)

P d,k|k = P
d̃,k|k−1 −KkP zz,k|k−1K

⊤
k

Calculate µd and P d according to (20).

Share µd and P d to the set D \ d processors.

Receive µi and P i ∀ i 6= d from the set D \ d

processors.

end for

end for

*Where Xa =
(

(Xx)
⊤
(Xw)

⊤
)⊤

.

according to [19]

xk = xk−1 + Ts





cos θk 0
sin θk 0
− sin γk

lF cos γk+lR

−lR
lF cos γk+lR





[

vk
ωk

]

,

= f(xk−1,uk), (21)

where uk = (vk, ωk)
⊤ is the speed and steering rate inputs, γk

is the observed steering angle, parameters lF and lR represent

the distances from the front and rear wheel axes to the hinge

angle respectively, and Ts is the sample time. The motion noise

covariance matrix, Qk, is given by

Qk =

(

σ2
v 0
0 σ2

ω

)

, (22)

where σ2
v and σ2

ω are the variances associated with the speed

and steering rate inputs.

The novelty of the EP-UKF lies within the measurement

update. For this application the UKF time update step is

interchanged with the EKF time update step without retracting

from the novelty of the EP-UKF. This is done purely to

increase the computational efficiency and is possible in this

application since there is a closed form motion model. The

time update is thus given by

x̂k|k−1 = f(x̂k−1|k−1,uk),

P k|k−1 = Hu,kQkH
⊤
u,k +Hx,kP k−1|k−1H

⊤
x,k, (23)

where

Hx,k =





1 0 −Tsvk sin θk
0 1 hvk cos θk
0 0 1



 ,

Hu,k =





Ts cos θk 0
Ts sin θk 0
−Ts sin γk

lF cos γk+lR

−TslR
lF cos γk+lR



 . (24)

The robot is located in a room with a known map. The

measurement sensor used by the robot for localization is a

laser rangefinder. The sensor uses a laser beam to determine

the distance to an obstruction. The laser rangefinder obtains a

set of distance measurements dispersed 360◦ around the robot

with equi-distance angular spacing between measurements, see

Figure 1. The ith element of zk is a range measurement related

Fig. 1: An illustrative example of the range measurements

observed by a robot, for the case of 20 measurements.



to the position of the robot through

zi,k =
√

(xk − xw,i)2 + (yk − yw,i)2 + ξi,k, (25)

where (xw,i, yw,i)
⊤ represents the position of the wall coin-

ciding with the laser beam, and ξi,k ∼ N (0, Ri).

V. RESULTS

Consider the scenario of a robot with a multi-core digital

signal processor navigating a known environment with a high

angular resolution laser rangefinder. Both the standard UKF,

and the EP-UKF are utilised for the inference of the robot pose

over several experiments, based on the models in Section IV.

The algorithms are implemented in the interpreted language

MATLAB. The parallel processing for the EP-UKF is achieved

in MATLAB with the parfor command. All simulations

were performed on a mobile computer with Intel(R) Core(TM)

i7-4702HQ CPU @ 2.20GHz with 16GB of RAM.

Two different methods are used to compare the performance

of the filters. The first is the root mean square error (RMSE)

of the pose. The RMSE for each time step is calculated over

a number of independent simulation runs according to

RMSE =

√

√

√

√

1

NI

NI
∑

i=1

(X̂i −Xi)2, (26)

where X represents a specific component of the state vector

xk, with Xi the ground truth, X̂i represents the algorithm

estimate, which corresponds to the mean of the UKF in this

application, and NI represents the number of independent

runs. The RMSE of the states corresponding to the position are

averaged to obtain a single result. The RMSE illustrates the

tracking accuracy of the algorithms. The second is the average

MATLAB execution time, which illustrates the computational

efficiency of the algorithms.

A. Parameters

The following parameters were utilised unless otherwise

specified. The number of independent simulation runs is

NI = 100. The number of time simulation steps is T = 80.

The motion model parameters are Ts = 1, u = (0.2, 0)⊤,

σ2
v = 1× 10−3, σ2

ω = 1× 10−4 and γ0:39 = 0 with a step to

γ40:80 = −0.5, and lF = 2, lR = 2. The number of processor

cores is D = 4. The target observation model parameters are

M = 200 and Ri = 1 × 10−2. The number of EP iterations

is L = 2.

B. Performance Evaluation

The robot trajectory for the experiments is illustrated in

Figure 2. The RMSE of the robot position has been averaged

over the position dimensions, and also over the estimates

for the individual processors in the EP-UKF, this result is

presented in Figure 3. This result illustrates that there is no

significant reduction in the accuracy of the estimate obtained

by the EP-UKF.

The RMSE fluctuates over the course of the simulation

because of the complex environment, but overall is highly

x (m)

y
 (

m
)

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

Fig. 2: The robot trajectory for the experiments, where ⋄
and × represents the starting and end points, respectively.
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Fig. 3: Average RMSE of the robot position.

accurate since a high number of measurements are collected at

each discrete time step. For the given experiment, the average

MATLAB execution time per time step for each algorithm is

illustrated in Figure 4. An increase in the number of processors

reduces the algorithm execution time. There is a decrease

in computational time of 47.53% given 4 processors. In this

scenario, it may be expected to have a result closer to 75%,

however, this is closer to a value of 50% due to the EP iteration

L = 2. This value of EP iteration also explains why there is

no computational gain when considering 2 processors.

VI. CONCLUSIONS

In this paper a novel method for efficient state estimation

with the EP-UKF for massive amounts of measurements is

proposed. This is based on a parallel filter structure enabled

by the combination of the EP algorithm and UKF. The primary

advantage of the algorithm is in the ability to achieve compu-

tational improvements with negligible loses in filter accuracy.

In this paper a 47.53% decrease in computational time was

exhibited for a case with a processing platform consisting of

4 processors. An additional advantage is the flexibility of the

algorithm. The number of processors can vary according to

the processing platform available.
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Fig. 4: Average MATLAB algorithm execution time per

time step.
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