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Abstract—In this paper we present a method for the
tracking of interacting targets disregarding whether or not
the targets are close to each other. The method relies on
parametric modeling of assumptions about targets interactive
motion. Our filtering solution incorporates the parameters of
the model in the state vector to perform on-line parameter
estimation and exploitation. The proposed method is applied
in a simulated Multiple Target Tracking application with radar
track-before-detect measurements. Numerical experiments show
that this approach results in estimation error reduction, allows
detection of interactive target behaviors and reduce labeling
uncertainty in closely-spaced targets tracking.
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I. Introduction

Multiple Target Tracking (MTT) refers to the problem of

estimating the state of targets in the scene and it finds its

application for instance in maritime traffic monitoring and

camera surveillance. Many MTT techniques exist, among

which Joint Probabilistic Data Association (JPDA) [1] and

Multiple Hypothesis Tracking (MHT) [2] are probably

the most well-known. Most of these techniques assume

independent motion of the various targets.

This paper deals with the problem of modeling and

estimating interacting targets motion. Interacting and even

coordinated motion can for instance be found in objects

that accidentally run into each other, groups of objects that

intentionally move closely together as a group, and even

well-separated objects that are executing a joint plan. In these

scenarios, incorporation of interactive behavior modeling in

the estimation algorithms is expected to improve tracking

performance.

Some literature exists on group tracking, which is certainly

a particular case of interacting targets tracking. In [3], a

framework based on the so called “Evolving Networks”

is proposed to perform targets state estimation and group

structure discovery. The method relies on a graphical

network-like representation where each node represents a

different target. When the targets are considered in the

same group the evolution model becomes coupled along the

coordinates of different objects. However, although it is fairly

understandable that different objects traveling in a group are

interacting with each other, the method does not cover any

kind of interactions between non-closely-spaced targets.

The method presented in this paper is motivated by the

idea that all possible interacting behaviors can be modeled

relying on two different sources of information. First, the set of

points that the targets get attracted or repulsed to. Second, the

models of interaction between the targets and these points of

attraction/repulsion. By these means, any interacting behavior

can be understood as variable accelerations of the targets

in relation with the set of attraction/repulsion points. These

unknown points can be variable in number, fixed or dynamic,

and may even be another target in track.

A complete solution would be the one estimating the

attraction/repulsion points, the parameters of interaction

between the targets and these points, and the dynamics of the

targets, all together in the joint space. In this paper we consider

the tracking of interacting objects given that the points of

attraction/repulsion are known. Therefore, the focus is on the

parametric modeling and estimation of the attraction /repulsion

accelerations to these points.

In a sense, we model target interactions by using a very

simplified version of the so-called Social Force models applied

separately for each direction. Social force models, introduced

by Helbing [4], have been used extensively in pedestrian

tracking. In these applications, social forces are proven to

effectively reduce data association errors as in [5]. Several

challenges as handling occlusions [6] or tracking with cameras

with no overlapping fields of view [7] have been tackled by

using these simple yet powerful models.

The results presented in this paper show the benefits

of incorporating estimation and exploitation of objects

interactions in an MTT application. First, reduction of

estimation errors in the filtering process. Second, detection

of changes in the behavior of the targets. Third, reduction of

labeling uncertainty in closely-spaced targets tracking. Finally,

aid in classification of targets behavior. The experiments

are in the context of track-before-detect (TBD) radar

measurements. Sequential Monte Carlo methods are selected

for the implementation due to the highly non-linear nature of

the dynamics and the measurement model.

The paper is organized as follows. In Section II we present

the assumptions of the interacting target motion model in

continuous time and derive the discretized model. In Section

III we discuss the incorporation of the interactive discretized

model in a MTT application. First, the measurement model



is defined and then, it is put together with our interacting

target motion model in the context of recursive Bayesian

estimation. In Section IV we present the simulation examples.

First, we provide some preliminary results on estimation

error reduction when incorporating knowledge about objects

interaction. Second, we show that a Multiple Model (MM)

filtering implementation encapsulating our method allows

detection of switching behaviors. Moreover, we show that

labeling uncertainty can be reduced by incorporation of

interactive motion modeling. We conclude in section V.

II. Interacting TargetMotionModeling

Independent target motion models are oftentimes used for

the tracking of any target disregarding its degree of interaction.

For the case of one object moving in 2D, the state vector s(t)

comprises two coordinates (x and y) and for each coordinate

we consider two dimensions: position (x(t), y(t)) and velocity

(ẋ(t), ẏ(t)). Then s(t) = [x(t) ẋ(t) y(t) ẏ(t)]T .

A generic continuous-time dynamic model can be

represented by a first order linear differential stochastic system

as,

ṡ(t) = As(t) + Bu(t) +Gṽ(t) s(t)u(t)

Fig. 1. Generic first order linear dynamic system

where A is called the system matrix, B is the (continuous-time)

input gain, G is the (continuous-time) noise gain. s(t) is

the state vector, u(t) is the input vector and ṽ(t) is the

(continuous-time) process noise. The Continuous White Noise

Acceleration model [8] is a widely used independent target

motion model. It is characterized by having zero input

contribution and matrices,

A = diag(A1, A2, ..., AN) (1)

where N is the total number of coordinates,

An =

(

0 1

0 0

)

; n = 1, ...,N (2)

G = diag(G1,G2, ...,GN) (3)

Gn =

(

0

1

)

; n = 1, ...,N (4)

being ṽ(t) continuous-time Standard White Gaussian.

In some more elaborated models the input contribution

is considered. When the input vector is fully known, it

only causes an explicit time dependency in the deterministic

part of the evolution model. However, in Multiple Target

Tracking (MTT) applications, the control signals applied on

each target are seldomly modeled (if ever) by the tracking

system. Therefore, the control vector causes also a dependency

in the random component ṽ(t). As we will see in Subsection

II-A, the unknown control vector will be considered part of

the state vector.

A. Assumptions on targets interaction

Interacting targets perform accelerations depending on the

dynamics of other objects and the environment. Therefore,

independent target motion modeling is not optimal when

tracking interacting targets as coupled accelerations get

overlooked. In this Subsection our parametric model of targets

interaction is presented.

In this paper we consider a toy scenario where two

objects (labeled as “b” and “r”) move in 2D. Then, we

consider the state vector s(t) = [sb(t) sr(t)]T . Furthermore,

we assume that the target labeled as “b” is the single point of

attraction/repulsion.

When coordinates of different objects are assumed to be

coupled obtaining an explicit expression of the model in

discrete time is not straightforward. Special considerations

have to be taken as the calculation of the discrete transition

matrix and the covariance of the discrete process noise cannot

be decomposed at the coordinate level. Therefore, interacting

assumptions need to be defined in continuous time and the

discretization of the propagation model needs to be worked

out. The assumptions about the structure of the interactive

motion are,

ẍr(t) = k1(xb(t) − xr(t)) − k2 ẋr(t)

ÿr(t) = k1(yb(t) − yr(t)) − k2ẏr(t) (5)

with k1 and k2 assumed constants with units [s−2] and [s−1]

respectively.

The model basically represents that the accelerations

performed by the object labeled as “r” are the result of

combining two aspects. These are: the desire of target labeled

as “r” to interact with the target labeled as “b” and the

maneuvering limitations of the target labeled as “r” due to

inertia. In this particular case only two parameters are needed

(k1 and k2). We consider the state vector ordered in the

following manner, s(t) = [sx(t) sy(t)]T where,

sx(t) = [xb(t) ẋb(t) xr(t) ẋr(t)]

sy(t) = [yb(t) ẏb(t) yr(t) ẏr(t)]

The assumptions in (5) can be directly incorporated as

inputs in the generic model from Fig. 1. Choosing to do so

allows us to consider the input as a good representation for

the intention of the pilot controlling the target. Is this case,

matrix B is given by,

B = diag(Bn, Bn), (6)

Bn = (0 0 0 1)T (7)

and,

u(t) = Ks(t), (8)

where,

K = diag(Kn,Kn), (9)

and

Kn = (k1 0 − k1 − k2) (10)



By these means, we have modeled accelerations depending on

control decisions (which ultimately depend on the dynamics

of other objects and the environment). Now, we can put this

model for the accelerations together with a Continuous White

Noise Acceleration model,

ṡ(t) = As(t) + BKs(t) +Gṽ(t) = (A + BK)s(t) +Gṽ(t) (11)

resulting in the system,

ṡ(t) = Acs(t) +Gṽ(t) (12)

where,

Ac = diag(Ap, Ap), (13)

being Ap the matrix,

Ap =





























0 1 0 0

0 0 0 0

0 0 0 1

k1 0 −k1 −k2





























(14)

B. Discretization of the continuous time model

We can split the discretization of the system from (12) in

two equal parts and associate the separate results (for “x” and

“y” directions) with block chunks in the discrete transition

matrix and the covariance matrix of the discrete process noise.

The discretization will be derived for one of the two directions

and duplicated for the other. If we select the direction “x” for

discretization,

ṡx(t) = Apsx(t) +Gṽx (15)

where,

ṽx =

[

ṽxb

ṽxr

]

(16)

its discrete version can be represented as,

sx,k+1 = Absx,k + vx,k (17)

Moreover, the discretization of the entire system in (12) can

be expressed as,

sk+1 = Ad sk + vk (18)

where Ab can be replicated in the discrete system transition

matrix Ad as,

Ad =
(

Ab 0
0 Ab

)

(19)

Ab is (see Appendix),

Ab =



































1 δt 0 0

0 1 0 0
λ2(1−eδt λ3 )−λ3(1−eδt λ2 )

λ2−λ3
Ab(3, 2) λ2 eδt λ3−λ3 eδt λ2

λ2−λ3

eδt λ2−eδt λ3

λ2−λ3

λ2 λ3(eδt λ2−eδt λ3 )

λ2−λ3
Ab(4, 2) − λ2 λ3(eδt λ2−eδt λ3 )

λ2−λ3

λ2 eδt λ2−λ3 eδt λ3

λ2−λ3



































(20)

where Ab(3, 2) = − k1(eδt λ2−eδt λ3−δtλ2+δtλ3)+k2λ2(1−eδt λ3 )−k2λ3(1−eδt λ2 )

k1 (λ2−λ3)

and Ab(4, 2) =
k1(λ2−λ3−λ2 eδt λ2+λ3 eδt λ3 )−k2λ2λ3(eδt λ2−eδt λ3 )

k1(λ2−λ3)
.

Furthermore, v in (18) is the discrete process noise with zero

mean, and covariance matrix given by,

cov[v] = Cd =
(

Cb 0
0 Cb

)

(21)

The discrete time random component for direction “x” vx is

given by the integral:

vx(kδt) =

∫ (k+1)δt

kδt

eAp((k+1)δt−τ)G(τ)ṽx(τ)dτ (22)

which represents a four dimensional multivariate Gaussian

distribution parametrized by zero mean and covariance matrix:

Cb = q̃x

∫ δt

0

eAp(δt−τ)G[eAp(δt−τ)G]T dτ. (23)

where q̃x is the continuous-time process noise intensity in “x”

direction. The explicit expression of Cb as a function of the

parameters of the interactive motion model is quite extensive

and therefore omitted due to space limitations.

C. Consideration of variable interacting targets motion

Hidden interactions between the objects and the

environment may be variable and therefore the unknown

parameters k1 and k2 should account for this variability as

well. Objects may even gradually change from independent

motion to interacting motion when e.g., targets that are far

away from each other moving independently “decide” to

gather and travel in group formation for a while.

Incorporation of the knowledge about objects interacting

behavior requires an effort of on-line learning k1 and k2. This

can be done directly by extending the state vector with k1 and

k2 and their respective change rate. The extended state vector

considered is s(t) = [s(t) k1(t) k̇1(t) k2(t) k̇2(t)]T . Indeed, k1

and k2 are not considered constants any more. Instead, k1 and

k2 are considered variables and assumed to evolved according

to independent Continuous White Noise Acceleration models.

Then, the model considered for the new state vector can be

expressed as,

sk+1 = Aesk + ve,k (24)

where,

Ae =
(

Ad 0
0 Ak

)

(25)

the blocks of Ae associated to coordinates k1 and k2 are

straightforward to calculate as they are uncoupled from any

other coordinate,

Ak =
(

Au 0
0 Au

)

; where Au =
(

1 δt
0 1

)

(26)

being,

ve = [v vk1 vk̇1 vk2 vk̇2]T (27)

which represents a twelve dimensional multivariate Gaussian

distribution parameterized by zero mean and covariance

matrix,



cov[ve] =
(

Cd 0
0 Ck

)

(28)

Ck =
(

Cu 0
0 Cu

)

(29)

again, the blocks Cu associated to coordinates k1 and k2 are

straightforward to calculate,

Cu =

(

δt3

3
δt2

2
δt2

2
δt

)

q̃k (30)

where q̃k is the continuous-time process noise intensity of the

variabes modeling the interacting motion.

III. Integration of InteractingMotion in a Tracking

Application

This Section contains all necessary aspects that are needed

to develop a particle filtering algorithm based on our model

of targets interaction.

Let sk ∈ R
d denote the state vector and zk ∈ R

m denote

the measurement vector at time index k. Zk denotes the set of

measurements up to time k, including zk: Zk = {z1, z2, ..., zk}.
The state space model can be represented by two conditional

probability densities:

sk+1 ∼ p(sk+1|sk), (31)

zk ∼ p(zk |sk), (32)

where p(sk+1|sk) can be derived from the dynamic model.

In our particular case, p(sk+1|sk) is represented by Eq. (24).

p(zk |sk) is the likelihood of the measurements given the state.

This likelihood function is presented in Subsection III-A.

A. Model of measurements: radar track-before-detect

For the numerical experiments we consider a radar TBD

measurement model as in [9]. The measurement model used

defines the power reflected by the two objects for each

cell. One measurement zk is composed of Nr × Nb power

measurements z
i j

k
, where k ∈ N and Nr and Nb are the number

of range and bearing cells.

z
i j

k
= |zi j

A,k
|2 = |A(1)

k
h

(1)i j

A
+ A

(2)

k
h

(2)i j

A
+ nI(tk) + inQ(tk)|2 (33)

where Ak is the complex amplitude of the target.

Ak = Ã
(t)

k
eiφk , φk ∈ U(0, 2π) (34)

h
(t)i j

A
(st

k) = e−
(ri−rt

k
)2

2R
−

(b j−bt
k

)2

2B , i = 1, ...,Nr, j = 1, ...,Nb (35)

rt
k

and bt
k

are the range and bearing of the target t and R and

B are constants related to the size of the cells

rt
k =

√

(xt
k
)2 + (yt

k
)2 and bt

k = arctan(
yt

k

xt
k

) (36)

The noise in Eq. (33) is complex Gaussian, where nI(tk)

and nQ(tk) are independent, zero-mean white Gaussian with

variance σ2
n accounting for the in phase and quadrature phase

respectively. These measurements, conditioned on the state are

assumed to be exponentially distributed [10],

p(zi j|sk) =
1

µ
i j

0

e
− 1

µ
i j
0

z
i j

k

(37)

where

µ
i j

0
= (Ã

(1)

k
)2(h

(1)i j

A
(sk, tk))2 + (Ã

(2)

k
)2(h

(2)i j

A
(sk, tk))2 + 2σ2

n (38)

Assuming that the noise is independent from cell to cell

and that the reflections of the two targets are independent, the

likelihood function becomes:

p(zk |sk) =
∏

i j

p(zi j|sk) (39)

B. Algorithm

In the framework of recursive Bayesian estimation the prior

density p(sk+1|Zk) and the posterior density p(sk+1|Zk+1)) can

be obtained as,

p(sk+1|Zk) =

∫

p(sk+1|sk)p(sk |Zk)dsk (40)

p(sk+1|Zk+1) =
p(zk+1|sk+1)p(sk+1|Zk)

p(zk+1|Zk)
(41)

A particle filter is selected for the implementation due to

the non-linearity in the dynamic and measurement models

(see Eqs. (24) and (33)). An Importance-Sampling-based filter

algorithm suffices to show the benefits of modeling target

interactions. In particular, Algorithm 1 presents the SIR filter

that will be used in the simulations in Subsection IV-A. The

particle cloud representation of the joint probability density is

given by the weighted particles {si
k
,wi

k
}Np

i=1
.

1 k = 0
2 Draw Np samples si

k
from p(sk)

3 k = k + 1
4 Draw Np samples vi

k
from p(vk)

5 Obtain Np samples si
k

from p(si
k
|si

k−1
, vi

k
)

6 Given zk, obtain w̃i
k
= p(zk |si

k
)

7 Normalize weights wi
k
= w̃i

k
/
∑Np

j=1
w̃

j

k

8 Resample from p̂(sk |Zk) =
∑Np

i=1
wi

k
δ(sk − si

k
)

9 Extract point estimates from p̂(sk |Zk), e.g. according to (42)
10 go to 3

Algorithm 1: Pseudo-code of the SIR filter.

PEk = [x̄b
k , x̄

r
k]T

x̄c
k =

∑Np

i=1
x

i,c

k

Np

, c = {b, r}
(42)

IV. Simulation examples

In this Section we present simulation results for different

interacting targets scenarios. In particular, we compare the

performance of a traditional filter based on independent motion

assumptions (using the model presented in the introduction of

Section II) with the proposed method (based on the interacting

target motion modeling in Subsection II-C).

A. Preliminary results

The first set of interacting trajectories that we simulate

may well represent the motion of a water-skier being pulled

by a tow rope attached to a boat. The trajectory of the

water-skier and the boat being the continuous red and blue

lines in Fig. 2 respectively. The trajectories are generated



using the model in (24) and the evolution of k1 and k2 is

represented by the continuous lines in Fig. 6. Preliminary

tracking results are shown in Figs. 2, 3, 4 and 5. The first

two show the estimation performance of a traditional filter

based on coordinates decoupling assumptions. Figs. 4 and 5

show the estimation performance of our approach.

Although the trajectories are strongly coupled, the

traditional filter manages to keep the targets in track as the

process noise variance of the model is tunned in relation

with the maneuverability of the targets. However, it incurs in

large estimation errors, especially when strong accelerations

take place (see Fig. 3). Fig. 5 shows the estimation error

reduction in the position estimates when the information about

target interaction is incorporated. Not surprisingly, once the

parameters of the interactive motion are estimated (see Fig. 6),

they can be readily exploited lowering the uncertainty in the

position space.
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Timing information (in seconds) is also provided along the trajectory.
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Fig. 4. Position estimates of our filter encapsulating interacting motion
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Fig. 5. Error on the position estimates for the target labeled as red by our
filter with interacting motion assumptions.
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B. Final results

In some applications it is desirable to detect certain types

of coupled motion. The purpose of the paper is not only

improving tracking performance exploiting some knowledge

about the interaction of the targets. We also aim at detecting

changes between interactive/no-interactive behaviors. A MM

filtering implementation serves a useful functionality to

integrate both aims. In particular, we compare a traditional

filter with a MM filter where the two models used in previous



Subsection are encapsulated. By these means, the posterior

mode probabilities can be used as a measure of certainty

about whether or not the objects have interacting behaviors.

Moreover, the MM mechanism gives more importance to the

mode with higher posterior probability. Therefore, reduction

in the estimation error is expected disregarding whether of not

the objects are interacting.

Let 1 and 2 denote the no-interacting and the interacting

models respectively. Moreover, wi∗
k

and mi∗
k

are used to

denote the weight after resampling and the mode after

resampling of particle i at time instant k respectively. Then,

the posterior probability of each mode can be calculated using

the particle-based approximation as follows,

p(mk = 1|Zk) ≈
∑

i:mi∗
k
=1

wi∗
k ≈

#{mi∗
k
= 1}

Np
(43)

p(mk = 2|Zk) ≈
#{mi∗

k
= 2}

Np

(44)

Algorithm 2 summarizes the MM SIR filter used in the

simulation example in this Subsection.

1 k = 0
2 Draw Np samples si

k
from p(sk)

3 Draw Np samples mi
k

from p(mk)
4 k = k + 1
5 Draw Np samples vi

k
from p(vk)

6 Obtain Np samples si
k

from p(si
k
|si

k−1
, vi

k
,mi

k−1
)

7 Given zk, obtain w̃i
k
= p(zk |si

k
)

8 Normalize weights wi
k
= w̃i

k
/
∑Np

j=1
w̃

j

k

9 Resample from p̂(sk |Zk) =
∑Np

i=1
wi

k
δ(sk − si

k
):

10 Calculate p(mk−1|Zk) according to Eqs. (43) and (44)
11 Extract point estimates from p̂(sk |Zk), e.g. according to (42)
12 Draw Np samples mi

k
from p(mk |mi

k−1
)

13 go to 4

Algorithm 2: Pseudo-code of the MM SIR filter.

The final results show the performance of a MM particle

filter exposed to periodical switches between interacting and

independent target motion. The MM filter is compared with a

traditional particle filter were no efforts are made to model

interactions. For a fair comparison, we run the traditional

particle filter with the same amount of particles used in the

MM filter. However, the variance of the process noise of

the traditional filter should be tuned to a larger magnitude

(en relation to targets maneuverability) than in the MM

implementation due to the lack of interacting information.

Otherwise, the traditional filter will not be able to maintain

the targets in track.

We generate trajectories where the objects maneuver

coordinately every now and then. The real trajectories are

represented by the continuous lines in Fig. 7. The periods of

interactive/independent motion can be interpreted considering

the information in Fig. 9. Continuous lines represent the

ground truth of k1 and k2 parameters. These are zero between

43 and 61 seconds, meaning that no inputs are applied

and therefore the targets are moving independently in this

time-slot. Over the first 42 seconds and the last 39 seconds

the targets are interacting with each other.

Figs. 7 and 11 show the point estimates extracted from the

MM and traditional filters respectively. The MM particle filter

provides more accurate point estimates than the traditional

filtering solution as shown in Figs. 8 and 12. In Fig. 11 it is

also clear that the large uncertainty when using a traditional

filter compromises labeling with respect to target identity if the

targets get close enough (both in position and velocity space).

This negative effect may get unnoticed at the application level

if no special considerations are taken into account. In line

with recent literature on the labeling problem, the root cause

of labeling uncertainty turns out to be the uncertainty in

the joint multi-target space. For an in depth explanation on

characterization of labeling uncertainty refer to [11].

Fig. 9 shows the estimation of the variables in the

coupled motion model. Periods of interaction/no-interaction

are correctly detected relying on the estimated posterior mode

probabilities of the MM filter (see Fig. 10).
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Fig. 7. Estimated position of the targets by the MM filter
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Fig. 8. Error on the position estimates by the MM filter for target labeled as
red. Each curve is referenced to the axis scale on its same color. Time scale
is also shown over the trajectory.
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Fig. 9. Estimation of the parameters in the interacting motion model.
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Fig. 10. Estimation of targets behavior
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Fig. 11. Position estimates of a traditional filter with independent motion
assumptions.
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Fig. 12. Error on the position estimates for target labeled as red by a
traditional filter with independent motion assumptions.

The “curse” of dimensionality inherited from the particle

filter implementation is visible, for instance, in the estimation

of k1 and k2. However, as the number of targets is small,

increasing the number of particles to 3 · 105 produces

acceptable results. Since the main contribution is on the

modeling of interacting targets, efficiency problems of the

implementation (that will appear when considering larger

number of targets) fall out of the scope of this paper.

V. Conclusions

In this work we have presented a method to incorporate

interacting targets behavior in a MTT application. The

method relies on parametric coupling assumptions along

coordinates of different targets. In particular, the parameters

modeling interactions are estimated as part of the state vector

and exploited on-line. Not surprisingly, when the model

assumptions fit well to the targets motion, estimation errors

can be reduced (in comparison with a traditional model where

no efforts are made to model interactions). Moreover, inference

about the existence of interactive behavior can be done by

encapsulating our method in an MM filtering implementation.

Finally, we have shown that in line with recent literature on

the labeling problem, reduction of uncertainty in the joint

multi-target position space results on reduction of labeling

uncertainty. This can also be achieved by incorporating

interacting targets motion knowledge.

As for future work, it will be interesting to see if the points

of attraction/repulsion can be estimated in the filtering process.

This would allow to drop the strongest assumption in the

model. By these means, the method would become competitive

in more realistic scenarios since, often times, not so much

information about targets interaction is available.

Appendix

The solution of the differential stochastic equation in Fig. (1)

for “x” direction is,

sx(t) = eAp(t)t

∫

G(t)ṽx(t)e−Ap(t)tdt (45)



The discretization for a revisit time δt results in,

sx((k + 1)δt) = eAp(t)δt sx(kδt)+

∫ (k+1)δt

kδt

eAp((k+1)δt−τ)G(τ)ṽx(τ)dτ

(46)

Therefore, the block Ab in (17) is given by the exponential

matrix eAp(t)δt.

From linear algebra theory we know that for any continuous

scalar-valued function f (x) : C→ C and for any square matrix

X ∈ Rnxn (or ∈ Cnxn):

f (Xδt) = M















f (Jk1(λ1)δt) 0

. . .
0 f (Jkm(λm)δt)















M−1, (47)

where δt is a scalar, M is nonsingular and Jk1(λ1),...,Jkm(λ1)

are the so-called Jordan Blocks associated to eigenvectors

λ1, ..., λm. Each of them defined as an upper triangular matrix

such that Jk(λ) ∈ Ckxk is,

Jk(λ) =



















λ 1 0

. . .
. . .
λ 1

0 λ



















(48)

f (Jk(λ)δt) is defined as,

f (Jk(λ)δt) =



















































f (λδt) δt f ′(λδt) δt
2

2!
δt f ′′(λδt) ... δtk−1

(k−1)!
δt f (k−1)(λδt)

. . .
. . .

. . . :

. . .
. . . δt2

2!
δt f ′′(λδt)

. . . δt f ′(λδt)
0 f (λδt)



















































(49)

Given these definitions, the matrix J is the Jordan canonical

form of the matrix X through the similarity transformation M,

which existence is ensured in linear algebra theory.

J =















Jk1(λ1) 0

. . .
0 Jkm(λm)















= M−1XM (50)

X is, in our particular case, the continuous time system

function for any of the “x”, “y” directions,

Ap =

(

0 1 0 0
0 0 0 0
0 0 0 1
k1 0 −k1 −k2

)

The similarity transformation,

M =

















1 0 0 0
0 1 0 0

1 − k2
k1

1 1

0 1 λ2 λ3

















,with λ2 =
−k2−
√

k2
2
−4k1

2
, λ3 =

−k2+
√

k2
2
−4k1

2
(51)

satisfies J = M−1ApM as long as k1 and k2 are no zero and

k2
2
, 4k1. We can neglect these particular cases as k1 and

k2 are considered unknowns (part of the state vector) and a

particle filter is considered for the implementation. Because of

that, components k1 and k2 of the particles are affected by the

process noise in Eq. (24), therefore the mentioned particular

cases have probability zero.

Then, Ab can be put in the form of Eq. (47) as,

Ab = eApδt = M

(

1 δt 0 0
0 1 0 0
0 0 eλ2δt 0
0 0 0 eλ3δt

)

M−1

which results in,



































1 δt 0 0

0 1 0 0
λ2(1−eδt λ3 )−λ3(1−eδt λ2 )

λ2−λ3
Ab(3, 2) λ2 eδt λ3−λ3 eδt λ2

λ2−λ3

eδt λ2−eδt λ3

λ2−λ3

λ2 λ3(eδt λ2−eδt λ3 )

λ2−λ3
Ab(4, 2) − λ2 λ3(eδt λ2−eδt λ3 )

λ2−λ3

λ2 eδt λ2−λ3 eδt λ3

λ2−λ3



































(52)

where,

Ab(3, 2) = − k1(eδt λ2−eδt λ3−δtλ2+δtλ3)+k2λ2(1−eδt λ3 )−k2λ3(1−eδt λ2 )

k1 (λ2−λ3)

Ab(4, 2) =
k1(λ2−λ3−λ2 eδt λ2+λ3 eδt λ3 )−k2λ2λ3(eδt λ2−eδt λ3 )

k1(λ2−λ3)
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