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Nonlinear Stability and Saturation of Ballooning Modes in Tokamaks
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The theory of tokamak stability to nonlinear “ballooning” displacements of elliptical magnetic
flux tubes is presented. Above a critical pressure profile the energy stored in the plasma may be
lowered by finite (but not infinitesimal) displacements of such tubes (metastability). Above a higher
pressure profile, the linear stability boundary, such tubes are linearly and nonlinearly unstable. The
predicted saturated flux tube displacement can be of the order of the pressure gradient scale length.
Plasma transport from these displaced flux tubes may explain the rapid loss of confinement in some
experiments.

PACS numbers: Valid PACS appear here

Fast magnetohydrodynamic (MHD) instabilities limit
the pressure (beta) in magnetically confined fusion plas-
mas. The limit is observed to be one of two kinds, either
a soft limit where the instability limits the pressure to
a critical profile or, a hard limit where the instability
rapidly destroys confinement and releases enough stored
energy to take the system well below the critical pres-
sure profile. Sometimes the instability terminates the
discharge entirely [1]. There are also two kinds of MHD
instability: large scale kink instabilities and small scale,
field aligned ballooning instabilities [2]. It is often sup-
posed that ballooning instabilities provide a soft limit,
especially near the plasma edge [3]. Some observations
of the pressure profile evolution in the pedestal, a steep
pressure gradient region at the edge of some tokamak dis-
charges, are consistent with a soft ballooning limit [4, 5].
However Edge Localised Modes (ELMs), instabilities of
the pedestal, cause an explosive eruption of multiple fine
scale flux tubes and a rapid loss of edge confinement [6].
This suggests that ballooning instabilities can sometimes
provide a hard limit to edge confinement. When then is
the ballooning beta limit hard and when is it soft?

In this paper we provide a general theory of the non-
linear stability of ballooning modes. We argue that with-
out dissipation the nonlinear consequence of ballooning
modes is the eruption of isolated elliptical magnetic flux
tubes. Certainly such elliptical erupting tubes are the
long time limit of the weakly nonlinear theory developed
in [7, 8]. The explosive dynamics and meta-stability of
such tubes in a one dimensional line tied gravitational
equilibria were studied in [9]. Here we calculate the dy-
namics and final saturated states of erupting flux tubes;
first in general (Eqs. (2) and (3)) and then (as an exam-
ple) in a simple large aspect ratio tokamak with nearly
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circular flux surfaces. The equilibrium contains a region
of steep pressure gradient, a transport barrier, where the
pressure gradient is of order the critical gradient for lin-
ear stability. We adopt this equilibrium since it yields a
simple nonlinear generalization of the s−α linear balloon-
ing model of [10] and so illustrates the nonlinear dynam-
ics. Specifically it illustrates the metastability of some
linearly stable equilibria. Metastability is a phenomena
encountered in many physical systems and indeed it is
clear from this paper and from Ref [9] that many con-
fined plasmas are also metastable. However, despite its
importance, metastability in confined plasmas is largely
unexplored.

I. EQUILIBRIUM AND EQUATIONS

We represent the tokamak equilibrium in flux coordi-
nates: φ the toroidal angle, r a radius like variable that
is constant on a magnetic surface and θ a poloidal angle
chosen to make the field lines “straight” – see [11, 12].
Thus we choose r(∇r × ∇θ) = R0∇φ where R0 is the
cylindrical radius of the magnetic axis. Then

B0 = −B̄0R0{f(r)∇r × ∇S}, (1)

where B̄0 is a constant, S = φ − q(r)(θ − θ0(r)), q(r) is
the safety factor and θ0(r) is an arbitrary function of r.
The tokamak is large aspect ratio (i.e. r/R0 = ǫ ≪ 1)
and low beta p0(r) ∼ O(ǫ2B̄2

0). The transport barrier is a
narrow region of steep pressure gradient (rp′

0
∼ O(p0/ǫ))

of width ∼ ǫr centred around a surface r = rp – see
Fig. (1). The equilibrium is obtained from an expansion
in ǫ (as in [12]).

We consider a highly elliptical flux tube of widths ∆r
and ∆S with r ≫ ∆r ∼ δ2 ≫ ∆S ∼ δ1 whose cen-
tre originates from the field line on the flux surface la-
belled by r0 and S = 0. The field lines in the tube are
displaced along the surface S = 0 with shape given by
r = r(θ, r0, t) = ξ + r0 where r(t = 0) = r0 – see Fig. (2).
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FIG. 1: Profile of safety factor, q, (solid line, left hand
axis) and of normalized pressure, βα/a = 2µ0R0q

2p0(r)/B2

0a,
(dashed line, right hand axis) for the internal transport bar-
rier (where a is the plasma minor radius).

FIG. 2: Elliptical (orange) flux tube with ∆r ∼ δ2 ≫ ∆S ∼

δ1 sliding along (blue) surface S = 0 parting surrounding
(black) field lines. Note the tube’s displacement, ξ = r − r0,
is larger on the large R part of the flux surfaces – the tube
balloons. The magnetic shear (s = rq′/q) causes the twist
and narrowing of the tube on the inside.

In principle we could consider motion along any S
surface defined by any function θ0(r) – we restrict our-
selves to the choice θ0(r) = 0. This is the choice for the
most linearly unstable motions. The tube wraps around
the torus many times and we consider r(θ, r0, t) on the
domain −∞ < θ < ∞. We ignore the fact that the
S = 0 surface intersects itself as θ increases since we
assume that the perturbations are sufficiently localised
in θ to avoid self intersection of the flux tube. The
plasma is taken to be perfectly conducting – i.e. the
plasma is frozen to the field. Thus the field lines must
remain attached to their original surfaces and therefore
r = r(θ, r0, t) → r0 as |θ| → ∞. The derivation of the
equation of motion here follows the treatment for a gen-
eral equilibrium of a magnetically confined plasma in Ap-
pendix B of [13]. The exact shape of the tube will not
be needed but we do assume that δ1 is sufficiently small
that we can treat the field and pressure outside the tube
as unperturbed.

We denote the field inside the tube to be Bin =
Bin(θ, r0, t). The motion of the tube is assumed to
be slow compared to the (sound) time to equalise pres-
sure along the tube and thus the pressure in the tube is
pin(θ, r0, t) = p0(r0). The pressure forces across the tube
in the direction of ∇S are formally large (∼ p0/δ1) and
therefore the total pressure inside the tube must equal

the total pressure just outside the tube. Thus:

B2

in(θ, r0, t) = B2

0
(θ, r) + 2µ0[p0(r) − p0(r0)]. (2)

where the small perturbations of the field and pres-
sure outside the tube are neglected (this requires 1 ≫
(ξ2/R2

0)(δ
2
1/δ2

2)). The ideal MHD force, F⊥ pushing the
field line along S in the direction e⊥ = (∇S × B0)/B0

is:

F⊥ =
1

µ0

[

Bin · ∇Bin − ∇

(

B2

in

2
+ µ0pin

)]

· e⊥

=
1

µ0

[Bin · ∇Bin − B0 · ∇B0] · e⊥. (3)

The second expression follows from Eq. (2) and the un-
perturbed equilibrium relation ∇

(

B2

0
/2 + µ0p0

)

= B0 ·
∇B0. Eq. (3) is valid when the tube is sufficiently ellipti-
cal that δ2

1
≪ δ3

2
/ξ. The expression in Eq. (3) is a gener-

alised form of Archimedes principle where the net force is
the curvature force of the tube minus the curvature force
of the tube it has displaced. Eqs. (2) and (3) express
the physics determining nonlinear ballooning – the rest
of the theory is geometry. By requiring that Bin lie on
S F⊥ can in general be expressed in terms of r(θ, r0, t)
and its first and second derivatives with respect to θ at
constant r0 – see Appendix B of [13]. When r− r0 = ξ is
infinitesimal F⊥ reduces to the familiar linear ballooning
operator of [2] – see [13]. Note that the nonlinear force
on each field line is determined independently. The equi-
librium states of the field line satisfy F⊥(r(θ, r0 , t)) = 0.
We model the dynamics of the tube by a simple drag
evolution with v = ve⊥, F⊥ = νv · e⊥ and v = −R0f

∂r
∂t

.
The actual dynamics of the tube are clearly more com-
plicated but the equilibrium states must, of course, sat-
isfy F⊥(r(θ, r0, t)) = 0. After some algebra we obtain
from Eq. (3) the evolution equation for each field line
(r(θ, r0, t)) in our simple large aspect ratio model:

ν′

(

∂r

∂t

)

[

1 + (α sin θ − sθ)2
]

= F ′
⊥(r(θ, r0, t)) =

(βα(r0) − βα(r)) [cos θ + sin θ(sθ − α sin θ)]

+

(

∂

∂θ

)

r0

(

[

1 + (α sin θ − sθ)2)
]

(

∂r

∂θ

)

r0

)

−
1

2

(

∂r

∂θ

)2

r0

(

∂

∂r

)

θ

(α sin θ − sθ)2 (4)

where ν′ = νµ0

q2R2

0

B2

0

, F ′
⊥ = F⊥µ0

qR2

0
r

B2

0

, s = rq′(r)/q(r)

and βα(r) = 2µ0R0q
2p0(r)/B̄2

0
and α(r) = −dβα(r)/dr.

Eq. (4) is a nonlinear generalisation of the s − α model
of [10]. We define the “energy” functional, E(r, r0) =
∫∞

−∞
Bin · dr where the integral is taken along the per-

turbed field line.[13] Note E(r, r0) is formally infinite but
we can make it finite by subtracting the unperturbed
value ∆E(r, r0) = E(r, r0) − E(r0, r0). Drag evolution
takes the flux tube to minima of the energy ∆E(r, r0)
– see [13]. The equilibrium states are stationary points
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FIG. 3: s-α diagram showing the linear stability boundary
[10]. The equilibrium here follows the trajectory of the dash-
dotted line as r0 is increased. The profile is linearly stable.

of the variation of ∆E(r, r0) with respect to r(θ, r0, t) at
fixed r0 [13]. The relative energy for our model is:

∆E(r, r0) =

∫ ∞

−∞

dθ

[

1

2

(

∂r

∂θ

)2

r0

(

1 + (α sin θ − sθ)2
)

]

− (5)

∫ ∞

−∞

dθ
[

A(r, r0) cos θ + B(r, r0)θ sin θ − C(r, r0) sin2 θ
]

where the integral is at fixed r0 and the energy coeffi-
cients are A(r, r0) =

∫ r

r0

(βα(r′) − βα(r0))dr′, B(r, r0) =
∫ r

r0

(βα(r′) − βα(r0))s(r
′)dr′ and C(r, r0) = 1

2
(βα(r) −

βα(r0))
2.

II. A LINEARLY STABLE CASE

We investigate a case where we choose profiles of
α(r) and s(r) that yield an internal transport barrier:
α(r) = α0sech

2 ((r − rα)/ǫp), s(r) = (s0 + s1)/2 +
((s1 − s0)/2) tanh ((r − rs)/ǫp). Linearising Eq. (4) with
r = ξ(θ, r0, t) + r0 with ξα′, ξs′ ≪ 1 we obtain growing
eigenmodes if the local values of α(r0) and s(r0) lie in
the unstable region of the s-α diagram [10] – see Fig. (3).
We take an initial equilibrium with no linearly unsta-
ble field lines with α0 = 0.28, s0 = 0.05, s1 = 0.3,
ra = 0.7, rs = 0.72, ǫp = 0.1. As r0 is increased the
equilibrium traces out the dash-dotted line in Fig. (3) in
the direction indicated by the arrows. Clearly no surfaces
(field lines) are linearly unstable and all infinitesimal per-
turbations decay. Nonetheless finite perturbations can
grow. For example in Fig. (4) we show the drag evolution
(r = r(θ, r0, t) using Eq. (4)) of the field line r0 = 0.61
with two finite initial displacements. The larger initial
displacement evolves to a finite displaced stable equilib-
rium. The smaller initial displacement decays to the lin-
early stable unperturbed state r = r0 (Fig. (4)). There
are three equilibrium states of this field line that can be
found by solving the equation F ′

⊥ = 0 (see Eq. (4)) by a
simple shooting method. These are: the linearly stable
unperturbed state r = r0 with relative energy ∆E = 0;
an unstable equilibrium state, r = rcrit(θ, r0), between
the two initial conditions shown at t = 0 in Fig. (4)
with ∆E = 1.09×10−4 and; the stable equilibrium state,
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FIG. 4: The upper plot shows the shape of the field line at
different times, r = r(θ, r0, t) for r0 = 0.61. The solid lines
start with the initial condition just greater than the unstable
equilibrium state rcrit and evolve upwards. The dash-dotted
lines start with the initial condition just less than the unstable
equilibrium state rcrit and evolve downwards. The final state
of this evolution is the unperturbed field line. The lower plot
shows the time evolution of maximum value along the field
line rmax(t) = r(0, r0, t). Again, the solid (dash-dotted) line
starts with the initial condition just greater (just less) than
the unstable equilibrium state rcrit.

r = rsat(θ, r0) that is the final state of the larger pertur-
bation with ∆E = −0.8× 10−4. Clearly the unperturbed
state is meta-stable since a finite perturbation triggers
evolution to a lower energy state.

Not all the field lines have lower energy equilibrium
states. We have examined the F ′

⊥ = 0 solutions for
0.4 < r0 < 0.8. For 0.474 < r0 < 0.680 there are
three equilibrium solutions but outside this region the
only equilibrium solution is the unperturbed state. All
displaced solutions are even in θ and have their maxi-
mum displacement at θ = 0 which we denote rmax. In
Fig. (5) we plot ∆E for 0.58 < r0 < 0.68 and in Fig. (6)
we plot both ∆ = (βα(r0)−βα(rmax)/(2ǫpα0) (solid and
dash-dotted lines, left-hand axis) and rmax (dashed and
dotted lines, right-hand axis). ∆ measures the fraction
of pressure profile crossed by the ballooning flux tube.
Clearly for 0.593 < r0 < 0.678 the lowest energy state is
a displaced state (the solid black line in Fig. (5)) – these
states can be reached by giving the field line a perturba-
tion with more than the energy of the unstable positive
energy equilibrium state (the dashed line in Fig. (5))

We varied α0 for this case; for α0 ≤ 0.269 there
are no energetically favourable saturated states, and for
α0 ≥ 0.306 some field lines are linearly unstable. It is not
however the linearly unstable field lines that produce the
saturated field lines with the largest displacement. These
are metastable field lines with r0 ≈ 0.6. For a linearly
unstable field line there are two lower energy saturated
states, one displaced outwards and one inwards.
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0.58 < r0 < 0.68. The dotted line is the unperturbed en-
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FIG. 6: A measure of the ballooning displacement ∆ =
(βα(r0) − βα(rmax)/(2ǫpα0) for the two perturbed equilib-
rium states (left-hand axis). Field lines in the displaced lower
energy equilibrium can cross a substantial fraction of the pres-
sure profile (solid line) – for example the r0 = 0.61 field line
balloons across about 73% of the pressure profile. The unsta-
ble equilibrium is shown by the dash-dotted line. The rmax

for the saturated field lines is shown as the dashed line (right-
hand axis) and the rmax for the unstable equilibria are shown
as the dotted line. Note that for 0.56 < r0 < 0.68 the field
lines “overtake” i.e. rmax(r1

0) > rmax(r2

0) if r1

0 < r2

0 .

III. DISCUSSION

In this paper we have formulated a nonlinear theory of
ballooning modes as the eruption of elliptical flux tubes.
The force in the direction of motion of the flux tube is
given by combining pressure balance across the elliptical
tube (Eq. (2)) with a generalised Archimedes principle
(Eq. (3)). We illustrate our theory with the drag evo-
lution of flux tubes in a large aspect ratio circular flux
surface equilibrium with an internal transport barrier –

a nonlinear s−α model [10]. This model reveals remark-
able physics. Even below the linear stability threshold
there can be lower energy saturated flux tubes with finite
displacement – we have found such states, see Fig. (5).

The flux tubes have been modelled with a perfectly
conducting plasma. This is a reasonable assumption
since the eruption is likely to take place on a fast
timescale. Once the flux tubes have reached their sat-
urated states then other, slower timescale, processes will
become important. For example resistive field line re-
connection is likely to occur at large θ as it does in re-
sistive ballooning modes [14]. There is also likely to be
cross field transport of heat from the tube to the sur-
rounding plasma around rmax given the large gradient
of temperature. This would effectively connect the high
pressure region to the low pressure region via a conduit
(“hosepipe”) along the flux tube – perhaps causing rapid
loss of confinement locally. The balance of the dissipative
processes will determine the longer timescale evolution of
the flux tube and ultimately how it disconnects from or
returns to, its original location.

ELMs are a possible application of the ideas in this
paper. However, we leave this topic to a future pub-
lication. We instead note that the explosive eruption
of ballooning modes have been observed in TFTR shots
with internal transport barriers [15]. A slowly evolving
n = 1 kink mode arises first and then a toroidally lo-
calized ballooning mode (with n ∼ 10 − 20) appears.
These ballooning modes eventually disrupt the plasma
– a hard limit. The tubes could be destabilised from a
meta-stable state at the tip of the kink mode by finite
noise or by passing through linear marginal stability. We
have demonstrated with the model above that flux tubes
can erupt into finitely displaced states effectively con-
necting plasma inside the transport barrier to outside the
barrier. We speculate that the ballooning mode provides
a hard limit when and only when there are finitely dis-
placed lower energy saturated states. However there is,
clearly, much to understand before we can claim to fully
understand the hard/soft limit of ballooning modes.
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