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Nanoparticle and polymer dynamics in nanocomposites containing spherical
nanoparticles were investigated by means of molecular dynamics simulations.
We show that the polymer diffusivity decreases with nanoparticle loading due
to an increase of the interfacial area created by nanoparticles, in the polymer
matrix. We show that small sized nanoparticles can diffuse much faster than
that predicted from the Stokes-Einstein relation in the dilute regime. We show
that the nanoparticle diffusivity decreases at higher nanoparticle loading due
to nanoparticle - polymer interface. Increase of the nanoparticle radius slows
the nanoparticle diffusion.

I. INTRODUCTION

Long polymer chains diffuse in dense systems following the reptation model of De Gennes1.
The dynamics of long polymers is controlled by entanglements, which are topological con-
straints imposed by the other chains. However, in polymer nanocomposites2 there are more
topological constraints due to the dispersed nanoparticles (NPs) in the polymer matrix that
can influence the polymer primitive path3–7, thus the polymer dynamics. Polymer dynam-
ics can be altered by the characteristics of nanoparticles such as size, shape, aspect ratio,
surface area, volume fraction of nanoparticles and the nature of the interactions between
the nanoparticle and the polymer matrix8,9. There are several theories that have been used
to predict how the polymer diffusivity is impeded by impenetrable particles10–19. The first
theory that was developed for a two phase system (particle and polymer) was introduced by
Maxwell10. It predicted a monotonic decrease in monomer diffusivity, as the particles act
as obstacles. More diffusion models11,12,14 were developed following the same obstruction
approach, but which also included the effect of particle geometry on polymer diffusivity.
While, most models for polymer nanocomposites, predict a decrease in polymer diffusivity
due to tortuosity, only recent models19–22 are based on the interaction of polymer chains
with the nanoparticle surface. Polymer tracer diffusivity decreases in nanocomposites of
large silica nanoparticles dispersed in polystyrene (PS)23 or (PMMA)24. The tracer dif-
fusivity decreases across a wide range of polymer molecular weight, nanoparticle size23,24,
and unexpectedly decreases more strongly at higher temperatures25. In addition, Richter
and co-workers explored the dynamics of entangled26,27 and unentangled poly(ethylene-alt-
propylene) (PEP) polymers28 in nanocomposites by neutron spin echo (NSE) experiments.
For entangled polymers it was found that the initial Rouse relaxation rate was unaffected
by the hydrophobic silica nanoparticles. A crossover from classical chain entanglement to
nanoparticle entanglement, for which chains motion is hindered by nanoparticles rather
than surrounding chains, has been observed experimentally26. The confined polymer was
found to be surprisingly mobile and did not exhibit glassy behavior29,30. For unentangled
poly(ethylene-alt-propylene) (PEP) there is a strong deceleration of the polymer center of
mass motion, but even at the highest silica volume fraction, the segmental chain dynamics
is not affected28.
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From a simulation point of view there are several studies that use the the Kremer-
Grest model31 to investigate the polymer dynamics. However searching for the reptation
power laws1 as predicted by reptation theory, through molecular dynamics simulations, is
difficult32–38. For example by using the Kremer-Grest model31 the reptation regime can not
be reached for very long polymers33. By using Monte Carlo (MC) simulations and the bond
fluctuation model39,40 it was found that there is a really long cross over region from the
nonentangled dynamics to reptation dynamics41,42. In a study of polymers chains which are
confined between two walls43, it was observed that confinement influences both the static44

and dynamic properties of the polymers43,45–50. For a self-avoiding walk chain that diffuses
between randomly distributed impenetrable fixed obstacles, the chain dynamics is slower
than even reptation51. For such of random walk polymers of length N which diffuse in a
network of obstacles the center of mass diffusion, 2R, varies as N−2.452. In a recent study
on lattice MC simulations of long polymers in nanocomposites44,53 a decrease in polymer
chain diffusion was observed when the nanoparticles are fixed in the polymer matrix, with
radius (R) smaller than polymer radius of gyration, by both geometric (confinement by
fillers)44,53 and energetic (monomer-nanoparticle interaction) effects53–60. Nanoparticle dif-
fusion in a medium is predicted theoretically by the Stokes - Einstein formula61 in a dilute
nanoparticle regime. Nanoparticles smaller than the tube diameter62–65 do not follow the
Stokes-Einstein relation62,66–74. To the best of our knowledge there is not any simulation
study that investigates the polymer (except Ref.75 for unentangled polymers) and nanopar-
ticle diffusion in nanocomposites, in a non dilute nanoparticle regime. In this article we
explore how spherical attractive nanoparticles and polymers diffuse in dense melts in the
cases when the polymer radius of gyration (Rg) is larger than

76–79 the nanoparticle diam-
eter (D), in comparison to experiments. The rest of this paper is organized as follows.
In Section II the methodology and simulation details of the present study are described.
Subsequently in section IIIA 1, the diffusion coefficient of unentangled polymers, normal-
ized to its bulk value, presented as a function of nanoparticle loading. In Section IIIA 2,
the polymer diffusion of weakly entangled chains is compared to that of experiments24. In
section III B, the diffusion of small nanoparticles of different radii, in the various molecular
weight polymer matrices, is calculated, for a range of nanoparticle loading, and compared
to Stokes-Einstein formula. Finally, in Section IV, conclusions are presented.

II. SIMULATION METHODOLOGY

In this study, NPT molecular dynamics simulations were performed using the GROMACS
package. A Kremer-Grest polymer model31 was used incorporating an intrinsic stiffness
through a cosine harmonic bending potential4,80, which acts on three consecutive beads
along the chain:

V B
ijk =

1

2
kθ(cosθijk − cosθ0)

2 (1)

where θijk is the bending angle between three consecutive bonds. The equilibrium value
θ0 = 109.50, and the bending constant kθ = 2580. For the polymer model used in this study,
Ne obtained from the S-coil estimator is 54.94, and the tube diameter is: dT≈10.3σm

4 using
the primitive path analysis method81. More details regarding the polymer model used can
be found in Ref.78. The nanocomposite systems contain nanoparticles represented by single
spheres dispersed in the dense polymer melt. The Lennard-Jones (LJ) potential V LJ

ij , acting

along the line between the centres of mass of two particles force82 is given by:

V LJ
ij = 4ǫij(

σ12

rij12
−

σ6

rij6
) (2)

where ǫij is the interaction energy between particle i and particle j (for monomers: ǫm =
σm = mm = 1, for nanoparticles: ǫp = 1, σp = 2R, R/σm = 1 − 2 , mp = 0.85 4

3πR
3), and

rij represents the distance between particles i and j. For monomer (m)- nanoparticle (p)
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interactions the combination rules: ǫmp = (ǫmǫp)
1/2, σmp = (σm + σp)/2

82 were used. The
monomers (or nanoparticles) are modelled with the repulsive only part of Eq.(2), shifted
and truncated with a cut off radius at rc = 21/6σm (rc = 21/6σp for nanoparticles). For
the monomer - nanoparticle interaction, also the attractive part of the LJ potential (Eq.
(2)) is considered and the cut off radius is rc = 2.4σmp. The interaction energy between
monomers and nanoparticles is: ǫ = kBT . A total number of Nt = 23600 monomers were
used in a cubic cell with nanoparticles of radius R = 1, 1.5 or 2. We define the nanoparticle

(filler) volume fraction φ in our simulations as φ = πD3Nn

6<V> , where D is the nanoparticle
diameter and < V > is the total average volume of the nanocomposite simulation box
during the NPT simulation. The mass of nanoparticle is m = 0.85πD3/6. For equilibration
of polymer melts the fast push off method was applied83.The pressure calculated for the
N = 200 polymer melt was P ∗ = Pσm

3/ǫm=4.864. That pressure was used to perform
all the nanocomposite systems simulations in the NPT ensemble. In nanocomposites, the
starting structures were created by an ensemble of polymers with N = 200 (or N = 400) and
nanoparticles inserted at random positions within a large simulation box. Subsequently, the
NPT ensemble was used at melt pressure P ∗ = 4.864 to gradually squeeze the simulation
box to a dense polymer nanocomposite. Specifically, for polymer matrices N = 200, 100, 50
the equilibrium time was 6 · 105τ , 3 · 105τ , 1.5 · 105τ respectively which is sufficient time to
evolve the entanglement density. The polymer radius of gyration reached a constant value
with time. We also checked that the mean square internal distances for all nanocomposites,
reach a Gaussian limit84. The duration of the simulation production runs were between
6 · 103 − 104τ for unentangled polymers (N = 10,20),3 · 105τ for polymers with N = 450,
and 5.5 · 105 − 8 · 105τ for polymers with N = 100. Details of the nanocomposite systems
studied are given in Table I. A snapshot of the simulated polymer melt containing spherical
nanoparticles is shown in Figure 1.

FIG. 1. Polymer matrix with chains shown in grey and dispersed spherical nanoparticles shown in
green.

The length of the simulation cell, which is L ≈ 31−34.6σm (depending on the nanoparticle
volume fraction φ: see Table I), was always larger than the end-to-end distance,Re of the
polymer chains plus the cut off distance (rc = 21/6σm), thus the polymers do not interact
with its periodic image. In a previous simulation study of Desai85 a smaller simulation cell
length was used (L ≈ 22σm) studying diffusion of polymers of similar length (N = 80).
To set the temperature at T = kBT/ǫ = 1, the Langevin thermostat86 was used with

a friction constant Γ = 0.5τ−1. To set pressure at P ∗ = 4.864 the Berendsen barostat
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TABLE I. Nanoparticle volume fraction φ (%), simulation cell average length < L > measured
in units of the monomer diameter σm, number of nanoparticles Nn, radius of nanoparticles R,
measured in units of the monomer diameter, for nanocomposites. The φ (%), < L >, correspond to
nanocomposites with attractive nanoparticles R = 1 (φ (%) and < L > of the other nanocomposites
can be found in4).

φ (%) < L > (σm) Nn Nn Nn

R = 1 R = 1.5 R = 2
5.5 31.157 400 118 -
10.3 31.863 800 237 100
14.5 32.569 1200 355 -
18.2 33.282 1600 474 200
24.2 34.653 2400 711 300

was used with time constant τp = 2τ . The equations of motion were integrated using the
leapfrog-algorithm87 with a time step equal to 0.004τ , where τ is the Lennard-Jones time.
The glass transition of a polymer model which contains a bending potential (but not a
torsional potential) is Tg = 0.480. The monomer - nanoparticle radial distribution function
gmp(r) exhibits a three layer structure78. The high monomer density of the layers establish
a well defined interface between nanoparticles and polymers whose structure differs from
that of the amorphous polymer melt. Also, the nanoparticle loading increases the monomer
density of polymers in contact with the nanoparticle surface78.

In the next sections we investigate the effect of nanoparticle volume fraction, polymer -
nanoparticle interaction and nanoparticle diameter on polymer and nanoparticle diffusion.

III. RESULTS AND DISCUSSION

A. Effect of nanoparticle loading on polymer diffusion

1. Unentangled polymers diffusion

The dynamic properties of polymer chains are estimated through the self diffusion coeffi-
cient D0 which is calculated through the mean square displacement82 in the regime where
the mean square displacement increases linearly with time:

D0 =
1

6
lim
t→∞

d

dt

〈

|ri(t)− ri(0)|
2
〉

(3)

where 〈|ri(t) − ri(0)|
2〉 is the time dependent displacement of the monomer averaged over

time and monomers of the ensemble (ri is the position of a monomer i).
The diffusion of unentangled tracer polymers in an entangled matrix88 follows the Rouse

model. In a polymer nanocomposite containing non-attractive large nanoparticles75 (where
diameter 2R is larger than Rg), unentangled polymers diffusion decreases with nanoparti-
cle loading. However in our study, we investigate spherical nanoparticles with attractive
interactions with the polymers and that are well dispersed78 in the polymer matrix. We
show in Figure 2 the polymer diffusivity, normalized to its bulk value, as a function of
the nanoparticle loading for Rg > 2R (2R = 2). We can see that at nanoparticle load-
ing higher than the dilute regime (φ > 5.5%) the polymer diffusivity is lower than that
predicted from the Maxwell model. We observe that the polymer diffusion decreases with
the addition of nanoparticles in the matrix. This is due to, by adding nanoparticles in
the matrix, the increased interfacial area around the nanoparticles and more monomers
exist into the interfacial area78. The same trend appears for unentangled matrices of
N = 10, 20, 50. Similarly, a reduction of unentangled polymers diffusion with the nanoparti-
cle loading has also been observed in the case of very strong attractive polymer-filler interac-
tion (ǫmp = 4−10ǫm

59,85,89). The polymer chain dynamics of the nanocomposites containing
attractive polymer / nanoparticle interaction is largely affected by the nanoparticles90, in
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FIG. 2. Dependence of diffusivity (normalized to its bulk value) of unentangled polymers for
different nanoparticle loading: Maxwell prediction (black line), N = 10 (circles), N = 20 (squares),
N = 50 (diamonds).

nanoparticle loading larger than the dilute regime (φ = 5.5%) as in the experimental sys-
tems of poly(ethylene glycol) (PEO) and poly(butylene oxide) (PBO) chains91 or (P2VP)
chains9 with silica nanoparticles. Since the PEG polymers interact attractively with neat
silica nanoparticles, a fraction of PEG chains was attached to the nanoparticle surface30.

2. Weakly entangled polymers diffusion

We show in Figure 3 the diffusivity (as calculated from Eq. 3) of weakly entangled poly-
mers (N = 100) as a function of the nanoparticle loading. We observe that the polymer
diffusion decreases with the addition of nanoparticles in the matrix. In particular, in the
nanocomposites studied at 24.2% nanoparticle loading, the ratio, of polymer diffusivity,
D/D0 = 0.3, whereas in a Monte Carlo (MC) study of athermal nanocomposites44 the ra-
tio D/D0 decreases to ≈0.28, for weakly entangled polymers, at nanoparticle loading 30%.
However, it is worth noting that in the MC study, the nanoparticles are fixed into the sim-
ulation cell, thus they are immobile, contributing into the decrease of polymer diffusivity,
whereas in our work they are mobile, and not fixed in the simulation cell. In addition the
case of repulsive nanoparticles54,59,85, the polymer diffusion coefficient initially increases
with increasing nanoparticle loading (up to 5%)54,85, it reaches a maximum and decreases
further to a D/D0 = 0.8 ratio, at nanoparticle loading (10%). While in the initial dilute
nanoparticle loading, the increase of polymer diffusion (in comparison to its bulk value) re-
flects the repulsive polymer-nanoparticle interaction, at a higher loading (10%) a reduction
of the polymer diffusion is observed, due to simply geometrical reasons, and is affected by
the presence of tortuous path85. We can see that the simulation data agree with the exper-
imental system of PMMA tracer diffusion24, at high nanoparticle loadings. However, in the
dilute noparticle regime there is discrepancy to the data. In the experimental nanocompos-
ite, tracer diffusion24 collapses onto a master curve when the neat homopolymer diffusion
(D/D0) is plotted versus a confinement parameter defined as the interparticle distance rel-
ative to the polymer radius of gyration (ID/2Rg)

23,24,92 where the interparticle distance

ID is given as: ID = 2R[( 2πφ)
1/3 − 1], where, φ is the volume fraction of nanoparticles.

However in our data, the mechanism of reduction of diffusion in our simulation data, is
not due to entropic barriers but due to nanoparticle interfacial area93,94 Although the, ex-
perimental, nanocomposite system24 considers immobile nanoparticles (of radius 13-25 nm)
that are different than our simulated small nanoparticle composites, this is the only stud-
ied nanocomposite system which contains an attractive nanoparticle polymer interaction,
and thus the nanoparticles are well dispersed in the polymer matrix. In order to estimate
the local segmental dynamics, the bond autocorrelation Cb(t), was calculated according to
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FIG. 3. Dependence of diffusivity (normalized to its bulk value) of weakly-entangled polymers
(N = 100) for different nanoparticle loading:(i) Maxwell prediction (black line) (ii) simulation data
N = 100 (stars), (iii) PMMA tracer diffusion: diameter dNP = 13 nm (circles), (iv) dNP = 29 nm

(squares), (v) dNP = 50 nm (triangles).

the equation: Cb(t) =< P2[b(t)·b(0)] >, where P2 is the second Legendre polynomial, b(t)
is a unit vector aligned along the bond of a polymer, and the angular brackets indicate
an average over all polymer bonds in the system. Cb(t) measures the local segmental dy-
namics of polymer chains, equally weighting reorientation motions in all spatial directions.
It was found that the segmental dynamics decreases (thus the relaxation time increases)
with nanoparticle loading and with increasing nanoparticle radius (see Figures S1 and S2
in supplemental information).
In a simplified model where polymer chains were modeled as spheres diffusing down

cylindrical pores95, it was shown that excluded volume effects can account for the ob-
served reduction in polymer diffusion for values of ID/2Rg > 5. In that region, the ex-
cluded volume model predicted a pseudomaster curve for the reduced diffusion coefficients,
in good agreement with experimental results23,92 at higher nanoparticle loading. In addi-
tion, in nanocomposites of poly(ethylene glycol) (PEG)-tethered silica (SiO2) nanoparticles
and poly(methyl methacrylate) (PMMA), polymer chain dynamics undergoes a continuous
transition from bulklike behavior at low nanoparticle loading to confinement behavior at
intermediate nanoparticle loading and ultimately to glassy behavior at high nanoparticle
loading96.

B. Nanoparticle diffusion

Nanocomposites containing nanoparticles have been investigated experimentally such
as systems of POSS nanoparticles (R = 1 nm) dispersed in poly(ethylene-alt-propylene)
matrix27 or cadmium selenide nanoparticles dispersed in PS matrix66. While in other
theoretical studies70,85,97–99 only the dilute nanoparticle loading has been explored, we in-
vestigate for the first time, the nanoparticle diffusion for a wide nanoparticle concentration
range. It is known that the dynamics of spherical particles (colloids) in a fluid can be pre-
dicted by the classic continuum Stokes-Einstein relation. For a spherical particle of radius
R in a fluid of viscosity η the diffusion coefficient DSE of the particle is given by59,61:

DSE =
kBT

6πηR
(4)

where the η is the viscosity of the dense polymer melt (Kremer Grest model), given by
Reference100 and for long polymers (N=200,400) by Reference101. However, in the case
of small nanoparticles dispersed in polymer melts27,79,102,103 and solutions104,105, the va-
lidity of Equation 4 is questionable as observed by experiments66 and theory69,106. The
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nanoparticle diffusivities of the simulated nanocomposite systems are calculated from the
mean square displacement measurements given by:
D0 = 1

6 limt→∞

d
dt

〈

|ri(t)− ri(0)|
2
〉

, where 〈|ri(t)− ri(0)|
2〉 is the time dependent displace-

ment of the nanoparticle averaged over time and nanoparticles of the ensemble.
It can be seen from Figure 4 the nanoparticle diffusivity for different polymer matrices

and nanoparticle loading. Clearly it can be seen that in the dilute nanoparticle regime
(φ = 5.5%) small nanoparticles (R = 1) diffuse much faster than the SE prediction64 for
matrices N ≥ 50. The Stokes-Einstein relation can be valid, for nanoparticles diffusivity,
in nanocomposites containing very short (unentangled) polymers at the dilute regime in
agreement with experiments72. The diffusion of such small sized nanoparticles reaches a
plateau in entangled polymer matrices for N ≥ 100 in agreement with the GLE theory62,64

and theoretical predictions by deGennes- Brochard1 who argued that bulk viscosity does
not capture the behavior of surrounding flows near NPs, and thus the NPs diffusion is
decoupled from the SE relation (Eq. (4)) . In addition, by increasing the nanoparticle load-
ing, nanoparticles diffusivity is decreased dramatically in all polymer matrices. The same
plateau region is obtained for all nanoparticle loading in entangled polymer matrices. Since
the nanoparticle diameter is smaller than the entanglement strand, such dispersed nanopar-
ticless can diffuse inside the mesh of polymers, faster in comparison to the SE predictions,
due to local viscosity64. Such small fillers provide the best reinforcement effects3,4,107–109 in
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FIG. 4. Dependence of nanoparticles (R = 1) diffusivity in unentangled and entangled polymer
matrices for different nanoparticle loading: Stokes-Einstein relation predictions (open symbols),
φ = 5.5% (circles), φ = 10.3% (diamonds), φ = 14.5% (squares), φ = 18.2% (upper triangles),
φ = 24.2%(stars). Inset: scaled nanoparticles (R = 1) diffusivity with Stokes-Einstein prediction
in unentangled and entangled polymer matrices (Ne ≈ 54.94) for different nanoparticle loading.
Silica /P2VP experiment (filled squares)9.

all the loading range considered, and diffuse faster than the monomers. In the inset of Fig-
ure 4 the nanoparticle diffusivity scaled with the SE prediction (Eq. 4) for different polymer
matrices. It can be seen, from all the data, that such nanoparticles, smaller than the tube
diameter dT (dT ≈ 10.3σm for our polymer model), deviate more from the SE predictions
with increasing the molecular weight of the polymer matrix and nanoparticle loading. The
discrepancy is large for weakly-entangled (and even more for entangled) polymer matrices
due to the viscosity scaling with molecular weight η ∝ N3.4 in the entangled regime. In an
experimental study of silica nanoparticles in entangled poly(2-vinylpyridine) (P2VP) melts,
in which 2R/dT = 3, the diffusion of silica nanoparticles in P2VP9 is well-described by the
hydrodynamic Stokes Einstein relation as can be seen in the inset of Fig. 4.

The nanoparticle loading has a high impact on the nanoparticle diffusivity decrease,
especially for unentangled polymers, as can be seen in Fig. 5. By increasing the nanoparticle
radius, the nanoparticle diffusivity decreases as can be seen in the inset of Fig. 5 for different
polymer matrix molecular weights. It is worth noting that a similar plateau region in the
entangled regime appears in experiments, and nanoparticles diffusivity will approach the
Stokes-Einstein predictions when the radius is approximately 4-5 times of the matrix tube
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diameter, as was evidenced in poly(n-butyl methacrylate)/gold composites73.
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FIG. 5. Nanoparticles (R = 1) diffusivity in unentangled and entangled polymer matrices vs
nanoparticle volume fraction: N = 10 (circles), N = 20 (diamonds), N = 50 (squares), N =
100 (upper triangles), N = 200 (stars). Inset: Nanoparticles diffusivity of different radius, at
nanoparticle loading φ = 10.3%: R = 1 (circles), R = 1.5 (upper triangles), R = 2 (inverted
triangles).

IV. CONCLUSIONS

The nanoparticle and unentangled polymer dynamics in nanocomposites containing
spherical nanoparticles were investigated by means of molecular dynamics simulations. In
conclusion, we have found that attractive interactions between the nanoparticles and the
polymers appear to hinder chain motion, especially at higher nanoparticle volume frac-
tions. Contrary to previously studied models containing unentangled polymers, we also
calculate the diffusivity of weakly semiflexible entangled polymers, and predict a better
comparison to experimental data of nanocomposites, in which there is a good dispersion
of silica nanoparticles in a polystyrene matrix. We reported that the polymer diffusivity
decreases with nanoparticle loading due to the increase of the nanoparticle surface area.
Also other parameters may affect polymers diffusion, such as: polymer radius of gyration
with nanoparticle loading78, polymer entanglements4, nanoparticle diffusivity, strength of
monomer-nanoparticle interaction, and confinement.
We also show that small sized nanoparticles can diffuse much faster than that predicted

from the Stokes-Einstein relation in the dilute regime. However, for large volume fractions,
the nanoparticles diffusivity decreases due to both nanoparticle - polymer surface area and
nanoparticle loading.

SUPPLEMENTARY MATERIAL

See supplementary material for the bond autocorrelation decay function of polymers in
different nanocomposites.
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