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Abstract: Based on crossed-dipole antenna arrays, quaternion-valued data models have been
developed for both direction of arrival estimation and beamforming in the past. However, for almost
all the models, and especially for adaptive beamforming, the desired signal is still complex-valued
as in the quaternion-valued Capon beamformer. Since the complex-valued desired signal only has
two components, while there are four components in a quaternion, only two components of the
quaternion-valued beamformer output are used and the remaining two are simply discarded, leading
to significant redundancy in its implementation. In this work, we consider a quaternion-valued
desired signal and develop a fully quaternion-valued Capon beamformer which has a better
performance and a much lower complexity. Furthermore, based on this full quaternion model,
the robust beamforming problem is also studied in the presence of steering vector errors and
a worst-case-based robust beamformer is developed. The performance of the proposed methods is
verified by computer simulations.

Keywords: quaternion model; crossed-dipole; Capon beamformer; vector sensor array; robust
beamforming

1. Introduction

Electromagnetic (EM) vector sensor arrays can track the direction of arrival (DOA) of impinging
signals as well as their polarization. A crossed-dipole sensor array—firstly introduced in [1] for
adaptive beamforming—works by processing the received signals with a long polarization vector.
Based on such a model, the beamforming problem was studied in detail in terms of output
signal-to-interference-plus-noise ratio (SINR) [2]. In [3,4], further detailed analysis was performed
showing that the output SINR is affected by DOA and polarization differences.

Since there are four components for each vector sensor output in a crossed-dipole array,
a quaternion model instead of long vectors has been adopted in the past for both adaptive beamforming
and direction of arrival estimation [5–12]. In [13], the well-known Capon beamformer was extended to
the quaternion domain and a quaternion-valued Capon (Q-Capon) beamformer was proposed with
the corresponding optimum solution derived.

However, in most of the beamforming studies, the signal of interest (SOI) is still complex-valued; i.e.,
with only two components: in-phase (I) and quadrature (Q). Since the output of a quaternion-valued
beamformer is also quaternion-valued, only two components of the quaternion are used to recover the
SOI, which leads to redundancy in both calculation and data storage. However, with the development
of quaternion-valued communications [14–16], it is very likely that in the future we will have
quaternion-valued signals as the SOI, where two traditional complex-valued signals with different
polarisations arrive at the antenna array with the same DOA. In such a case, a full quaternion-valued
array model is needed to compactly represent the four-component desired signal and also make sure
the four components of the quaternion-valued output of the beamformer are fully utilised. In this
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work, we develop such a model and propose a new quaternion-valued Capon beamformer, where
both its input and output are quaternion-valued.

Based on the proposed full quaternion model, we further study the robust adaptive beamforming
problem in the presence of steering vector errors. In the past, many methods have been proposed
to improve the robustness of an adaptive beamformer, such as diagonal loading [17,18] and those
based on the optimization of worst-case performance [19,20]. In [11], the worst-case-based method is
extended to the quaternion-valued case for crossed-dipole arrays; however, it is not a full quaternion
model, since the desired signal is still complex-valued. In this work, we extend the worst-case
optimisation approach to the full quaternion model and a worst-case-based full-quaternion robust
adaptive beamforming method is proposed.

This paper is structured as follows. The full quaternion-valued array model is introduced in
Section 2, and the proposed full quaternion-valued Capon beamformer is developed in Section 3.
The robust beamforming problem is studied in Section 4 based on the worst-case optimisation approach.
Simulation results are presented in Section 5, and conclusions are drawn in Section 6.

2. Quaternion Model for Crossed-Dipole Array

2.1. Basics of Quaternion

Quaternion was introduced by W. R. Hamilton [21]. A quaternion is constructed by four components,
with one real part and three imaginary parts, defined as

q = qa + iqb + jqc + kqd (1)

where i, j, k are three basic imaginary units. The multiplication principle among such units is

i2 = j2 = k2 = ijk = −1, (2)

and
ij = −ji = k, ki = −ik = j, jk = −kj = i (3)

The conjugate q∗ of q is q∗ = qa − iqb − jqc − kqd.
Note that the multiplication of quaternions is generally non-commutative: for q1, q2 ∈ H, q1q2 6= q2q1,

where H represents the quaternion domain. However, if one of the factors (e.g., q0) is real, then we
have q0q1 = q1q0.

2.1.1. Quaternion Vector and Matrix

Quaternion vectors and matrices are quite different from real and complex ones. For quaternion
vectors, the space can be denoted by two different bases—left-spanned and right-spanned—given by

spanL{u1, u2, ...uM}, spanR{u1, u2, ...uM} . (4)

Here we use qL to denote the left linear combination case and qR to denote the right linear
combination case. Note that q = qL = qR,

qL =
M
∑

m=1
τmum

qR =
M
∑

m=1
umγm

(5)

where τm,γm∈ H, for m = 1, 2, ..., M.
Similarly, the eigendecomposition operation for quaternion matrices also differs from real and

complex ones. We can also define the left eigendecomposition QL and right eigendecomposition QR
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for a Hermitian matrix Q ∈ HN×N , (Q = QH, where {}H is the Hermitian transpose, a combination of
the quaternion-valued conjugate and transpose operations)

QL =
N
∑

n=1
αnunuH

n

QR =
N
∑

n=1
unuH

n βn

(6)

where α and β are the left and right eigenvalues [5,22,23]. In this paper, only right-spanned spaces and
left eigendecomposition are employed.

2.1.2. The Gradient for a Quaternion Function

Let l(w) be a scalar function of the quaternion-valued vector w ∈ HN×1, with
w = [w1 ... wn ... wN ]

T, and wn = wna + wnbi + wnc j + wndk.
Its gradient with respect to w is defined by [24]

∇wl = [∇w1 l ... ∇wn l ... ∇wN l]T (7)

where
∇wn l =

1
4
(∇wna l +∇wnb li +∇wnc l j +∇wnd lk) (8)

∇w∗n l =
1
4
(∇wna l −∇wnb li−∇wnc l j−∇wnd lk) (9)

2.2. Model for Crossed-Dipole Array

A quaternion number q = qa + iqb + jqc + kqd can be conveniently expressed as a combination of
two complex numbers c1 = qa + jqc and c2 = qb + jqd, as follows

q = c1 + ic2 = (qa + jqc) + i(qb + jqd) = qa + iqb + jqc + kqd (10)

We will use this form later to represent our quaternion-valued signal of interest.
Consider a uniform linear array (ULA) with N crossed-dipole sensors, as shown in Figure 1,

where the adjacent vector sensor spacing d equals half wavelength, and the two components of each
crossed-dipole are parallel to x- and y-axes, respectively. A quaternion-valued narrowband signal s0(t)
impinges upon the vector sensor array among other M uncorrelated quaternion-valued interfering
signals {sm(t)}M

m=1, with background noise n(t). s0(t) can be decomposed into

s0(t) = s01(t) + is02(t) (11)

where s01(t) and s02(t) are two complex-valued sub-signals with the same DOA but different polarizations.

1
r
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2
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r

( )
m
s t
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Figure 1. A crossed-dipole linear array with N vector sensors.
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Assume that all signals are ellipse-polarized. Here we use θ to denote the azimuth angle, φ to denote
the elevation angle, and γ and η the polarization parameters of the signal [11]. The parameters, including
DOA and polarization of the m-th signal, are denoted by (θm, φm, γm1, ηm1) for the first sub-signal and
(θm, φm, γm2, ηm2) for the second sub-signal. Each crossed-dipole sensor receives signals both in the x
and y sub-arrays.

For signal sm(t), the corresponding received signals in the x and y sub-arrays are, respectively,
given by [11]:

x(t) = am1 pxm1sm1(t) + am2 pxm2sm2(t)
y(t) = am1 pym1sm1(t) + am2 pym2sm2(t)

(12)

where x(t) represents the received part in the x-sub-array and y(t) represents the part in the y-sub-array,
and (pxm1, pym1) and (pxm2, pym2) are the polarizations of the two complex sub-signals in x and y
directions, respectively, given by,

pxm1 = − cos γm1
pym1 = cos φm sin γm1ejηm1

pxm2 = − cos γm2

pym2 = cos φm sin γm2ejηm2 , when θm =
π

2

(13)

Note that am1 and am2 are the steering vectors for both sub-signals, which are the same since the
two sub-signals share the same DOA (θm, φm).

am1 = [1, e
−j2π sin θm sin φm

λ , ..., e
−j(N−1)2π sin θm sin φm

λ ]T

am2 = [1, e
−j2π sin θm sin φm

λ , ..., e
−j(N−1)2π sin θm sin φm

λ ]T
(14)

A quaternion model can be constructed by combining the two parts as below:

qm(t) = x(t) + iy(t) (15)

= am1(pxm1 + ipym1)sm1(t) + am2(pxm2 + ipym2)sm2(t)

= bm1sm1(t) + bm2sm2(t) (16)

where {bm1, bm2} ∈ HN×1 can be considered as the composite quaternion-valued steering vector.
Combining all source signals and the noise together, the result is given by:

q(t) =
M

∑
m=0

(bm1sm1(t) + bm2sm2(t)) + nq(t) (17)

where nq(t) = nx(t) + iny(t) is the quaternion-valued noise vector consisting of the two sub-array
noise vectors nx(t) and ny(t).

3. The Full Quaternion-Valued Capon Beamformer

To recover the SOI among interfering signals and noise, the basic idea is to keep a unity response
to the SOI at the beamformer output and then reduce the power/variance of the output as much
as possible [25,26]. The key to constructing such a Capon beamformer in the quaternion domain is
to design an appropriate constraint to make sure the quaternion-valued SOI can pass through the
beamformer with the desired unity response.

Again note that the quaternion-valued SOI can be expressed as a combination of two complex
sub-signals. To construct such a constraint, one choice is to make sure the first complex sub-signal of
the SOI passes through the beamformer and appears in the real and j components of the beamformer
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output, while the second complex sub-signal appears in the i and k components of the beamformer
output. Then, with a quaternion-valued weight vector w, the constraint can be formulated as

wHC = f (18)

where C = [b01 b02], f = [1 i].
With this constraint, the beamformer output z(t) is given by

z(t) = wHq(t) = s01(t) + is02(t)︸ ︷︷ ︸
s0(t)

+wHnq(t) +
M

∑
m=1

wH[bm1sm1(t) + bm2sm2(t)] (19)

Clearly, the quaternion-valued SOI has been preserved at the output with the desired unity response.
Now, the full-quaternion Capon (full Q-Capon) beamformer can be formulated as

min wHRw subject to wHC = f (20)

where
R = E{q(t)qH(t)} (21)

Applying the Lagrange multipliers method, we have

l(w, λ) = wHRw + (wHC− f)λH + λ(CHw− fH) (22)

where λ is a quaternion-valued vector of the Lagrange multipliers.
The minimum can be obtained by setting the gradient of (22) with respect to w∗ equal to a zero

vector [24]. It is given by

∇w∗ l(w, λ) =
1
2

Rw +
1
2

CλH = 0 (23)

Considering all the constraints above, we obtain the optimum weight vector wopt as follows

wopt = R−1C(CHR−1C)−1fH (24)

A detailed derivation for the quaternion-valued optimum weight vector can be found at
the Appendix A.

In the next, we give a brief analysis to show that by this optimum weight vector, the interference
part at the beamformer output z(t) in (19) has been suppressed effectively.

Expanding the covariance matrix, we have

R = E{q(t)qH(t)} = Ri+n + σ2
1 b01bH

01 + σ2
2 b02bH

02 (25)

where σ2
1 , σ2

2 are the power of the two sub-signals of SOI and Ri+n denotes the covariance matrix of
interferences plus noise. Using (24), we have

wopt = R−1
i+nCβ (26)

where β = (CHRi+nC)−1fH ∈ H2×1 is a quaternion vector.
Applying left eigendecomposition for quaternion matrices,

Ri+n =
N

∑
n=1

αnunuH
n (27)

with α1 ≥ ... ≥ αM−2 > αM−1 = ... = αN = 2σ2
0 ∈ R, where 2σ2

0 denotes the noise power.
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With sufficiently high interference-to-noise ratio (INR), the inverse of Ri+n can be approximated by

R−1
i+n ≈

N

∑
n=M+1

1
2σ2

0
unuH

n (28)

Then we have

wopt =
N

∑
n=M+1

1
2σ2

0
unuH

n Cβ =
N

∑
n=M+1

unρn (29)

where ρn = 1
2σ2

0
uH

n Cβ. Since uH
n ∈ H1×N, C ∈ HN×2, and β ∈ H2×1, ρn is a quaternion-valued scalar.

Clearly, wopt is the right linear combination of {uM+1, uM+2, ..., uN}, and w ∈ spanR{uM+1, uM+2, ..., uN}.
For those M interfering signals, their quaternion steering vectors belong to the space right-spanned

by the related M eigenvectors; i.e., bm1, bm2 ∈ spanR{u1, u2, ..., uM}. As a result,

wH
optbm1 ≈ 0, wH

optbm2 ≈ 0, m = 1, 2, ..., M (30)

which shows that the beamformer has eliminated the interferences effectively.

4. Worst-Case-Based Robust Adaptive Beamforming

4.1. Worst-Case Constrained Algorithm

The proposed full quaternion beamformer is based on accurate steering vectors of incident array
signals. However, steering vector mismatch usually exists in array processing as a result of DOA or
polarization mismatch and various model errors. With such a mismatch, there will be an error vector
e (|e| ≤ ε, where ε is the upper bound of its norm) between the assumed quaternion-valued steering
vector bm and the actual quaternion-valued steering vector b̄m, which can be expressed as [11]

b̄m = bm + e (31)

According to (31), the actual quaternion-valued steering vector could be any vector within the
multi-dimensional sphere, centered at bm with a radius ε.

In order to achieve a robust response, the beamformer can be constrained to have a response
greater than unity for all steering vectors within such a sphere. For the proposed quaternion-valued
beamformer in the last section, the constraint can be formulated as

min wHRw
s.t. min |wHb̄01| ≥ 1, min |wHb̄02| ≥ 1

(32)

According to (31), for the first constraint (corresponding to b̄01), we have

|wHb̄01| = |wHb01 + wHe| ≥ |wHb01| − |wHe| . (33)

Since |e| ≤ ε, we further have

|wHb̄01| ≥ |wHb01| − |wHe| ≥ |wHb01| − ε||w|| (34)

From (34), it can be derived that

min |wHb̄01| = |wHb01| − ε||w|| ≥ 1
|wHb01| ≥ 1 + ε||w|| (35)
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Now the constraint becomes

min wHRw
s.t. |wHb01| ≥ 1 + ε||w|| (36)

We should ensure that the response for the first sub-signal s01(t) is constrained in the real and
j domain and the response for s02(t) in the i and k domain. For a given quaternion-valued vector w,
the final output power wHRw keeps unchanged if w undergoes any phase shift. That is to say, we can
always find a quaternion-valued vector w to make the product wHb01 real-valued. Then, the constraint
can be changed to

min wHRw
s.t. Re{wHb01} ≥ 1 + ε||w||

Im(i){wHb01} = 0
Im(j){wHb01} = 0
Im(k){wHb01} = 0

(37)

We can transform the constraint of the b̄02 part in the same way. Then, the overall formulation for
the worst-case based method can be described as

min wHRw
s.t. Re{wHb01} ≥ 1 + ε||w||

Im(i){wHb01} = 0
Im(j){wHb01} = 0
Im(k){wHb01} = 0
Re{wHb02} = 0
Im(i){wHb02} ≥ 1 + ε||w||
Im(j){wHb02} = 0
Im(k){wHb02} = 0

(38)

This is a convex problem, and can be solved by the second-order cone (SOC) programming
method. We refer to this method as the full quaternion worst-case constraint beamformer (FQWCCB).

4.2. SOC Implementation of FQWCCB

By Cholesky decomposition of R, we have [27]

R = QQH (39)

The output power wHRw can be rewritten as wHQQHw, which is the l-2 norm of the vector
wHQ. To simplify the calculation, the constraint can be transformed into

min ||wHQ||
s.t. Re{wHb01} ≥ 1 + ε||w||

Im(i){wHb01} = 0
Im(j){wHb01} = 0
Im(k){wHb01} = 0
Re{wHb02} = 0
Im(i){wHb02} ≥ 1 + ε||w||
Im(j){wHb02} = 0
Im(k){wHb02} = 0

(40)

Note that Q, w, b01, and b02 are quaternion-valued, and we cannot use quaternion-valued variables
directly in SOC programming. As a result, it is necessary to convert the quaternion-valued matrices or
vectors into real-valued ones.
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We can rewrite Q, w, b01, and b02 as follows
Q = Q1 + Q2i + Q3 j + Q4k
w = w1 + w2i + w3 j + w4k

b01 = b01,1 + b01,2i + b01,3 j + b01,4k
b02 = b02,1 + b02,2i + b02,3 j + b02,4k

(41)

where Ql , wl , b01,l , and b02,l(1 ≤ l ≤ 4) are all real-valued.
We can also define a new form for such quaternion-valued matrices and vectors

Q̄ ,


Q1 Q2 Q3 Q4
−Q2 Q1 −Q4 Q3
−Q3 Q4 Q1 −Q2
−Q4 −Q3 Q2 Q1


w̄H , [wT

1 −wT
2 −wT

3 −wT
4 ]

b1
01 , [bT

01,1 − bT
01,2 − bT

01,3 − bT
01,4]

T

b2
01 , [bT

01,2 bT
01,1 bT

01,4 − bT
01,3]

T

b3
01 , [bT

01,3 − bT
01,4 bT

01,1 bT
01,2]

T

b4
01 , [bT

01,4 bT
01,3 − bT

01,2 bT
01,1]

T

b1
02 , [bT

02,1 − bT
02,2 − bT

02,3 − bT
02,4]

T

b2
02 , [bT

02,2 bT
02,1 bT

02,4 − bT
02,3]

T

b3
02 , [bT

02,3 − bT
02,4 bT

02,1 bT
02,2]

T

b4
02 , [bT

02,4 bT
02,3 − bT

02,2 bT
02,1]

T

(42)

It can be verified that

||wHQ|| = ||w̄HQ̄||
Re{wHb01} = w̄Hb1

01, Re{wHb02} = w̄Hb1
02

Im(i){wHb01} = w̄Hb2
01, Im(i){wHb02} = w̄Hb2

02
Im(j){wHb01} = w̄Hb3

01, Im(j){wHb02} = w̄Hb3
02

Im(k){wHb01} = w̄Hb4
01, Im(k){wHb02} = w̄Hb4

02

(43)

Based on the above real-valued matrices and vectors, the formulation changes to

min ||w̄HQ̄H ||
s.t. w̄Hb1

01 ≥ 1 + ε||w||, w̄Hb1
02 = 0

w̄Hb2
01 = 0, w̄Hb2

02 ≥ 1 + ε||w||
w̄Hb3

01 = 0, w̄Hb3
02 = 0

w̄Hb4
01 = 0, w̄Hb4

02 = 0

(44)

Solving the above convex optimization problem, we can obtain a real-valued weight vector
w̄H ∈ R1×4N . The quaternion-valued weight vector can be recovered from the four corresponding
elements of w̄H by (41) and (42).

4.3. Complexity Analysis

In this section, we make a comparison of the computation complexity between the Q-Capon
beamformer in [13] and our proposed full Q-Capon beamformer. To deal with a quaternion-valued
signal, the Q-Capon beamformer has to process the two complex sub-signals separately to recover the
desired signal completely, which means we need to apply the beamformer twice for a quaternion-valued
SOI. However, it is not needed for the full Q-Capon beamformer, and the SOI is recovered directly by
applying the beamformer once.

For the Q-Capon beamformer, the weight vector is calculated by w = R−1a0(aH
0 R−1a0)

−1,
where a0 is the steering vector for the complex-valued SOI. As an example, we use Gaussian elimination

to calculate the matrix inversion R−1 and
1
3
(N3 − N) quaternion-valued multiplications are needed,

equivalent to
16
3
(N3 − N) real-valued multiplications. Additionally, R−1a0 requires 16N2 real-valued

multiplications, while 16(N2 + N) real multiplications are needed for (aH
0 R−1a0)

−1. In total,
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16
3

N3 + 32N2 +
80
3

N real multiplications are needed. When processing a quaternion-valued signal, this

number will be doubled and the total number of real multiplications becomes
32
3

N3 + 64N2 +
160
3

N.

For the proposed full Q-Capon beamformer, in addition to calculating R−1, 32N2 real
multiplications are needed to calculate R−1C and 32M2 + 32M + 96 real multiplications for
(CHR−1C0)

−1f. In total, the number of real-valued multiplications is 16
3 M3 + 64M2 + 272

3 M + 96,
which is roughly half that of the Q-Capon beamformer.

5. Simulations Results

In this section, simulations results are provided in terms of the resultant beam pattern, output
SINR, and robustness against steering vector mismatch. In the beam pattern part, both 2-D and 3-D
beam patterns are presented for the proposed full Q-Capon beamformer to show the unity response
to the desired signal and effective suppression to interferences. The beam pattern of the FQWCCB is
also provided to show its tolerance around the desired DOA and polarization region. In the output
SINR performance part, the full Q-Capon beamformer, FQWCCB, and the Q-Capon beamformer
are compared in two scenarios: one without steering vector mismatch, and one with steering vector
mismatch. A solid-line is also displayed as the optimal (ideal) beamforming result. The error constant
ε for FQWCCB is set to 1.3. In the robustness part, the beamformers are compared in terms of output
SINR versus the snapshots number with 1◦ and 5◦ DOA and polarization mismatch errors, respectively.

5.1. Beam Pattern

We consider 10 pairs of cross-dipoles with half wavelength spacing. All signals are assumed to
arrive from the same plane of θ = 90◦, and all interferences have the same polarization parameter
γ = 60◦. For the SOI, the two sub-signals are set to (90◦, 1.5◦, 90◦, 45◦) and (90◦, 1.5◦, 0◦, 0◦),
with interferences coming from (90◦, 30◦, 60◦, −80◦), (90◦, −70◦, 60◦, 30◦), (90◦, −20◦, 60◦, 70◦),
(90◦, 50◦, 60◦, −50◦), respectively. The background noise is zero-mean quaternion-valued Gaussian.
The power of SOI and all interfering signals are set equal, and SNR (INR) is 20 dB.

Figure 2 shows the resultant 3-D beam pattern by the proposed full Q-Capon beamformer,
where the interfering signals from (φ, η) = (30◦, −80◦), (−70◦, 30◦), (−20◦, 70◦), and (50◦, −50◦) have
all been effectively suppressed, while the gain of SOI from φ = 1.5◦ stays almost constant.
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Figure 2. Beam pattern obtained from the full Q-Capon beamformer with θ = 90◦ and γ = 60◦.
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Figures 3 and 4 show the 2-D beam patterns for η = −80◦, 30◦, 70◦, −50◦, respectively,
where deep nulls have been formed at locations φ = 30◦, −70◦, −20◦, 50◦.

Figure 3. The resultant beam pattern for (1) θ = 90◦, γ = 60◦, η = −80◦; (2) θ = 90◦, γ = 60◦, η = 30◦.

Figure 4. The resultant beam pattern for (1) θ = 90◦, γ = 60◦, η = 70◦; (2) θ = 90◦, γ = 60◦, η = −50◦.

The 3-D beam pattern for the proposed FQWCCB is provided in Figure 5. We can still see that the
interferences from (φ, η) = (30◦, −80◦), (−70◦, 30◦), (−20◦, 70◦) and (50◦, −50◦) are suppressed, but the
suppression is not as deep as in the case of the full Q-Capon beamformer; moreover, a large magnitude
response are formed around the direction of the desired signal.
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Figure 5. The resultant full quaternion worst-case constraint beamformer (FQWCCB) beam pattern
with θ = 90◦ and γ = 60◦.

5.2. Output SINR Performance

In the following, the output SINR performance of the two Capon beamformers (full Q-Capon
and Q-Capon) is studied with the DOA and polarization (90◦, 1.5◦, 90◦, 45◦) and (90◦, 1.5◦, 0◦, 0◦)
for SOI and (90◦, 30◦, 60◦, −80◦), (90◦, −70◦, 60◦, 30◦), (90◦, −20◦, 60◦, 70◦), (90◦, 50◦, 60◦, −50◦)
for interferences, respectively. Again, we have set SNR = INR = 20 dB. All results are obtained by
averaging 1000 Monte-Carlo trials.

Firstly, we consider a scenario without steering vector mismatch. Figure 6 shows the output
SINR performance versus SNR with 100 snapshots, where the solid-line is for the optimal beamformer
(i.e., with infinite number of snapshots). Note that with only 100 snapshots, there will be non-negligible
data model errors. It can be seen that for most of the input SNR range, the FQWCCB has the best output
SINR performance versus the input SNR, while the full Q-Capon has a worse performance, but it
still outperforms the Q-Capon beamformer. In the lower SNR range, FQWCCB and the full Q-Capon
beamformer have a similar result, but the gap becomes greater from input SNR = 10 dB onwards.
Additionally, in the lower range, the proposed full Q-Capon beamformer has a better performance
than the Q-Capon beamformer; for very high input SNR values, these two beamformers have a very
similar performance.

Next, another set of simulations is performed in a similar setting, which is shown in Figure 7.
The only difference is that there is 5◦ DOA and polarization mismatch for the SOI: the actual parameters
of the two desired sub-signals are (95◦, 6.5◦, 95◦, 50◦) and (95◦, 6.5◦, 5◦, 5◦). For lower input SNR
values (from −20 dB to 0 dB), the three beamformers have a similar output SINR, all worse than the
example without steering vector mismatch. As the input SNR increases, difference among the three
beamformers appears. From SNR = 0 dB onwards, the output SINR of FQWCCB and the full Q-Capon
beamformer continue to increase, while the output SINR of the Q-Capon beamformer starts to drop
slowly. Compared with the full Q-Capon beamformer, the FQWCCB has roughly achieved a 3 dB
higher output SINR than the full Q-Capon beamformer, which means that the FQWCCB has a better
performance than the full Q-Capon beamformer.
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Figure 6. Output signal-to-interference-plus-noise ratio (SINR) versus input signal-to-noise ratio (SNR)
for snapshots number 100, without steering vector mismatch.
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Figure 7. Output SINR versus input SNR for snapshots number 100, with 5◦ mismatch.

5.3. Performance with DOA and Polarization Mismatch

Next, we investigate their performance in the presence of both DOA and polarization errors with
SNR = SIR = 15 dB. The output SINR with respect to the number of snapshots is shown in Figure 8 in
the presence of 1◦ error for the SOI, where the actual DOA and polarization parameters are (91◦, 2.5◦,
91◦, 46◦) and (91◦, 2.5◦, 1◦, 1◦).

We can see that the FQWCCB has the best performance in the presence of DOA and polarization
mismatch, with output SINR above 20 dB for a varied number of snapshots. Both the full Q-Capon
beamformer and the Q-Capon beamformer experience a loss of SINR (below 5 dB at the beginning and
increasing with the snapshots number). However, the full Q-Capon beamformer has still achieved
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a much higher output SINR than the Q-Capon beamformer, and this gap increases with the increase
of snapshots number. Figure 9 shows a similar trend in the presence of a 5◦ error. For the Q-Capon
beamformer, the output SINR stays below 5 dB with little fluctuation, while the full Q-Capon
beamformer and its worst-case constraint version can achieve a relatively high output SINR level of
above 15 dB with 500 snapshots. Overall, we can see that the proposed full Q-Capon beamformer
(both with worst-case constraint and without worst-case constraint) is more robust against array
steering vector errors than the original Q-Capon beamformer.

Figure 8. Output SINR versus snapshot number with SNR = SIR = 15 dB and 1◦ error.

Figure 9. Output SINR versus snapshot number with SNR = SIR = 15 dB and 5◦ error.

6. Conclusions

In this paper, a full quaternion model has been developed for adaptive beamforming based
on crossed-dipole vector sensor arrays, with a new full quaternion Capon beamformer derived.
Different from previous studies in quaternion-valued adaptive beamforming, we have considered
a quaternion-valued desired signal, given the recent research development in quaternion-valued
communications. The proposed beamformer has a better performance and a much lower
computational complexity than a previously proposed Q-Capon beamformer, and is also shown
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to be more robust against array pointing errors. Furthermore, based on this full quaternion model,
the robust beamforming problem has also been studied in the presence of steering vector errors,
and a worst-case-based robust beamformer was developed. The effectiveness of the full Q-Capon
beamformer and the robustness of the further developed worst-case-based beamformer was verified
by computer simulations.

Appendix A

The gradient of a quaternion vector u = wHCλH with respect to w∗ can be calculated as follows:

∇w∗u = [∇w∗1
u ∇w∗2u ...∇w∗n u]T (A1)

where wn, n = 1, 2, · · · , N is the n-th quaternion-valued coefficient of the beamformer. Then,

∇w∗1
u =

1
4
(∇w1a u +∇w1b ui +∇w1c uj +∇w1d uk) (A2)

where
w∗1 = w1a −w1bi−w1c j−w1dk (A3)

Since w1a is real-valued, with the chain rule [24], we have

∇w1a u = ∇w1a(w
H)CλH + wH∇w1a(CλH)

= [1 0 0 ... 0]CλH (A4)

Similarly,
∇w1b u = [−i 0 0 ... 0]CλH

∇w1c u = [−j 0 0 ... 0]CλH

∇w1d u = [−k 0 0 ... 0]CλH
(A5)

Hence,

∇w∗1
u =

1
4
(4Re{CλH}1) = Re{CλH}1 (A6)

where the subscript {}1 in the last item means taking the first entry of the vector.
Finally,

∇w∗u = Re{CλH} (A7)

The gradient of the quaternion vector v = λCHwH with respect to w∗ can be calculated in the
same way:

∇w1a v = λCH∇w1a(w
H) +∇w1a(λCH)wH

= λCH[1 0 0 ... 0]T
(A8)

Similarly,
∇w1b v = λCH[i 0 0 ... 0]T

∇w1c v = λCH[j 0 0 ... 0]T

∇w1d v = λCH[k 0 0 ... 0]T
(A9)

Thus, the gradient can be expressed as

∇w∗1
v = −1

2
{CλH}∗1 (A10)

Finally,

∇w∗v = −1
2
(CλH)∗ (A11)
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The gradient of cw = wHRw can be calculated as follows.

∇w∗cw = [∇w∗1
cw ∇w∗2

cw ... ∇w∗n cw]
T (A12)

∇w∗1
cw =

1
4
(∇w1a cw +∇w1b cwi +∇w1c cw j +∇w1d cwk) (A13)

Now we calculate the gradient of cw with respect to the four components of w1.

∇w1a cw = ∇w1a(w
HR)w + wHR∇w1a w

= [1 0 0 ... 0]Rw + wHR[1 0 0 ... 0]T
(A14)

The other three components are,

∇w1b cw = [−i 0 0 ... 0]Rw + wHR[i 0 0 ... 0]T

∇w1c cw = [−j 0 0 ... 0]Rw + wHR[j 0 0 ... 0]T

∇w1d cw = [−k 0 0 ... 0]Rw + wHR[k 0 0 ... 0]T

Hence,

∇w∗1
cw = Re{Rw}1 −

1
2
{Rw}∗1 =

1
2
{Rw}1 (A15)

Finally,

∇w∗cw =
1
2

Rw (A16)

Combining (A7), (A11) and (A16), with (22), we have

∇w∗ l(w, λ) =
1
2
(Rw + CλH) = 0 (A17)

Further,
w = −2R−1CλH (A18)

Subsituting (A18) into (18),

λ = −1
2

f(CHR−1C)−1 (A19)

Finally,
w = R−1C(CHR−1C)−1fH (A20)
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