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We consider a cosmology in which dark matter and a quintessence scalar field responsible for the
acceleration of the Universe are allowed to interact. Allowing for both conformal and disformal couplings,
we perform a global analysis of the constraints on our model using Hubble parameter measurements,
baryon acoustic oscillation distance measurements, and a Supernovae Type Ia data set. We find that the
additional disformal coupling relaxes the conformal coupling constraints. Moreover, we show that, at the
background level, a disformal interaction within the dark sector is preferred to both ΛCDM and uncoupled
quintessence, hence favoring interacting dark energy.
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I. INTRODUCTION

Multiple high precision cosmological observations
broaden our understanding of the dynamics of the
Universe when confronted with theoretical models. For
instance, inferences from observations of Supernovae Type
Ia (SNIa) [1–5], baryon acoustic oscillations (BAO) [6–8],
and the cosmic microwave background (CMB) [9–12] are
complementary—among other things, they indicate that
our Universe has recently entered an accelerating epoch.
Analysis from data sets of this kind has led cosmologists to
formulate a standard model that postulates a dark sector
consisting of dark energy and dark matter, contributing to
about 69% and 26% of the total energy density in the
Universe, respectively [12]. The focus of much current
research in cosmology is to understand the properties and
origins of the dark sector, in particular dark energy, forwhich
the cosmological constant is the simplest explanation [13];
this standard model is currently in very good agreement
with current cosmological observations. Theoretically, how-
ever, the coincidence and fine-tuning problems challenge
our understanding of gravity and quantum field theory
[14,15]. A plethora of alternative dynamical dark energy
models have been proposed, such as quintessence [16–18],
k-essence [19,20], phantom [21], Chaplygin gas [22], Ricci
dark energy [23], and holographic dark energy and related
ideas [24,25]. Furthermore, coupled dark energy models
have also been extensively studied since, from the field
theoretic point of view, dark energy is not prohibited from
interacting with cold dark matter [26–39] or, for example,
massive neutrinos [40–44].
In this paper, we consider the case of a (nonuniversally)

coupled dark energy model in which dark matter particles

feel an additional fifth force mediated by the dark energy
scalar field. This coupling between the dark sector elements
modifies the background evolution of theUniverse, aswell as
the growth of perturbations; in this paper, we concentrate on
constraints coming from the background only, deferring the
perturbed case for futurework. As conformally coupled dark
matter models have been well studied [45–53], and tight
constraints on the model parameters have been established
[50–52], the main aim of this paper is to augment the models
of these studies with a disformal coupling and discern its
influence in light of the conformal-only constraints. Models
that utilize such disformal interactions within the dark sector
have been attracting much attention recently [33,38,54–61],
so it has become imperative that they be comparedwith state-
of-the-art cosmological data sets.
This paper is structured as follows. In Sec. II, we

introduce our coupled dark energy model and present
the background evolution equations in a flat, homogeneous,
and isotropic Universe. We list in Sec. III the observational
data sets we will use here to derive constraints on our model
parameters, while in Sec. IV, we present the obtained
constraints for each coupled dark matter model. Finally
Sec. V contains our conclusions and outlines future work.

II. THEORETICAL MODEL: ACTION AND
EQUATIONS OF MOTION

We consider the scalar-tensor theory described by the
following action, expressed in the Einstein frame,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
R −

1

2
gμν∂μϕ∂νϕ − VðϕÞ þ LSM

�

þ
Z

d4x
ffiffiffiffiffiffi
−~g

p
~LDMð~gμν;ψÞ; ð1Þ

where κ2 ≡M−2
Pl ≡ 8πG such that MPl ¼ 2.4 × 1018 GeV

is the reduced Planck mass; dark energy is described by a
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quintessence scalar field, ϕ, with a potential, VðϕÞ; and the
uncoupled standard model (SM) particles are described by
the Lagrangian, LSM, which includes a relativistic compo-
nent, r, and a baryon component, b. Particle quanta of the
dark matter (DM) fields, ψ , propagate on geodesics defined
by the metric

~gμν ¼ CðϕÞgμν þDðϕÞ∂μϕ∂νϕ; ð2Þ
with CðϕÞ and DðϕÞ being the conformal and disformal
coupling functions, respectively. In the general case, the
free functions C and D can depend on the kinetic term
X ¼ − 1

2
gμν∂μϕ∂νϕ as well, but throughout this paper, we

will not consider such a scenario. By definition, in the
Einstein frame, the gravitational sector has the Einstein–
Hilbert form, and SM particles are not coupled to the scalar
field directly.
The action above defines an interaction between DM and

dark energy, resulting from the modification of the gravi-
tational field experienced by the DM particles, ~gμν, by the
dark energy scalar field.
Variation of the action (1) with respect to the metric gμν

leads to the field equations

Rμν −
1

2
gμνR ¼ κ2ðTϕ

μν þ TSM
μν þ TDM

μν Þ; ð3Þ

where the energy-momentum tensors of the scalar field, SM
particles, and DM particles are defined by

Tϕ
μν ¼ ∂μϕ∂νϕ−gμν

�
1

2
gρσ∂ρϕ∂σϕþVðϕÞ

�
;

TSM
μν ¼−

2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
LSMÞ

δgμν
; TDM

μν ¼−
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi

−~g
p

~LDMÞ
δgμν

;

respectively. Nonconservation of Tϕ
μν implies the following

relation,

□ϕ ¼ V;ϕ −Q; ð4Þ
where

Q¼C;ϕ

2C
TDMþD;ϕ

2C
Tμν
DM∇μϕ∇νϕ−∇μ

�
D
C
Tμν
DM∇νϕ

�
; ð5Þ

and TDM is the trace of Tμν
DM, which satisfies a modified

conservation equation

∇μTDM
μν ¼ Q∇νϕ: ð6Þ

Since SM particles are uncoupled from the scalar field, their
energy-momentum tensor obeys the standard conservation
equation

∇μTSM
μν ¼ 0: ð7Þ

We assume all species to be perfect fluids,

Tμν
i ¼ ðρi þ piÞuμuν þ pigμν; ð8Þ

where the index i stands for DM and SM. The Einstein
frame SM and DM fluid’s energy density and pressure are
denoted by ρi and pi, respectively.
As we stated in the Introduction, only the background

dynamics of the theory are considered in this work—a
study of the perturbations will appear in a future publica-
tion, and so, from now on, we will consider the standard
flat Friedmann-Robertson-Walker metric, given by

ds2 ¼ gμνdxμdxν ¼ a2ðτÞ½−dτ2 þ δijdxidxj�; ð9Þ
with conformal time τ, we will denote a conformal time
derivative by a prime and scale factor aðτÞ. Spatial
gradients in the scalar field, ϕ, and matter fluid variables,
ρi and pi, are hence also neglected for this first paper.
Given the above simplifications, the modified Klein-

Gordon equation (4) becomes

ϕ00 þ 2Hϕ0 þ a2V;ϕ ¼ a2Q; ð10Þ
the fluid conservation equations simplify to

ρ0r þ 4Hρr ¼ 0; ð11Þ
ρ0b þ 3Hρb ¼ 0; ð12Þ

ρ0c þ 3Hρc ¼ −Qϕ0; ð13Þ
and the Friedmann equations simplify to

H2 ¼ κ2

3
a2ðρϕ þ ρb þ ρr þ ρcÞ; ð14Þ

H0 ¼ −
κ2

6
a2ðρϕ þ 3pϕ þ ρb þ 2ρr þ ρcÞ; ð15Þ

where we now denote coupled DM by a subscript, c. The
scalar field’s energy density and pressure, respectively, have
the usual forms ρϕ¼ϕ02=ð2a2ÞþVðϕÞ andpϕ¼ρϕ−2VðϕÞ,
and we denote the conformal Hubble parameter by
H ¼ a0=a. The coupling, as defined by Eq. (5), simplifies
to [58]

Q ¼ −
a2C;ϕ þD;ϕϕ

02 − 2D

�
C;ϕ

C ϕ02 þ a2V;ϕ þ 3Hϕ0
�

2

�
a2CþDða2ρc − ϕ02Þ

� ρc:

ð16Þ

Throughout this paper, we choose an exponential scalar field
potential,

VðϕÞ ¼ V4
0e

−λκϕ; ð17Þ
whereV0 and λ are constants.Whenwe consider a conformal
coupling, we make use of an exponential function,
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CðϕÞ ¼ e2ακϕ; ð18Þ
where α is a constant. As this is a simple first study, we only
take into account a constant disformal coupling,

DðϕÞ ¼ D4
M; ð19Þ

where DM is a constant inverse mass scale, expressed
in meV−1.
Let us now consider a phenomenological reparametriza-

tion of the system made concrete above. We will find
interpretation of our parameter constraints in the following
sections is made much more clear if we reparametrize the
system described above in the following way, and we will
return to comment on these definitions with regard to our
results in later sections. Following Refs. [38,60,62,63], we
repackage the dark sector of our model by now defining an
effective dark energy fluid, ρDE;eff , with effective equation
of state, weffðzÞ, such that

ρ0DE;eff þ 3Hð1þ weffÞρDE;eff ¼ 0; ð20Þ

and

ρ0c;eff þ 3Hρc;eff ¼ 0; ð21Þ

and hence

H2 ¼ κ2

3
a2ðρDE;eff þ ρb þ ρr þ ρc;0a−3Þ: ð22Þ

In this reparametrized system, there are by definition no
dark sector interactions, and the DM energy density dilutes
with the expansion as a−3. By comparing these noninter-
acting dark sector definitions with our coupled dark energy
model equations, we get that

weff ¼
pϕ

ρDE;eff
¼ pϕ

ρϕ þ ρc − ρc;0a−3
: ð23Þ

Since the coupled DM energy density does not redshift as
a−3, it follows that, although wϕ ∈ ½−1; 1�, weff can take
values less than −1. We have defined weff in Eq. (23) above
such that, evaluated today, the effective equation of state
coincides with the scalar field equation of state parameter.
We illustrate the evolution of the effective equation of state
and the scalar field equation of state parameter in Fig. 1 for
three different coupling scenarios.

III. OBSERVATIONAL DATA SETS

For our main analysis presented in Sec. IV, we shall be
considering constraints on the cosmological parameters
derived from the late-time Universe expansion history. We
shall be considering Hubble parameter measurements [64]
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FIG. 1. These figures show the evolution of the effective equation of state (solid) and the corresponding evolution of the scalar field
equation of state parameter (dashed). We show a conformal case with α ¼ 0.02 (left), a disformal case with DM ¼ 0.34 meV−1 (right),
and a conformal disformal case with α ¼ 0.02 and DM ¼ 0.34 meV−1 (bottom). In all cases, we set λ ¼ 1.2.
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and BAO data [65–67], together with SNIa data from the
Union2.1 catalog [68]. Moreover, we shall be considering a
standard big bang nucleosynthesis (BBN) prior correspond-
ing to a baryon density 100Ωbh2 ¼ 2.202� 0.046 [69].

A. HðzÞ data set and the Hubble constant

We use HðzÞ data inferred from the differential age
technique [70], a technique based on measurements of the
age difference between two passively evolving galaxies that
formed at the same time but are separated by a small
redshift interval, i.e. a measurement of the derivative dz=dt,
where t is the cosmic time and H ¼ a−1H. In Sec. IV, we
use 28 independent HðzÞ measurements [64], between
redshifts 0.07 ≤ z ≤ 2.3, to place constraints on our model
parameters. We also consider a Gaussian prior on the
Hubble constant,1 given by the Hubble Space Telescope
measurement of H0 ¼ 73.8� 2.4 km s−1Mpc−1 [72].

B. Baryon acoustic oscillations

BAO features in the clustering of galaxies are being used
by large scale surveys as a standard ruler to measure the
distance-redshift relation. The acoustic oscillations in the
photon-baryon plasma arise from the tight coupling of
baryons and photons in the radiation era. BAO data are
usually reported in terms of the angle-averaged distance

DVðzÞ ¼ ½zð1þ zÞ2D2
AðzÞH−1ðzÞ�1=3; ð24Þ

consisting of the angular diameter distance, DAðzÞ, and the
Hubble parameter. In the main analysis of Sec. IV, we use

the CMASS and LOWZ samples from Data Release 12 of
the Baryon Oscillation Spectroscopic Survey at zeff ¼ 0.57
and zeff ¼ 0.32, respectively [65]; the 6dF Galaxy Survey
measurement at zeff ¼ 0.106 [66]; and the Main Galaxy
Sample of Data Release 7 of Sloan Digital Sky Survey at
zeff ¼ 0.15 [67].

C. Supernovae Type Ia

Apart from providing observational evidence for the
accelerating expansion of the Universe [1–5], SNIa obser-
vations have also been widely used for cosmological model
parameter fitting. In our analysis, we use the supernova
Union2.1 compilation of 580 data points [68]. In Fig. 2, we
show the residual Hubble diagram from an empty Universe,
for three classes of models compared to the data set of
Ref. [68]. The distance modulus is defined as [73]

Δðm −MÞ ¼ ðm −MÞmodel − ðm −MÞMilne;

m −M ¼ 5log10
DLðzÞ
10 pc

; ð25Þ

where m is the apparent magnitude, M is the absolute
magnitude of the object, and DLðzÞ is the luminosity
distance.

IV. PARAMETER CONSTRAINTS AND
BEST FIT VALUES

For the global fitting of the cosmological parameters, we
use a modified version of the CLASS code [74] to evolve
the coupled dark energy-dark matter background equations,
and interface with the public (Metropolis-Hastings)
Markov chain Monte Carlo code Monte Python [75] to
constrain the model parameter space with cosmological
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FIG. 2. In this figure, we show the distance modulus for three different models together with the supernova Union2.1 data set [68]. We
illustrate a conformal case with α ¼ 0.02, a disformal case withDM ¼ 0.4 meV−1, and a mixed conformal disformal case with α ¼ 0.18
and DM ¼ 0.4 meV−1. In all cases, we set λ ¼ 1.1.

1We are aware of a more recent measurement of the Hubble
constant as reported in Ref. [71], although we decided to use a
more conservative constraint in our analysis.
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data. The amplitude of the scalar field exponential potential
function, V0, is determined by using an iterative routine
in the modified CLASS code. We assume top-hat priors
for our parameters: the baryon energy density parameter
Ωbh2 ∈ ½0.005; 0.1�, the coupled cold dark matter energy
density parameter Ωch2 ∈ ½0.01; 0.99�, the Hubble constant
parameter H0 ∈ ½45; 90� km s−1 Mpc−1, the conformal
coupling parameter α ∈ ½0; 0.48�, the disformal coupling
parameter DM ∈ ½0; 1.1� meV−1, and the scalar field
potential exponent parameter λ ∈ ½0; 1.7�. We have chosen
the range for our model parameters α, DM, and λ to
accommodate all the values for which there is acceleration
at the present (see Ref. [61] for details). On top of these,
we also include Gaussian priors on Ωbh2 and H0, as
mentioned in Secs. III and III A, respectively. Hence, the
most general parameter space in our analyses is given
by Θ ¼ fΩbh2;Ωch2; H0; α; DM; λg.
Although in this paper we shall only consider positive

values for our parameters, we have repeated the analyses
presented below for a negative range of priors, and the
obtained results were consistent with those presented here.
Changing the scalar field’s initial value, ϕini, is equivalent
to changing the field potential height parameter V0, so we
have held ϕini fixed for the entire study.

A. Conformal case

We first discuss the well-known case in which DM is
only conformally coupled [45–53]. Although already well
documented, this case is presented here both as a con-
sistency check and to provide the means to cleanly compare
parameter constraints derived from the purely conformal
case with the mixed case discussed in Sec. IV C. Our results
from different runs of Monte Python are illustrated
in Table I. The confidence-level contours and the corre-
sponding one-dimensional posterior distributions for the
HðzÞ þ BAOþ SNIa (red contours) run, the HðzÞ þ
BAOþ SNIaþ BBN (blue contours) run, and the HðzÞ þ
BAOþ SNIaþ BBNþH0 (green contours) run are shown
in Fig. 3. In Fig. 3, we show all covariance combinations,
although for the two cases discussed below, we only show
the most interesting combinations (which only involve the
model parameters), since the obtained constraints in these

models are weaker than those reported in the conformal
case. Using the HðzÞ þ BAOþ SNIa observations, we
obtain an upper limit on the interaction coupling strength
α < 0.193 at the 95.4% C.L.
When we include the BBN prior on the baryon energy

density parameter, the upper limit on the conformal
coupling parameter improves slightly to α < 0.143 at the
95.4% C.L., which is mainly due to better constraints on the
cosmological parameters. The obtained upper limit is
consistent with other results in the literature [45–52].
When using the H0 prior in combination with the other
data sets, the conformal coupling strength parameter upper
limit increases, as expected [47,50,51], to α < 0.168
(95.4% C.L.). Indeed, we find that the best fit value for
the conformal coupling strength is away from zero at 1σ,
α ¼ 0.097þ0.056

−0.039 , but is consistent with zero at 2σ. This
occurs mainly due to a slight tension between different
values of H0 deduced from the data sets. In this model, the
potential slope λ is constrained to be λ < 1.21 (95.4% C.L.)
without the H0 prior, and λ < 1.05 (95.4% C.L.) when
including the H0 prior; both are consistent with results in
the literature [46,49]. The data we use in our analysis is not
able to tightly constrain the conformal coupling interaction
parameter very well; tighter constraints have been obtained
when using recent CMB data [50–52].

B. Disformal case

We now discuss the constraints on the purely disformal
coupled case, in which DM and dark energy are interacting
via a constant disformal coupling as defined in Eq. (19)
with CðϕÞ ¼ 1. From our choice of data sets, we deduce
that a nonzero constant disformal coupling is preferred
above a 2σ confidence level. When using the HðzÞ þ
BAOþ SNIa data, we observe that DM > 0.070 meV−1

(95.4% C.L.), and when combining these data with the
BBN prior, we get that DM > 0.074 meV−1 (95.4% C.L.).
The obtained limits are given in Table II. This nonzero
coupling preference distinguishes the purely disformal
coupling from the purely conformal coupling, although
we should remark that a nonzero conformal coupling was
also found to be slightly favored particularly when com-
bining astrophysical data sets [50–52]. In the purely

TABLE I. For each model parameter, we report the best fit values and 1σ errors in the conformally coupled DM scenario. For λ and α,
we quote the 95.4% upper limits instead. See the top of Sec. IV for our chosen parameter priors. In the H0 run, we further include the
best fit value and 1σ errors for the conformal coupling strength parameter.

Parameter HðzÞ þ BAO þ SNIa HðzÞ þ BAOþ SNIaþ BBN HðzÞ þ BAOþ SNIaþ BBNþH0

Ωbh2 0.021þ0.0072
−0.0069 0.022þ0.0005

−0.0005 0.022þ0.0005
−0.0005

Ωch2 0.11þ0.013
−0.011 0.11þ0.007

−0.007 0.11þ0.008
−0.008

H0 67.49þ2.14
−2.18 67.92þ1.47

−1.57 70.14þ1.35
−1.63

λ <1.27 <1.21 <1.05
α <0.193 <0.143 0.097þ0.056

−0.039 ð<0.168Þ
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FIG. 3. Confidence-level contours of the cosmological and model parameters for the conformally coupled DM case. We compare the
68.3% (dark shaded) and 95.4% (light shaded) constraints arising from HðzÞ þ BAOþ SNIa observations with HðzÞ þ BAOþ
SNIaþ BBN and HðzÞ þ BAO þ SNIaþ BBNþH0 observations. The marginalized one-dimensional posterior distributions are also
shown for comparison.

TABLE II. For each cosmological parameter, we report the best fit values and 1σ errors in the disformally coupled DM scenario. For λ
and DMðmeV−1Þ, we quote the 95.4% limits instead. See the top of Sec. IV for the parameter priors.

Parameter HðzÞ þ BAO þ SNIa HðzÞ þ BAOþ SNIaþ BBN HðzÞ þ BAOþ SNIaþ BBNþH0

Ωbh2 0.021þ0.0046
−0.0053 0.022þ0.0005

−0.0005 0.022þ0.0005
−0.0005

Ωch2 0.11þ0.013
−0.011 0.11þ0.008

−0.008 0.11þ0.007
−0.008

H0 67.57þ2.19
−2.24 67.79þ1.22

−1.11 68.53þ0.95
−0.92

λ <1.56 <1.56 <1.53
DM >0.070 >0.074 >0.094
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conformal case, the peak away from zero, which we
discussed in Sec. IVA and which was also reported in
Ref. [50–52], is still not pronounced enough to claim
evidence for a deviation away from the concordance model
has been found. This is due to a number of possible
systematics. Moreover, larger values of the scalar field
potential slope λ are allowed in comparison with the purely
conformal case.
On the other hand, although the obtained limits on the

disformal coupling might be tightened further by including
higher-redshift experiments, our chosen data sets indicate a
preference toward a nonzero disformal coupling. In such
models, we find that, for a fixed potential slope λ, a weak

disformal coupling [DM < OðmeV−1Þ] pushes the late-
time effective equation of state to wϕ or larger, i.e. ≳ − 1,
whereas larger disformal couplings [DM ∼OðmeV−1Þ] are
found to decrease the effective equation of state in the late-
time Universe. Such behavior is depicted in the top right
panel of Fig. 1.
Despite the fact that different probes were used, in

Refs. [76,77] for example, it was found that, due to the
tension between different H0 measurements, dynamical
dark energy models with a time-dependent equation of state
that cross the phantom boundary into superacceleration are
favored by about 2σ.
When we further include theH0 prior with the other data

sets, we obtain a larger disformal coupling lower limit of
DM > 0.094 meV−1 (95.4% C.L.). This is similar to what
happened in the purely conformal case; i.e. we can
tentatively say that the H0 prior favors an interacting dark
sector irrespective of the functional form of the dark sector
coupling. The confidence-level contours and the corre-
sponding one-dimensional posterior distributions of the
model parameters are shown in Fig. 4.

C. Mixed conformal disformal case

We now allow for both conformal and disformal cou-
plings between dark matter and dark energy. As to be
expected, the obtained constraints on parameters are
weaker than those obtained in the purely conformal and
the purely disformal cases presented above. We compare
the results from different runs in Table III. The obtained
upper limit on the conformal coupling parameter is given
by α < 0.453 (95.4% C.L.) when using theHðzÞ þ BAOþ
SNIa data sets and also when including the BBN prior.
When we further include the H0 prior, the full range of our
chosen prior is allowed, i.e. α < 0.480 (95.4% C.L.).
Hence, in the presence of an additional disformal coupling,
larger conformal couplings are allowed. In this mixed
model, the lower limits on the constant disformal coupling
are given byDM > 0.102 meV−1 (95.4% C.L.) when using
the HðzÞ þ BAOþ SNIa data sets, DM > 0.143 meV−1

(95.4% C.L.) when including the BBN prior, and
DM > 0.105 meV−1 (95.4% C.L.) when we further add

0 0.37 0.73 1.10 0.57 1.1 1.7
0

0.37

0.73

1.1

H(z)+BAO+SNIa

H(z)+BAO+SNIa+BBN
H(z)+BAO+SNIa+BBN+

FIG. 4. Confidence-level contours of model parameters for the
disformally coupled DM case. We compare the 68.3% (dark
shaded) and 95.4% (light shaded) constraints arising from
HðzÞ þ BAOþ SNIa observations with HðzÞ þ BAOþ SNIaþ
BBN and HðzÞ þ BAOþ SNIaþ BBNþH0 observations. The
marginalized one-dimensional posterior distributions are also
shown for comparison.

TABLE III. For each cosmological parameter, we report the best fit values and 1σ errors in the conformally
disformally coupled DM scenario. For λ, α, and DMðmeV−1Þ, we quote the 95.4% limits instead. See the top of
Sec. IV for the parameter priors.

Parameter HðzÞ þ BAOþ SNIa HðzÞ þ BAO þ SNIaþ BBN HðzÞ þ BAOþ SNIaþ BBNþH0

Ωbh2 0.021þ0.0046
−0.0052 0.022þ0.0005

−0.0005 0.022þ0.0005
−0.0005

Ωch2 0.11þ0.011
−0.011 0.11þ0.008

−0.008 0.11þ0.010
−0.008

H0 67.49þ2.13
−2.13 67.77þ1.10

−1.12 69.68þ1.04
−1.16

λ <1.59 <1.58 <1.52
α <0.453 <0.453 <0.480
DM >0.102 >0.143 >0.105
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theH0 prior. Again, a larger disformal coupling is preferred
in comparison with the purely disformal case. The effective
equation of state discussion presented in Sec. IV B also
applies to this model. Indeed, the evolution of the effective
equation of state in these models is similar to that obtained
in purely disformal models. An illustration is given in
Fig. 1. The confidence-level contours and the correspond-
ing one-dimensional posterior distributions of the model
parameters are shown in Fig. 5. The obtained contours are
much wider than those obtained in the previous models,
although high-redshift probes might shrink these contours
and provide better best fits on parameters.

V. CONCLUSIONS

In the present work, we have considered an interacting
dark sector in which we allowed for two distinct forms of
couplings that connect dark matter with dark energy, where
the latter is responsible for the cosmological acceleration.

Our current state of ignorance regarding the physics of this
dark sector still allows for other interactions beyond the
purely gravitational ones to exist between its elements.
Various dark sector models involving various coupling
functions have been extensively studied, together with their
astrophysical and cosmological consequences, and it is
these studies, that compare such models with state-of-the-
art cosmological data, that will allow us to separate the
viable candidates from the false.
We here considered a specific coupled dark energy

model in which dark energy and dark matter are allowed
to couple via a conformal coupling and/or a disformal
coupling. We first considered the purely conformal and the
purely disformal coupling cases, and finally we also
discussed the mixed scenario in which both a conformal
and a disformal coupling are present. In our analyses, we
have only used the cosmological background evolution to
constrain cosmological model parameters, namely Hubble
parameter measurements, baryon acoustic oscillation

0

0.16

0.32

0.48

0 0.37 0.73 1.10 0.57 1.1 1.7
0

0.37

0.73

1.1

0 0.16 0.32 0.48

H(z)+BAO+SNIa

H(z)+BAO+SNIa+BBN
H(z)+BAO+SNIa+BBN+

FIG. 5. Confidence-level contours of the model parameters for the conformally disformally coupled DM case. We compare the 68.3%
(dark shaded) and 95.4% (light shaded) constraints arising from HðzÞ þ BAOþ SNIa observations with HðzÞ þ BAO þ SNIaþ BBN
and HðzÞ þ BAOþ SNIaþ BBNþH0 observations. The marginalized one-dimensional posterior distributions are also shown for
comparison.
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distance measurements, and the Supernovae Type Ia
Union2.1 compilation consisting of 580 data points.
In the conformally coupled model, we obtained results

consistent with those found in the literature, although
weaker constraints were obtained as we use only the
background evolution to test the models. Allowing for
an additional constant disformal coupling term, we found
that the constraints on the conformal coupling are relaxed.
This is consistent with the observations made in Ref. [38],
in which it was shown that the disformal term suppresses
the coupling Q at larger redshifts and therefore has an
impact on the evolution of the effective equation of
state weff .
We also found that, with our choice of data sets, a

nonzero disformal coupling between dark matter and dark
energy is preferred over the ΛCDM model. In the purely
conformal coupled case, only the analysis including the H0

prior prefers a nonzero coupling at 1σ confidence level. In
the case of a purely disformal coupling, a nonzero coupling
is preferred in all analyses, as is the case in the conformally
disformally coupled scenario. We must now go beyond the

background evolution and consider the growth of pertur-
bations as well. Using precise measurements of CMB
anisotropies and the matter power spectra of large scale
structures, we certainly expect to get tighter constraints on
our model parameters. We address this in future work.
Finally, on a more speculative note, we can compare our

findings above with that of Ref. [78], wherein Planck,
SNIa, and redshift space distortion data are found to favor a
late-time interaction between dark sector elements—it is
shown in Ref. [38] that the disformal coupling of the type
we have just considered switches on at late times and is
negligible in the past. We merely highlight this curiosity
now and return to a comparison between the models in
future work.
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