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Abstract: In chemical engineering applications, the operation of condensers and evaporators can be
made more efficient by exploiting the transport properties of interfacial waves excited on the interface
between a hot vapor overlying a colder liquid. Linear theory for the onset of instabilities due to heating
a thin layer from above is computed for the Marangoni–Bénard problem. Symbolic computation
in the long wave asymptotic limit shows three stationary, non-growing modes. Intersection of two
decaying branches occurs at a crossover long wavelength; two other modes co-exist at the crossover
point—propagating modes on nascent, shorter wavelength branches. The dispersion relation is then
mapped numerically by Newton continuation methods. A neutral stability method is used to map the
space of critical stability for a physically meaningful range of capillary, Prandtl, and Galileo numbers.
The existence of a cut-off wavenumber for the long wave instability was verified. It was found that
the effect of applying a no-slip lower boundary condition was to render all long waves stationary.
This has the implication that any propagating modes, if they exist, must occur at finite wavelengths.
The computation of 8000 different parameter sets shows that the group velocity always lies within 1

2
to 2

3 of the longwave phase velocity.
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1. Introduction

Marangoni–Bénard convection still generates much interest in fluid and nonlinear dynamics due
to its complexity. When the fluid layer is heated from below, convective instabilities can be driven by
surface or buoyancy forces [1]. The role of surface-tension gradients in inducing convective instability
through Marangoni stresses at the air–liquid interface in a thin layer initially at rest, heated from below,
was characterized in the seminal works of Sternling and Scriven [2] and Smith [3] and the role of
surface deformation and surface tension gradients in the onset of patterned convection and oscillatory
instability is reviewed in [4].

When the layer is heated from above, however, only overstability can be excited at sufficiently
high Marangoni or Rayleigh (buoyancy) numbers. The most common chemical engineering context
for a cold liquid heated from above is a condenser, which comprises a hot vapor that condenses over
a colder liquid chilled from the solid support below. There are many different configurations for
condensers, but all of them would condense faster if interfacial waves are excited on the interface.
Thus, a stability theory that shows under what conditions self excitation occurs could better inform
the design and operation of condensers. The scenario also describes an evaporator that is operated
by contacting hot gas over the cold liquid, as long as there is no fluid motion imposed. Of course,
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imposing fluid motion adds additional complication but has been found to accelerate performance in
novel contactors (evaporators, condensers and distillers) [5].

Classical experiments by Linde and coworkers [6] demonstrate a series of wave instabilities
excited at high Marangoni numbers, although they could not discern whether the excited waves were
surface or internal waves. It was later posited that the waves were surface manifestations of soliton
solutions to a dissipative variation of the Korteweg–de Vries equation. Experiments have shown
that solitary waves, excited and sustained by Marangoni stresses, undergo interactions and collisions
that return the waves to the pre-collision celerities and shapes, experiencing at most a phase shift,
but with either sense possible [7]. Nepomnyashchy and Velarde [8] demonstrated via multiple scale
perturbation methods the definitive derivation of the dissipative nonlinear evolution equation (termed
the KdV–KSV equation) in a sufficiently thin layer that buoyancy effects are neglected. Their study
assumed a stress-free lower boundary. The KdV–KSV theory predicts a critical Marangoni number
Mcrit = 12, irrespective of capillary, Prandtl and gravity numbers. The interpretation of this result
is simply that surface-tension gradients, if sufficiently strong, overcome viscous dissipation in the
surface layer to start the fluid oscillations. These oscillations must then combine two modes—the
gravity waves modified by Marangoni stresses that are normal to the surface (termed transverse
waves) and elastic-like waves that are tangential to the surface (termed longitudinal waves). A study
of solutocapillary Marangoni-induced interfacial waves is given in [9].

The purpose of this paper is to test the regime of validity of the KdV–KSV theory on two points—(i)
the assumption of the multiple scale theory that there is a long wave cut-off for a wave-packet
of unstable waves just above critical stability; (ii) the affect of the no-slip lower boundary on the
coefficients of the linear terms of the KdV–KSV equation—by computing the full linear stability theory
(LST) of the Bénard–Marangoni problem when heated from above. Since, in the basic state, the fluid is
at rest and only the static pressure among the field variables has a vertical dependency, it is possible
to formulate the analytic solution to the linearized equations and subsequently the secular equation
for excitation of non-trivial solutions for the streamfunction, temperature, and surface displacement.
The analysis presented is a precursor to the weakly nonlinear theory for the evolution of capillary
gravity waves given in [10]. The model equations are presented in Section 2. In Section 3, the linear
stability of both the stress-free model and the no-slip models are formulated. In each case, the long
wave asymptotic forms are computed for branches of the dispersion relation found. Results are
discussed in Section 4 and the conclusions are drawn in Section 5.

2. Flow Specification

2.1. Scaling

Consider a layer of viscous fluid with dynamic viscosity µ, density ρ, and thermal diffusivity κ,
which is heated from above. The background no flow and no deformation state is perturbed, giving rise
to gravity, capillary, and Marangoni forces. The relevant physical parameters are summarized below:

• Surface tension σ = σ0 + γ (T − T0) , where σ0 is the surface tension at the reference
temperature T0.

• Surface height z = d + h (x, y, t) , where d is the nominal height of the surface in the absence of
deformation, and x and y are horizontal coordinates. t is time.

• Stationary temperature profile Ts = T0 + β (z− d).
• Hydrostatic pressure ps = P0 − ρg (z− d).

As the focus here is on surface forces, the buoyancy in the bulk will be neglected by assuming
density constant.

We take diffusive scales as follows: t∗ = κt
d2 , x∗i = xi

d , v∗i = dvi
κ , T∗ = 1 + T−T0

βd , σ∗ = σ
σ0

, p∗ = d2 p
µκ ,

σ∗ij =
d2σij
µκ , where σij is the stress tensor. The asterisks refer to dimensionless variables. Henceforth,

the asterisks will be dropped and all calculations are given in dimensionless variables.
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Dimensional analysis yields four dimensionless groups:

• Prandtl number Pr = ν
κ ,

• Galileo number G = gd3

νκ ,
• Capillary number K = µκ

σ0d ,

• Marangoni number M = − γβd2

µκ .

As the layer is heated from above, β will be negative for simple fluids and the Marangoni number
as defined above is an intrinsically positive quantity for the target situation.

2.2. Model Equations

The full governing equations are adapted from Davis and Homsy [11] by neglecting buoyancy.
In the bulk, the velocity, temperature and pressure are constrained as:

1
Pr

(
∂vi
∂t

+ vjvi,j

)
= σij,

∂T
∂t

+ viT,i = ∇2T, (1)

vi,i = 0,

where σij = −pδij + εij; εij = vi,j + vj,i. The comma-subscript represents the index convention for
partial differentiation with respect to xi. The boundary conditions are a rigid lower planar surface held
at constant temperature at z = 0:

vi = 0,

T = 0.

The upper free surface is open and deformable at z = 1 + η (x, y, t):

ηt = Nvini,

σijnj =
K (η)

K
σni −MT,ktkti, (2)

T,ini = 1.

The differential geometry of the surface S(t) : z = 1 + η is given in terms of the element of arc
length N(η), curvature K(η), and the normal ni and the tangent ti vectors:

N(η) =
(
1 + η2

x
)1/2 ,

K(η) = ηxx
N ,

n = (−ηx, 1)N−1,

t = (1, ηx)N−1.

(3)

The base state is motionless with only hydrostatic pressure:

T̂ = z,

σ̂ij = G (z− 1) δij, (4)

η̂ = 0.
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3. Linearized System

The linearized equations about the motionless base state (4) for a two-dimensional disturbance
can be written in terms of a streamfunction ψ, defined in the usual way for incompressible flow.
In dimensionless form, the streamfunction–vorticity equation is given by:

1
Pr

(ψzzt + ψxxt) = ψxxxx + 2ψxxzz + ψzzzz. (5)

Subscripting by coordinates refers to partial differentiation by the respective coordinate. The pressure,
which is needed for the normal stress boundary condition, can be found from

px = ψxxz + ψzzz −
1
Pr

ψzt. (6)

The mathematical analysis leading to Equations (5) and (6) is outlined in Davis and Homsy [11].
The linear stability analysis is a standard mathematical approach having linearized the equations about
the base state. Heat transport couples temperature convection and diffusion. The linearized version is

Tt = Txx + Tzz + ψx. (7)

We apply seven boundary conditions at the upper and lower surfaces.

At z = 0, material surface (no penetration):

ψ = 0; (8)

no slip:
ψz = 0; (9)

fixed temperature:
T = 0. (10)

At z = 1, normal stress:
p = −2ψxz + Gh− K−1hxx; (11)

tangential stress:
0 = ψzz − ψxx + M (Tx + hx) ; (12)

material surface (kinematic condition):
ht = −ψx; (13)

no heat flux:
Tz = 0. (14)

We presume separation of variables with a factor that is a wave of real wavenumber k and
(complex) phase velocity c by normal mode expansion of the field variables:

p = P (z) exp (ik (x− ct)) , (15)

ψ = Ψ (z) exp (ik (x− ct)) ,

T = Θ (z) exp (ik (x− ct)) ,

h = H exp (ik (x− ct)) .
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The wave system is thus reduced to a two-point boundary value problem of ordinary differential
equations (ODEs) in P (z) , Ψ (z) , Θ (z) and H, with algebraic constraints: Bulk equations,

Ψzzzz +

(
ikc
Pr
− 2k2

)
Ψzz +

(
k4 − ik3c

Pr

)
Ψ = 0, (16)

P = ikΨz −
i
k

Ψzzz +
c

Pr
Ψz, (17)

Θzz +
(

ikc− k2
)

Θ = −ikΨ. (18)

Boundary conditions, at z = 0,

Ψ = 0, (19)

Ψz = 0,

Θ = 0.

At z = 1,

P = −2ikΨz +
(

G + k2/K
)

H, (20)

0 = Ψzz + k2Ψ + Mik (Θ + H) ,

Θz = 0,

cH = Ψ.

The algebraic manipulation package Mathematica 5.2 (Wolfram, Champaign, IL, USA) was used
to manipulate the governing equations for this system. As the bulk equations are linear ODEs with
constant coefficients, the general solutions can be represented by linear combinations of complex

exponentials given by the characteristic roots, ±k ±λ =
√

k2 − ikc
Pr and ±Λ =

√
k2 − ikc, yielding

Ψ = A exp (kz) + B exp (−kz) + C exp (λz) + D exp (−λz) , (21)

Θ =
−ik

k2 −Λ2 (A exp (kz) + B exp (−kz)) +
−ik

λ2 −Λ2 (C exp (λz) + D exp (−λz)) ,

+ F exp (Λz) + J exp (−Λz) .

The seven boundary conditions (19) and (20) reduce to a matrix equation in the seven unknowns
α = [A, B, C, D, F, J, H]T , Zα = 0, where the matrix Z = Zstick is given by

Zstick =



1 1 1 1 0 0 0√
k −

√
k λ√

k
− λ√

k
0 0 0

−1 −1 Pr
1−Pr

Pr
1−Pr c c 0

kek(c+2ik Pr)
Pr − ke−k(c+2ik Pr)

Pr 2ikeλλ −2ike−λλ 0 0 −G− k2

K

ek
(

2k− iM
c

)
e−k

(
2k− iM

c

)
eλQ e−λQ iMeΛ iMe−Λ iM

−
√

kek

c

√
ke−k

c − eλλ
c
√

k(1− 1
Pr )

e−λλ
c
√

k(1− 1
Pr )

eΛΛ√
k
− e−ΛΛ√

k
0

ek e−k eλ e−λ 0 0 −c


, (22)

where

Q =

(
2k− ic

Pr
− iM

c(1− 1
Pr )

)
.

Alternatively, with slip boundary conditions, where boundary condition (9) is replaced by the
stress-free condition on the lower surface ψzz = 0, we have the matrix Z = Zslip:
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Zslip =



1 1 1 1 0 0 0
k k λ2/k λ2/k 0 0 0
−1 −1 Pr

1−Pr
Pr

1−Pr c c 0
kek(c+2ik Pr)

Pr − ke−k(c+2ik Pr)
Pr 2ikeλλ −2ike−λλ 0 0 −G− k2

K

ek
(

2k− iM
c

)
e−k

(
2k− iM

c

)
eλQ e−λQ iMeΛ iMe−Λ iM

−
√

kek

c

√
ke−k

c − eλλ
c
√

k(1− 1
Pr )

e−λλ
c
√

k(1− 1
Pr )

eΛΛ√
k
− e−ΛΛ√

k
0

ek e−k eλ e−λ 0 0 −c


. (23)

3.1. Slip Boundary Condition

Either we have α = 0, in which case no wave solution exists, or there is a non-trivial solution
with a dispersion relation for the phase velocity as a function of wavenumber c (k) implied by the
singularity of the matrix, ∆ = det (Z) = 0. Expanding the determinant ∆ algebraically using the
permutation rule gives rise to 720 complex exponential terms upon eliminating H through application
of the kinematic condition on the upper surface. Thus, the determination of the dispersion relation
through solving ∆ = 0 symbolically is not a trivial undertaking. In contrast, the computation is
readily tractable numerically, apart from a particular difficulty in finding the zeros of ∆. Numerical
computations with fixed precision arithmetic are unlikely to return exactly zero. Therefore, a small
number below a given threshold is typically taken to be zero. When the determinant of a matrix
approaches zero, its condition number becomes large and thus the matrix becomes ill-conditioned,
meaning that computations could involve high levels of numerical error. Consequently, the threshold
level required to identify zeros of ∆ can be difficult to determine a priori. This motivates our desire to
seek closed form symbolic approximations to the dispersion relation.

Such approximations usually start with the long wave limiting cases. Presuming that c is
an analytic function of k allows us to write the Taylor’s series expansion of ∆ (c, k):

∆ (c, k) = ∑ ∆n (c, 0) kn. (24)

Truncating the series at n = N yields an approximate dispersion relation implicitly by requiring
the approximate determinant to vanish. We note that, with the matrix Zslip as written, the first
non-trivial contribution comes at n = 3/2, with

∆3/2 = −8iPr7/2c4
(

c2 − (G + M) Pr
)

(25)

having a quadruple root at c = 0 and real roots

c = ±
√
(G + M) Pr. (26)

These are the long wave asymptotic limits that demonstrate that the Marangoni effect is additive to
the gravity wave effect in contributing to the phase velocity. The capillary effect, however, is classically
weaker by O(k2) [12].

To isolate these modes, it is convenient to translate the phase velocity to the frame of reference
of the leftward (or rightward) moving wave and consider ∆

(
δc +

√
(G + M)Pr, k

)
= 0. Since,

by construction, ∆ is analytic in both k and c, it is useful to develop the k-power series of the c-truncation
of ∆, i.e.,

∆
(

δc +
√
(G + M)Pr, k

)
≈ ∆

(√
(G + M)Pr, k

)
+ δc∆(1)

(√
(G + M)Pr, k

)
= 0. (27)

Developing Equation (27) to O(k4) yields

δc = q1k + q2k2 + q3k3, (28)
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with

q1 = − i
6
(M− 12) Pr,

q2 = −
√

Pr
(
−45 + 3GK (5 + 2M Pr) + K

(
30M + M2 + 1440 Pr−240M Pr+16M2 Pr

))
90K
√

G + M
,

q3 =
i

7560K (G + M)
(4410 (12−M)Pr+204G2KMPr2

+ GK
(
−2520 Pr (11 + 6 Pr)− 42M

(
−4− 85 Pr+156Pr2

)
+ M2

(
8 + 29 Pr+1059Pr2

))
+ K(−15120 Pr (1 + 65 Pr) + 2520M Pr (−17 + 91 Pr)

− 21 M2
(
−8− 179 Pr+1277 Pr2

)
+ M3

(
8 + 127 Pr+1415 Pr2

)
)),

which is readily interpreted as a long wave instability occurring for a Marangoni number greater
than the critical value Mcrit = 12 for long waves k << 1. As k = 0 is a critical wavenumber with
neutral stability, it follows that for the problem to be well posed in the sense of Joseph and Saut [13],
Im{c(k)} < 0 as k → ∞. Thus, there must be a cut-off wavenumber for the long wave instability,
where Im{c(kcuto f f )} = 0 for k > 0 and higher wavenumbers decay, presumably due to the viscous
and heat dissipation modes. Conveniently, the exponential growth rate with slightly supercritical
M grows quadratically in k2 (Marangoni pumping) and decays as k4, since the growth constant is
−kIm{c}. As the odd order contributions in k are purely imaginary, it is possible that the long wave
instability is limited to a wave packet, with higher wavenumbers than kcuto f f being damped. Figure 1
demonstrates this occurrence for slightly supercritical M = 12.1. It can be seen that the growth rate is
positive for wavenumbers less than approximately 0.007, but that for larger wavenumbers, the growth
rate is negative, which is indicative of decaying modes.

k
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

gr
ow

th
 r

at
e

×10-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Figure 1. Growth rate −Im{c} vs. wavenumber k for M = 12.1, Pr = 10, G = 100, K = 0.00001.
The plot clearly illustrates an exponential growth of a long wave packet, subtended by k = 0 and kcuto f f .

An analytic form for the cutoff wavenumber can be computed from Equation (28), which also
shows the supercritical nature of the long wave packet of instability. Ref. [8] assumed the occurrence
of just this form of dispersion relation as the basis for their multiple scale perturbation theory.
They assumed kcuto f f << 1 as the formal perturbation parameter. Given that kcuto f f = 0.00724
for the conditions in Figure 1, their intuition has been proved correct here.

3.2. No-Slip Boundary Conditions

Introducing the no-slip lower boundary makes a major structural change to the physics of the
problem. It is well known that there are three fluid dynamical dissipative mechanisms that lead to the
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attenuation of surface waves. Bottom friction is the dominant mechanism wherever the layer depth
is substantially less than the wavelength, so that the wave induces large horizontal motions near the
bottom (see [12], Figure 55 for an illustration of this point).

Deep fluid waves, however, do not induce movement near the bottom, and thus no frictional
dissipation. Internal dissipation by viscous stresses acting throughout the wave cause attentuation.

Surface dissipation is associated with departures of the surface from its equilibrium value, described,
for example, by Lucassen (1968) in the case of doping of the surface with a monolayer of surfactant
leading to an elastic dissipative mechanism.

In addition to these mechanisms, the configuration under study has internal dissipation from the
thermal conduction and possible surface dissipation from the Marangoni effect, which can play the
role of a Lucassen-like tangential surface stress.

Lighthill [12] estimated the proportional energy loss per period, due solely to the bottom
friction, as [

2π

d

√
ν

2Ω

]{
2kd

sinh(2kd)

}
, (29)

where Ω = c/k is the wave frequency. The square bracket factor is the ratio of the thickness of the
bottom viscous boundary layer induced by the wave to the depth. The curly bracket factor corrects for
finite wavenumber—it is unity for infinitely long waves and zero for infinitely short ripples.

A complementary analysis for internal dissipation leads to the opposite preferences. Infinitely
long waves are unaffected by internal dissipation; infinitely short waves are massively damped by
internal dissipation. No doubt that consideration of internal dissipation effects only influenced the
search by [8] for long wave excitation of surface solitary waves.

A priori, this estimate would suggest that excitation of solitary disturbances cannot occur for
either long waves or short waves due to the dominance of the attenuation by bottom friction and
internal dissipative mechanisms, respectively. Candidate wavenumbers for solitary wave excitation
should be intermediate wavenumbers where the Marangoni effect induces sufficient disturbance
energy to overcome internal dissipation and bottom friction.

To investigate this hypothesis, the modal structure of the no-slip problem should be clarified.
The principal reason is that the major branches can be described with analytic approximations, leading
to better understanding of the structure, and highlighting changes that are possible at intermediate
wavenumbers.

3.3. No-Slip Boundary Condition: Modal Structure

It is now convenient to express separation of variables for the no-slip problem for each normal
mode in terms of exponential factors appropriate for growing standing waves (ω real):

ψ (x, z, t) = Ψ (z) exp (ikx) exp (ωt) ,
T (x, z, t) = Θ (z) exp (ikx) exp (ωt) ,
p (x, z, t) = P (z) exp (ikx) exp (ωt) . (30)

The general solution can be found as:

Ψ =
4

∑
j=1

αj exp
(
λjz
)

,

T = −ik
4

∑
j=1

αj

λ2
j − λ2

5
exp

(
λjz
)
+

6

∑
j=5

αj exp
(
λjz
)

,

P = i
(

k +
ω

Pr k

) dΨ
dz
− i

k
d3Ψ
dz3 , (31)
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where λ1 = k, λ2 = −k, λ3 =
(
k2 + ω

Pr
)1/2, λ4 = −λ3, λ3 =

(
k2 + ω

)1/2 and λ6 = −λ5 are the
characteristic values of the general solution.

The modal structure can be examined by considering the long wave limit

lim
k→0

∆ (ω, k; Pr, M, K, G) = 0 (32)

implicitly defines ω (k→ 0; Pr, M, K, G). This limit can be determined symbolically from:

lim
k→0

∆ (ω, k; Pr, M, K, G) =
−2 e−

√
ω−
√

ω
Pr

(
1 + e2

√
ω
) (

1 + e2
√

ω
Pr

)
ω

13
2

√
ω
Pr

Pr2 . (33)

Three finite roots exist: {{ω → 0}, {ω → −π2

4 }, {ω →
−(π2 Pr)

4 }}. We find that the neutrally
stable root ω → 0 has multiplicity of at least seven. The root ω → −π2

4 is associated with exponential
decay. Since the scaling for time is diffusive, the exponential decay constant is a factor of the thermal
time scale. Thus, this mode is termed the thermal mode. As the root ω → −π2 Pr

4 decays according to
the viscous time scale, we label this the viscous mode.

A key property of all of these modes is their stationarity. The long wave slip modes comprise
a pair of propagating simple waves. The no-slip bottom boundary condition has the effect of rendering
all long waves stationary. Thus, if any propagating modes exist, they must occur at finite wavelengths.
This suggests investigating the k-dependence for long waves branching from the infinitely long wave
modes identified above.

4. Results and Discussion

4.1. k-Space Continuation and Modal Character

Identifying the critical surface in {M, K, Pr, G} parameter space for the co-existence of the pair
of intermediate wavenumber propagating modes and the long wave stationary modes (long wave
thermal mode and long wave neutral temperature mode) is essential in mapping the parameter space.
Continuation methods based on Newton iteration must search for either purely real ω (long wave
stationary modes) or genuinely complex ω (intermediate wavenumber propagating modes). Figure 2
shows this critical curve k − M and ω − M for four mode co-existence at fixed parametric values
{K = 0.0001, Pr = 1.001, G = 1} found by numerically solving for ∆ = 0 and ∆ω = 0 simultaneously
by Newton’s method. For M ∈ {500, 1500}, it can be seen that the wavenumber of the crossover
point is a decreasing function, whilst the growth rate is an increasing function. The four modes that
co-exist along this critical curve are the two long wave stationary modes and two intermediate modes
propagating from opposing directions. Figure 3 shows an analogous k− Pr curve for the crossover
point from stationary long waves to propagating steady intermediate waves. A Prandtl number of 1 is
common for gases and a Prandtl number of 10 is common for liquids. The plots in Figure 3 show how
the behavior of the fluids changes from a near gaseous state to a near liquid state.

Once the critical surface dividing the wavenumber space into the two different regions of wave
character has been identified, it is a simple matter to use parameter space continuation methods in k to
find the remainder of the dispersion relation. Figure 4 summarizes the dispersion relation by plotting
maximum growth rate and the wavenumber at which it is achieved for a given Marangoni number
M at the values {K = 0.0001, Pr = 1.001, G = 1}. There is jaggedness in the graph in Figure 4a as the
wavenumber of maximum growth can switch modes. The normalized group velocity is also plotted
as a function of the Marangoni number. It is clear that neutral stability is found by ramping up the
Marangoni number to M ∼ 1100 for the other parameters fixed at these values.
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Figure 2. Magnitude of velocity field on z = 0 mm plane: (a) crossover wavenumber k; (b) growth
rate ω; for which ∆ = 0 and ∆ω = 0 simultaneously at the parametric values {K = 0.0001, Pr = 1.001,
G = 1} and M ∈ {500, 1500}. Along this critical curve, four modes co-exist—the two long wave
stationary modes and two opposite-directed intermediate propagating modes.
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Figure 3. Magnitude of velocity field on z = 0 mm plane: (a) crossover wavenumber k; (b) growth rate
ω; for which ∆ = 0 and ∆ω = 0 simultaneously at the parametric values {K = 0.0001, M = 500, G = 1}
and Pr ∈ {0.1, 10}. Along this critical curve, four modes co-exist—the two long wave stationary modes
and two opposite-directed intermediate propagating modes.
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Figure 4. (a) wavenumber kmax; (b) growth rate Re {ωmax}; (c) group velocity Im {ω} /k reduced
by long wave phase velocity (26) for which ∆ = 0 and Re {ωmax} > Re {ω} for all k at the
parametric values {K = 0.0001, Pr = 1.001, G = 1} and M ∈ {500, 1250}. These curves identify
the most dangerous mode (wavelength with most rapid growth or slowest decay). Clearly, there is
neutral stability at M ∼ 1100. The jaggedness of (a) reflects the granularity of the discretization in
k-M-continuation.

4.2. Critical Parameters via the Neutral Stability Method

Identifying the critical Marangoni number and associated wavenumber and frequency by
continuation in k and M for fixed {K, Pr, G} is computationally expensive if parameter space is
to be mapped. Once a single critical parameter set is known, continuation along the neutral stability
surface should be possible. Ref. [14] recognized that the Marangoni number only arises linearly
in Equation (20), so that it is possible to solve the tangential stress boundary condition for M and
eliminate all quantities α, thus finding the neutral stability curve by the condition that at arbitrary
k and with Re {ω} = 0, Im {M} = 0 is imposed by adjusting s = Im {ω}. Takashima [15] also
used this technique. Neither study, however, identified the long wave stationary branches put forth
here. The critical parameters {Mcrit, kcrit, scrit} are then found by minimizing M over k. In this paper,
the relation ∆ = 0 was solved for M, and neutral stability was found by using Newton’s method to
adjust s to achieve Im {M} = 0. Use of numerical root finding methods for s such that Im {M} = 0
are faster than those that seek values of s such that ∆ = 0.

An algorithm for parameter space continuation in {K, Pr, G} for {Mcrit, kcrit, scrit} by traversing
the neutral stability surface was developed. The essential steps are to find the M-k and s-k neutral
curves by computing a neighborhood in k surrounding an estimated critical point {M, k, s} from
adjacent values of {K, Pr, G}. Subsequently, Newton’s method is used to find the minimum of the
M-k neutral curve. This is illustrated in Figure 5 for the parameters Pr = 1.001, K = 0.0001 and
G = 1. The crossover wavenumber M − k neutral stability curve, i.e., that for which <(ω) = 0,
is plotted, along with a curve showing the functional dependence of the frequency s = Im(ω) on the
wavenumber k. A space of twenty values of each of {K, Pr, G} was mapped by this method. Table 1
exhibits a sampling of the database built up from Newton continuation in {K, Pr, G}. The range of
parameters was selected to represent some physically realizable liquids (small capillary number and
O(1) Prandtl number) and layer depths (microgravity to terrestrial gravity). From Table 1, it is clear
that values of Mcrit ∼ 104–105 are achievable under combinations of small capillary number and thin
layers in liquids. Critical wavenumbers kcrit are typically of intermediate scale, neither long (<0.1, say)
nor short (>10, say), but usually about kcrit ∼ 0.25.
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Figure 5. Magnitude of velocity field on z = 0 mm plane: (a) crossover wavenumber k for the M-k
neutral stability curve (Re {ω} = 0) for the parameters Pr = 1.001, K = 0.0001, G = 1. Mcrit is found
from the global minimum of the neutral curve and kcrit is the associated wavenumber; (b) frequency
s = Im {ω}.

Table 1. Critical values {Mcrit, kcrit, scrit} for fixed {Pr, G, K} found by the neutral stability/minimization
algorithm and parameter space continuation within the database. Samples were tested against the
dispersion relation method and were found to be in agreement and global maximum of growth rate
versus k. The table shows only selected values; the database is {Pr ∈ [1., 10.]}×

{
K ∈

[
10−6, 10−2]}×{

G ∈
[
100, 105]}. There are twenty values for each parameter, spaced exponentially.

K Pr G kcrit scrit Mcrit

1.0 × 10−2 1.001 1.000 0.2820 6.664 1.032 × 103

1.0 × 10−2 1.001 1.833 0.2821 6.674 1.034 × 103

1.0 × 10−2 1.001 3.360 0.2823 6.692 1.036 × 103

1.0 × 10−2 1.001 6.160 0.2826 6.724 1.041 × 103

1.0 × 10−2 1.001 1.129 × 101 0.2833 6.783 1.049 × 103

1.0 × 10−2 1.001 2.069 × 101 0.2847 6.892 1.064 × 103

1.0 × 10−2 1.001 3.793 × 101 0.2877 7.095 1.087 × 103

1.0 × 10−2 1.001 6.952 × 101 0.2949 7.479 1.120 × 103

1.0 × 10−2 1.001 1.274 × 102 0.3140 8.264 1.152 × 103

1.0 × 10−2 1.001 2.336 × 102 0.3736 10.16 1.130 × 103

1.0 × 10−2 1.001 4.281 × 102 0.5052 14.17 1.008 × 103

1.0 × 10−2 1.001 7.848 × 102 0.5703 18.22 1.042 × 103

1.0 × 10−2 1.001 1.438 × 103 0.5501 21.89 1.334 × 103

1.0 × 10−2 1.001 2.637 × 103 0.4826 25.08 1.979 × 103

1.0 × 10−2 1.001 4.833 × 103 0.3936 27.34 3.224 × 103

1.0 × 10−2 1.001 8.859 × 103 0.3048 28.57 5.548 × 103

1.0 × 10−2 1.001 1.624 × 104 0.2296 29.13 9.835 × 103

1.0 × 10−2 1.001 2.976 × 104 0.1710 29.38 1.771 × 104

1.0 × 10−2 10. 1.0 × 104 0.2105 210.3 1.693 × 105

8.859 × 10−4 10. 1.0 × 104 0.2102 210.0 1.694 × 105

7.848 × 10−5 10. 1.0 × 104 0.2069 207.4 1.702 × 105

1.0 × 10−6 10. 1.0 0.1563 89.24 6.994 × 104

1.0 × 10−6 10. 1.0 × 104 0.1403 156.2 2.096 × 105

Figure 4 is suggestive that the group velocity s/k of the critical mode might actually be well
predicted by the long wave formula (20) for the phase velocity. The scatter plot in Figure 6 tests this
hypothesis by crudely applying it to the entire mapped set of 8000 critical points. The critical group
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velocity, c0 =
√
(G + M)Pr, is plotted against the longwave phase velocity, scrit/kcrit, for each of the

8000 critical parameter sets considered. The plot suggests that c0 is the correct order of magnitude
for the group velocity of the critical mode regardless of the parameter set in the range mapped.
Furthermore, it is observed that the magnitude of the group velocity is constrained to be within 1

2 to 2
3

of the longwave phase velocity.
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Figure 6. Scatter plot of c0 =
√
(G + M) Pr versus scrit/kcrit for the 8000 critical parameter sets mapped.

This suggests that c0 is the correct order of magnitude and a fair approximation for the group velocity
of the critical mode regardless of the parameter set in the range mapped. Dotted lines have slope 2

3
and 1

2 .

5. Conclusions

An analytical study based on linear theory has been presented that considers the development
of instabilities that arise when a thin layer of a stably stratified fluid is heated from above for the
Marangoni–Bénard problem. Particular focus was directed towards the value of the critical Marangoni
number and to the influence of the lower boundary condition.

The stress-free model modifies the predicted critical Marangoni number to depend on the Galileo
number (gravity effects), but reduces to Mcrit = 12 under microgravity. It was not possible to find
the cut-off wavenumber analytically as it requires solution of the dispersion relation to O(k2) in small
wavenumber k, but numerical solutions of the secular equation indicates, for all parameters tested,
that kcuto f f < ∼0.05. This quantitative verification of the assumptions of KdV–KSV theory [8] under
the stress-free boundary conditions leads one to conclude that any deficiencies of the theory must lie
in the lower boundary condition. The analytic study of the long wave solutions to the secular equation
for the no-slip model led to the surprising discovery that there are no infinitely long propagating
modes. The three modes identified as k→ 0 are a neutral pure temperature mode, a damped viscous
(pure velocity) mode, and a damped thermal (pure temperature) mode. The temperature and viscous
modes both decay with increasing k, but the thermal mode increases in growth rate with small k.
The prediction of an intersection point is computed by Newton continuation of the nonlinear solution
of the secular equation. At the intersection of the two modes, the crossover point, there is co-existence
of two propagating modes with the two stationary long modes. At higher wavenumbers, only the
propagating modes exist. These modes are mapped by parameter space continuation in wavenumber,
and a parametric study by continuation in the physical parameter space is made. Further developments
in this research area could be facilitated by full numerical simulations.
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