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Abstract 

This paper reports on the use of the binder jetting 3D printing process combined with sintering 

to process bioceramic materials to form micro and macroporous 3D structures. Three different 

glass ceramic formulations, apatite-wollastonite and two silicate-based glasses, have been 

processed using this route to create porous structures which have a Young’s modulus equivalent 

to cortical bone and average bending strengths in the range 24 to 36 MPa. It is demonstrated 

that a range of macroporous geometries can be created, with accuracies of ± 0.25 mm over 

length scales up to 40 mm. Hot stage microscopy is a valuable tool in the definition of 

processing parameters for the sintering step of the process. Overall, it is concluded that binder 

jetting followed by sintering offers a versatile process for the manufacture of load bearing 

bioceramic components for bone replacement applications. 
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1. Introduction 

Binder jetting first emerged as a rapid prototyping process in the early 1990’s (1). As illustrated 

in Figure 1 it is a powder bed based 3D printing process which selectively jets a liquid binder 

into the powder in order to consolidate powder layers. The binder may react with the powder 

to bind it together, or may evaporate to leave a polymer “glue” which holds the powder together, 

or both. Through repeated powder re-coating and binder jetting the process can generate 3D 

shapes which are a composite or reaction product of the powder and binder, depending on the 

binding mechanism. The potential to use the process as a method for creating what are known 

as “green” bodies, which are parts that need subsequent consolidation through sintering (with 

the binder sacrificial material, and removed as part of the heat treatment), was initially exploited 

for metal tooling (2), but has since been adopted for a range of sinterable materials. The process 

can operate either solely with a liquid binder, or with the combination of a liquid and solid 

binders. Where a solid binder is used it is normally part of the powder bed, and normally the 

intention is that the liquid and solid binders combine in some way to bind the powders together 

(3).  

The process has been applied to the manufacture of bioceramic parts by a number of research 

groups. Table 1 summarises previous work with bioceramic scaffolds and the binder jetting 

approach. Whilst these studies have individually addressed a range of geometries of scaffold 

and a range of materials, none has assessed in a broad sense the overall capabilities of the 

process in terms of the requirements for bone replacement applications. The aim of the work 

presented in this paper was to evaluate the capability of the binder jetting/sintering approach to 

produce load bearing structures in a range of bioceramic materials and in a range of microporous 

and macroporous shapes, in order to assess the suitability of the process as a method of creating 

load bearing implants for bone replacement applications.  



2. Materials and Methods 

2.1 Part Designs 

A series of parts were designed to evaluate the ability of the process to produce specific features 

with dimensions in the range 0.5 to 40 mm. These are presented in Table 2, which also outlines 

the rationale for the choice of the individual designs. 

2.2  Powder Blend Preparation 

Three different base glasses were processed in this study: apatite-wollastonite (AW) and two 

novel glasses developed by Newcastle University (Newcastle, UK) in collaboration with Glass 

Technology Services (GTS) Ltd (Sheffield, UK), designated as NCL2 and NCL7 (4). The 

composition of the materials is outlined in Table 3. The glasses were produced and supplied by 

GTS Ltd. All the glasses were prepared through a melt-quenching route, in which the 

components of each formulation were weighed, mixed, melted and quenched in water to 

produce frits. The glass frits were crushed into a one-bowl zirconia ball milling machine 

(Planetary Mono Mill Pulverisette 6, Fritsch GmbH, Germany) using a rotational speed of 400 

rpm for 30 min (10 min each repetition). The obtained powders were then sieved, using a 

mechanical sieve shaker (Impact Test Equipment Ltd, UK), to obtain specific particle size. The 

glass powders were then blended with maltodextrin powder (Oneon, Bristol, UK; 0-53 µm), as 

a solid binder, in the ratio’s listed in Table 3, for 1h using a roller mixer (Stuart Roller Mixer 

SRT6, Camlab, UK). Previous work (5) indicated that using 30 % maltodextrin as a solid binder 

gave green parts which were sufficiently well consolidated to be handled, and which could be 

effectively sintered. 

2.3 XRD Analysis 

XRD analysis was performed using a PANalytical X'Pert Pro MPD, powered by a Philips 

PW3040/60 X-ray generator fitted with an X'Celerator detector. Diffraction data was acquired 



by exposing powder samples to Cu-Kg X-ray radiation, which was supplied with 40 kV and a 

current of 40 mA. 

The data were collected over a 2し range between 5-80º 2し, with a step size equal to 0.0334º, a 

counting time per step of 200 seconds using the scanning X’Celerator detector. Fixed anti-

scatter and divergence slits of 1o were used together with a beam mask of 10 mm. All scans 

were carried out in ‘continuous’ mode. 

Phase identification was carried out by means of the PANalytical X'Pert HighScore Plus© 

software, in conjunction with the ICDD Powder Diffraction File 2 Database (2004), ICDD 

Powder Diffraction File 4 - Minerals (2014) and the Crystallography Open Database (February 

2013; www.crystallography.net). 

2.4 Powder Thermal Characterisation 

The sintering behaviour of the NCL2 and NCL7 glass powders was characterised using a hot 

stage microscope (Misura®, Expert System Solutions, Italy). Specimens were prepared by 

manually pressing glass powders into a small cylindrical die (2 mm in diameter and 3 mm high) 

to make a cylindrical powder compact, which then was placed onto a 10 x 15 x 1 mm alumina 

plate, before being heated to a maximum of 1450 ºC, and at a rate of 10 ºC/min.  

2.5 Indirect 3D Printing of Green Parts 

A commercial ZPrinter® 310 Plus 3D printer (Z Corporation, USA) was used to print all parts. 

A layer thickness of 0.1 mm was used, with the liquid binder zb®60 clear binder (Z 

Corporation, USA). When jetting the binder the outer shell of a layer is normally more saturated 

with binder in order to give the outside of the part more definition, and the machine control 

parameter which defines this is the binder/volume ratio. In this case the binder/volume ratio of 

the shell was 0.21, and that of the inner core of the layers was 0.1. Green parts were printed 

with the parts oriented in the powder bed as shown in Table 2, and were left to dry overnight 

http://www.crystallography.net)/


before being removed from the build area, and then cleaned of any loose powder using an air 

blower. Green parts were then sintered in a furnace (Carbolite 1200 CWF, Carbolite GmbH, 

Germany) at temperatures of up to 1250 ºC, with the sintering cycle for the NCL2 and NCL7 

materials based on the hot stage microscopy results, and the sintering cycle for the AW material 

based on previous work with this material (6). 

2.6 Scaffold Dimensions, Porosity and Microarchitecture 

Dimensional measurements were made using a digital caliper (Mitutoyo - UK with a resolution 

of 0.02 mm) and a digital microscope (Olympus micropublisher 5.0 RTV). Levels of open 

porosity, were measured according to the BS EN 623-2:1993 using Archimedes’ method. 

Samples were weighed by means of a density determination kit in an analytical balance (Kern 

ABT220-5DM). The dry weight of the samples was recorded as 兼怠. Then, they were immersed 

in distilled water until no bubbles emerged from the water beaker and the submerged mass (兼戴岻 

was measured. Afterward, the specimens were taken out and re-weighed to calculate the wet 

mass (兼態岻 in air. The porosity was then calculated from: 

頚喧結券 喧剣堅剣嫌件建検 岫ガ岻 噺 岫 陳鉄貸 陳怠岻岫 陳鉄貸 陳典岻  捲 などど (1) 

Five specimens for each group were tested to calculate the average porosity. The results were 

expressed as mean ± standard deviation (SD). 

The total porosity, given by the sum of the close and open porosity, was calculated according 

to:  

劇剣建欠健 喧剣堅剣嫌件建検 岫ガ岻 噺 岫な 伐  陳迭諦 蝶濡岻 捲 などど (2) 

where 貢 is the density of the material and 撃鎚 is the outer volume of the porous sample. Five 

specimens for each group were tested to calculate the average porosity. The results were 

expressed as mean ± SD. 



Scaffold architecture and structural interconnectivity was also investigated by micro-computed 

tomography (micro-CT; XRadia/Zeiss VersaXRM-410). The scanner was set at a voltage 

between 60 and 80 kV and a current of 248 A, and the samples were scanned with an isotropic 

voxel size of 2.4 たm with approximately 1600 slices covering the sample height. Afterward, 

the scanned 2D slices were reconstructed to give 3D views of the entire structure using Avizo 

Fire software. 

2.7 Mechanical Property Testing 

The mechanical properties of the 3D printed structures were assessed by three-point bending 

test using an INSTRON 5567 testing machine (Instron Corp.; Canton, MA). The tests were 

performed according to ASTM C1161 – 13 standard. Specimens were 3D printed as beams 

(Table 2), during the tests the cross-head speed of the machine was set at 1 mm/min, and the 

support span length was 30 mm. A load cell of 1 kN was used, and the results, obtained from 

testing five samples, were expressed as the average values ± SD. 

The flexural strength 岫購捗岻 was calculated according to the following equation:  

購捗 噺 ぬ鶏詣に決穴態 

where P represents the applied load (N), L (mm) is the support span length, b (mm) is the sample 

width and d is the depth (mm). The flexural modulus 岫継捗岻 was calculated according to the 

following equation: 

継捗 噺 詣戴兼ね決穴戴 

where L (mm) represents the support span length, m (N/mm) is the gradient (i.e. slope) of the 

initial linear part of the load deflection, b (mm) is the sample width, and d (mm) is the sample 

depth. 

 



2.8 Microscopy 

Microstructural observations were performed by scanning electron microscope (Philips XL30 

ESEM FEG) on glass powders, green bodies and sintered structures. Before image acquisition, 

the samples were attached to an aluminium stub, then sputtered with a thin layer of gold in an 

argon-purged chamber (approximately 10 nm, sputter time 40 s at 40 mA), and afterward 

analysed. All the images were taken at an operation voltage of 20 kV, with a working distance 

of between 5 and 10 mm. 

3. Results 

3.1  Precursors 

  Microstructural Analysis 

SEM micrographs of the raw glass powders are shown in Figure 2. All the compositions were 

characterised by sharp edge and irregular shape particles. Furthermore, it can be observed that 

for all the glasses most of the particles were very fine (ranging from 20 µm to 53 µm), with the 

presence also of grains smaller than 10 µm, which tended to compact producing aggregates. 

  Thermal Behaviour 

Figure 3 shows the hot stage microscopy results. NCL2 and NCL7 specimens maintained their 

initial rectangular shape before the first shrinkage temperature (TFS), which were at around 600 

ºC. At temperatures higher than the TFS, the samples started to shrink until the temperature of 

maximum shrinkage (TMS), after which the samples expanded until they reached their 

temperature of maximum volume (TMV). The AW specimen broadly maintained its shape until 

melting. 

A three step heating treatment, shown in Figure 4, was developed for NCL2 and NCL7 (4). The 

first step (5 °C/min) was to remove completely the sacrificial binders without losing sample 

integrity, the second was to promote nucleation of the glass particles, and the third was the 



sintering step (at 700 °C and 625°C for NCL2 and NCL7 respectively) to consolidate the final 

structure. Figure 4 also illustrates the heat treatment used for AW. 

  XRD Analysis 

XRD patterns for all three compositions before and after sintering are reported in Figure 5. 

Figure 5(a-b) show that crystalline phases developed during the sintering treatments of the 

NCL2 formulation, which changed its status from a completely amorphous material to a glass-

ceramic. These were identified as diopside phase (CaMg(SiO3)2; ICDD ref. code 01-073-6374). 

The NCL7 formulation was almost amorphous (Figure 5(c)), as a very low amount of Ag was 

detected before the sintering treatment. The intensity of Ag peaks (ICDD ref. code 04-003-

1425) increased after sintering (Figure 5(d)). Figure 5(e-f) show that for AW the crystalline 

phases remained the same (hydroxylapatite and く-wollastonite) after the sintering process, but 

that the sintered material showed more intense peaks (Figure 5(f)) with respect to the raw glass-

powder (Figure 5(f)), confirming the glass-ceramic nature of this formulation. 

3.2  Sintered scaffolds 

  Microstructure and Shrinkage 

Figure 6 shows representative images of the 3D printed bioceramic samples after sintering, with 

Figure 7 showing representative surface morphologies. The sintered structures exhibited a very 

high degree of densification, with volume reductions between 34.55 ± 3.67 % and 57.24 ± 2.8 

3%, and with shrinkage varying with material, powder blend and shape as reported in Table 4. 

The resulting morphologies were very similar for all powder blends, with a rough surface and 

an interconnected 3D network. The original sharp grain boundaries of the glass powders were 

no longer distinguishable, indicating that the thermal treatment led to neck formation and 

consolidation (see red arrows in Figure 7).  



  Process Capabilities 

Table 5 summarises the porosities and accuracies achieved in the manufacture of a range of 

geometries. The most variable dimension in absolute terms was the length of the beams, which 

gave a min-max range of 0.46 mm, with the smaller dimensions showing less variation. The 

variations in open porosity are significant, varying from 12 % to 33 %. However it is notable 

that the variations for the individual batches of parts are quite small: the variations between the 

different part designs were much larger than those from part to part within a specific build. In 

generating macroporous structures using the process the main limitation is the removal of 

unwanted powder from channels. Figure 8 illustrates that the minimum achievable cylindrical 

channel diameter was 1-2 mm, depending on the length of the channel. Figure 9 illustrates both 

open and total porosity measures for all five powder blends, and indicates that the total porosity 

varied from 28 to 50 %, but typically only half of the total porosity is accessible. 

3.2.3 MicroCT Analysis 

3D reconstructions of the sintered bioceramic structures based on microCT analysis are shown 

in Figure 10. NCL2 showed a low level of micro-porosity, showing a heterogeneous distribution 

of pores. Additionally, in Figure 10(a) the presence of macro-channels of around 150 to 400 

µm in size, which crossed the structure, can be observed. NCL7, AW4 and AW5 all showed an 

architecture characterised by a network of connected micropores, typically less than 150 µm in 

size, with AW5 showing the most homogeneous and widespread network of pores. The AW1 

blend produced a part with large pores (approximately 0.5 – 1 mm) distributed through the 

structure. 

3.2.4 Mechanical Properties 

A summary of the mechanical properties values for NCL2, NCL7 and AW1 printed beams is 

reported in Table 6. NCL2 was characterised by the highest mechanical properties. However, 



no significant differences were found for the novel 3D printed scaffolds in comparison to AW, 

whereas NCL2 scaffolds showed flexural strength values significantly higher than NCL7 

beams.  

Typical load-deflection curves for NCL2, NCL7 and AW4 are presented in Figure 11. The 

traces show evidence of the beams slipping in the supports, and of localised failure, which was 

concentrated at the loading points.   

 

4.  Discussion 

4.1 Sintering Cycle Development 

Utela et al. (7, 8) presented a comprehensive overview of the steps involved in optimising the 

binder jetting and sintering processes. The most significant enhancement we would propose is 

the use of a heating microscope to understand the thermal behaviour of the materials and 

identify sintering temperatures. This technique allowed the quantification of the sintering 

interval of a compound by measuring the variation of the sample dimensions during the heating 

treatment (9), and the good mechanical properties shown in Table 6 indicates that the chosen 

sintering temperatures were effective. 

4.2 Process Capabilities 

Taken altogether the results presented in this paper indicate binder jetting followed by sintering 

with glass powders can produce bioceramic parts: 

 For which the evolution of different material phases during sintering can be controlled 

through selection of an appropriate sintering regime, as illustrated by the XRD spectra in 

Figure 5. 



 With mechanical properties in a porous part which mean that they can be applied in load 

bearing applications, and with a modulus which matches the modulus range shown by 

cortical bone (10-12), as indicated by Table 6.  

 With a significant degree of microporosity, and the scope to design macroscopic channels 

with diameters of over 1 mm, as indicated by Figure 6 and Figure 8. This combination of 

micro and macroscopic channels is desirable as the microporosity allows bone ingrowth for 

implant integration, whilst macroporous volumes within a scaffold allow for bone 

regeneration, and the effectiveness of this microporous/macroporous structure has 

previously been shown in vitro with the AW material (13). 

 Which are accurate to ± 0.25 mm over length scales from 0.5 mm to 40 mm, as indicated 

by Table 5. 

This combination of capabilities, together with appropriate choice of materials, makes binder 

jetting combined with sintering an attractive process for the creation of load bearing bone 

replacement devices. The success of such devices depends not only on the mechanical 

properties at the point of implantation, but also on (i) the bioactivity of the materials and (ii) 

the evolution of the mechanical properties in vivo. AW as a material is known to be bioactive 

(13, 14), and it has previously been used to produce commercial medical devices. AW is known 

to be a slowly resorbing material when porous (16), and would resorb at a rate which was slower 

than the rate at which bone can regenerate, and degradation studies on NCL2 and NCL7 indicate 

that they also resorb slowly (4). This combination of properties would give a device which was 

load bearing at the point of implantation, supported bone ingrowth into the microporous 

structure for integration within the body, and which then slowly resorbed to be replaced by 

natural bone. Ceramic materials on their own are brittle, which is why the ingrowth and gradual 

resorption to be replaced by natural bone are important elements in the device design. 



Overall porosity levels can also clearly be influenced by device design. Table 4 makes it clear 

that shrinkage during sintering varied non-significantly with both material and shape, and no 

clear trend was observed in this. The increased open porosity of the hollow cylinder in Table 5 

when compared to the beams or disks is considered to be in part due to the increased surface 

area/volume ratio of that shape, and if the hollow channel is considered to be a pore then the 

overall porosity of the structure, compared to a solid cylinder of the same external dimensions 

would be ~63 %.  

Whilst the porous nature of the sintered materials and the scope for macroporous device design 

mean that large porosities are possible, Table 5 indicates there is still some room for 

improvement in terms of the quality and repeatability of the porosity. It would be preferable for 

more of the closed porosity to be open, and for the porosity levels to be more consistent. Most 

of the variation shown in Table 5 is considered to have arisen from build to build variations in 

powder blends. Mixing particle size ranges is inherently more stochastic than mixing particles 

with closely defined particle sizes, and there is scope for variations in powder blend 

composition within the blending protocol outlined in section 2.2. In addition powder sieving is 

not a completely reliable process: high aspect ratio powder particles can pass through sieves to 

give large particles in a small size fraction, and agglomerated small particles may not pass 

through a sieve to reach their natural size fraction. Variations arising from powder processing 

could then produce differences in both the powder bed (and therefore in the green part) and the 

sintering behaviour which would produce differences in the quality of the porosity. Better 

control of the starting powder blend particle sizes and quality is considered to offer the most 

likely route to both consistency overall and to making the closed porosity more open (for 

instance through producing a blend with a greater proportion of larger, more spherical, 

particles).  



The main limitation identified in this study are the levels of shrinkage. For the relatively small 

parts created in this study volume shrinkage levels of around 50 % did not cause any gross 

distortions in geometry, and the shrinkage was in general isotropic. However, with larger parts 

or more complex geometries even isotropic shrinkage can be a problem (17), and so there are 

likely to be size and shape limitations on parts. The development of alternative binder systems 

which reduce the volume of binder material used would be the process improvement that would 

reduce the shrinkage and therefore the scale of the limitation (18). 

5. Conclusions 

Binder jetting followed by sintering offers a versatile process for the manufacture of load 

bearing bioceramic components for bone replacement applications. The results presented in this 

paper show that the process can produce parts in a range of sinterable bioceramics which are 

accurate to within ± 0.25 mm, have micro and macroporous structures, with mechanical 

properties which approach or match those of cortical bone.  
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Table 1: Summary of Previous Studies of Binder Jetting/Sintering of Bioceramics 

Material 
Sintering 
condition 

Mechanical 
properties  

Biological properties Reference 

HA 1250ºC/2h 
compressive strength: 
21.2±2.2 MPa (dense 

part) 

Cells were seeded on the scaffolds 
and cultivated under static and 
dynamic setups. This last method 
showed better results with a deep cell 
proliferation into the HA structure. 

(19, 20) 

HA 1250ºC/2h 
compressive strength: 
21.2±2.2 MPa (dense 

part) 

Cell viability tests showed superior 
biocompatibility of HA scaffolds to 
BioOss® 

(20, 21) 

く-TCP 1400°C 

compressive strength:  

8.66± 0.11 MPa 

 (% porosity 
46.07±8.52) 

In vitro cytotoxic assays showed a 
good cell–scaffold interaction, thus 
revealing the scaffolds' 
biocompatibility 

(22) 

く-TCP/ 
Bioglass 

1000°C 
bending strength: 

14.9 ± 3.6 MPa 
– (23) 

HA/AW 1300°C/3h 

bending strength: 

35.22±6.56 MPa 

(% porosity 
30.00±1.50) 

In vitro tests showed that osteoblast 
cells attach and attain normal 
morphology on the surface of the 3D 
printed scaffolds. 

(24) 

Brushite - 
bending strength: 

5.2 MPa 
In vivo implantation of both brushite 
and monetite scaffolds showed their 
osteoinductive potential. 

(25, 26) 

Monetite 134°C/2h 
bending strength: 

3.9MPa 

TTCP/ く-
TCP 

1200°C/6h 

1400°C/6h 

compressive strength: 
1.3±0.1MPa 

3.9±0.1MPa 

MC3T3-E1-cells grew on the 
scaffolds as adherent cell showing the 
increase in ALP activity over the 3 
weeks in culture. (27) 

TTCP/ 

CaSO4 
1000°C/6h 

compressive strength: 
0.1±0.01MPa 

- 

 

 

 



Table 2: Part designs 

Name Shape CAD Dimensions Purpose Material 
Bars with 
Channels 

 

10 x 10 square 
cross section.  
Height: 5 to 30 mm 
in 5 mm 
increments.  
1-2 mm diameter 
through channels 

Assessment of 
minimum 
achievable 
channel diameter 

AW1 

Beam  

 

50 x 5 x 4 mm Three-point 
bending test 

NCL2, 
NCL7, 
AW4 

Disk 

 

Diameter 10.25 
mm; height 2.25 
mm 

Porosity and 
Morphology 

NCL2, 
NCL7, 
AW4, 
AW5 

Disk with 
pockets 

 
 

As above, with 
pockets 1.5 mm 
diameter and 0.5 
mm deep 

Accuracy of 
small features 

AW1 

Hollow 
Cylinder 

 
 

Height 8.42 mm; 
outer diameter 
7.48 mm; wall 
thickness 2 mm 

Accuracy of thin 
walled structure 

AW5 

 

 

 



Table 3: Composition of the glasses (wt%) and powder blends (wt%) 

CODE 
GLASS COMPOSITION  

(wt %) 

POWDER BLEND 

COMPOSITION 

NCL2 

36.90SiO2 – 9.70P2O5 – 
1.90B2O3 – 3.39Na2O – 
11.48CaO – 3.85K2O – 
4.41MgO – 2.38MnO2 – 
6.97Al2O3 – 2.13CaF2 – 
10.92Fe2O3 – 0.41Li2O – 
1.97MoO3 – 1.52SeO2 – 

2.07Cr2O3 

70 wt% NCL2 0-53 µm 
30 wt% MD 0-53 µm 

NCL7 

39.96SiO2 – 9.46P2O5 – 
12.39Na2O – 11.19CaO – 

2.50K2O – 1.61MgO – 
15.44AgO – 2.13TiO2 – 
4.26Fe2O3 – 1.06CuO 

70 wt% NCL2 0-53 µm 
30 wt% MD 0-53 µm 

AW1 
4.6 MgO - 44.7 CaO - 34 SiO2 - 

16.2 P2O5 - 0.5 CaF2 
70 wt% AW 54-90 µm 
30 wt% MD 0-53 µm 

AW4 
4.6 MgO - 44.7 CaO - 34 SiO2 - 

16.2 P2O5 - 0.5 CaF2 
70 wt% AW 0-53 µm 
30 wt% MD 0-53 µm 

AW5 
4.6 MgO - 44.7 CaO - 34 SiO2 - 

16.2 P2O5 - 0.5 CaF2 

55 wt% AW 54-90 µm 
15 wt% AW 0-53 µm 
30 wt% MD 0-53 µm 

 

Table 4: Average volumetric shrinkage (%) for selected sintered samples (n=10). Mean ± SD. 

 

 

 
NCL2 NCL7 AW1 AW4 AW5 

Beam 42.41 ± 3.43 47.04 ± 2.54 34.55 ± 3.67 48.56 ± 2.12 41.30 ± 5.34 

Disk 49.66 ± 1.55 57.24 ± 2.83 - 49.07 ± 2.55 - 



Table 5: Summary of process capabilities 

   For Least Consistent Dimension 

Part Name & Material Open Porosity 
Mean ± SD (%) 

Least Consistent 
Dimension 

Mean ± SD 
(mm) 

Max (mm) Min (mm) 

Beam 

AW5 
12.40 ± 0.29 Length 40.67 ± 0.06 40.96 40.50 

Disk 

AW1 
14.20 ± 0.19 Diameter 7.94 ± 0.03 8.11 7.85 

Disk with pockets  

AW1 
28.78 ± 1.08 Pocket Depth 0.48 ± 0.01 0.60 0.40 

Disk 

AW4 
22.48 ± 1.55 Diameter 8.09 ± 0.05 8.30 7.90 

Disk 

NCL2 
15.78 ±1.12 Diameter 7.42 ± 0.02 7.56 7.28 

Disk 

NCL7 
23.41 ± 0.94 Diameter 7.54 ± 0.12 7.92 7.12 

Hollow cylinder 

AW5 
33.29 ± 1.17 Wall Thickness 1.03 ± 0.03 1.16 0.95 

 

 



Table 6: Summary of the mechanical properties (mean±SD) for 3D printed NCL2, NCL7 and AW 
porous scaffolds assessed by three-point bending test. 

SAMPLE 
FLEXURAL 

STRENGTH (MPa) 

FLEXURAL 

MODULUS (GPa) 

NCL2 35.84±2.52 13.47±1.73 

NCL7 26.08±2.14 11.20±0.92 

AW1 23.65 ± 0.73 7.27 ± 0.52 

AW4 28.64 ± 3.26 10.86 ± 1.18 

AW5 25.95 ± 1.59 11.18 ± 0.94 

 

 

 

Figure 1: Binder jetting 3D printing process  



 

Figure 2: SEM analysis (magnification 1500x) showing the glass powders morphology: a) NLC2, b) 
NCL7 and c) AW. 

 

 

 

Figure 3: Shrinkage profile derived from hot stage microscopy as function of temperature for: NCL2, 
NCL7 and AW compositions (TFS= temperature of first shrinkage, TMS= temperature of maximum 

shrinkage, TMV= temperature of maximum volume, TCM= temperature of complete melting). 

 



 

Figure 4: Heat treatment profiles for: NCL2, NCL7 and AW green bodies. 

 

 



 

Figure 5: XRD patterns of: (a) glass powder and (b) pellet sintered at 700ºC of NCL2 composition (ズ 
diopside); (c) glass powder and (d) pellet sintered at 625 C of NCL7 composition ( silver); (e) glass 

powder and (f) pellet sintered at 850ºC of AW composition (  hydroxylapatite,  く-wollastonite). 

 



 

Figure 6: Representative images of the 3D printed bioceramic structures after sintering: a) disk with 
pocket AW1, b) hollow cylinder AW5, c) disk AW4, d) disk NCL2 and e) disk NCL7. 

 

 

Figure 7: SEM micrographs of surfaces of a) NCL2, b) NCL7, c) AW4 and d) AW5 3D printed 
structures after sintering (red arrows indicate necking formation). 

 



 

 

Figure 8: Minimum producible channel diameter as a function of channel length. Inset image shows 
sintered bars. 

 

 

 

 



 

Figure 9: Averaged open and total porosity values for sintered NCL2, NCL7 and AW4 3D printed disks, 
and AW1 and AW5 3D printed beams. In each case measured for a batch of 10 parts. Error bars 

represent the standard deviation. 

 

 

Figure 10: 3D reconstruction of a) NCL2, b) NCL7 c) AW1, d) AW4 and e) AW5 obtained through 
micro-CT analysis. 

  



 

 

Figure 11: Representative load-deflection traces for 3D printed NCL2, NCL7 and AW4 porous ceramic 
beams, resulting from the three-point bending test. 

 

 


