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Supporting information related to
“Equal-tailed confidence intervals
for comparison of rates”

Peter J Laud

APPENDIX S1

COMPUTATIONAL DETAILS OF ROOT-FINDING METHODS, INDETERMINATE AND NON-

MONOTONIC SCORE FUNCTIONS

This appendix contains full details of a number of minor

technical issues that were omitted from the main manuscript

for the sake of brevity.

S1.1 Root-finding

The bisection root-finding method has an obvious difficulty

for RR and OR, which are unbounded above. This can be

surmounted by mapping the [0,∞] interval onto a finite

interval (such as [−1, 1] for consistency with the calculations

for RD) using an inverse tangent transformation. A similar

solution can be used for Poisson RD, for which � is also

unbounded below. The alternative root-finding method using

the secant method can be unreliable because it is not

guaranteed to converge.

S1.2 Problematic score functions

I do not wish to hide the unsettling fact that there are some

circumstances where the skewness-corrected score function

Z(�) in Equation (2) is non-monotonic, and even for the

uncorrected score it can be indeterminate at a single point

value for �, both of which can lead to issues with root-

finding.

For example, when the skewness correction is omitted, Z(�)
can be indeterminate at one of the four corners of the

parameter space (such as at � = 0 when p̂1 = 0 and p̂2 = 0).

Note that this is not unique to the parameterisation presented

here, but occurs for both the Miettinen-Nurminen and Gart-

Nam versions of the score function. In order to avoid a root-

finding algorithm failure in such a case, a simple solution is

to set Z(�) to zero when S(�) is zero.

When the skewness correction is included, the score function

is non-monotonic for binomial RD when both p̂1 = 0 or 1 and

p̂2 = 0 or 1, and in a range of other boundary cases when one

group is much larger than the other. Similarly for Poisson

RD when p̂1 = 0 or p̂2 = 0. For RR and OR, there may be

no solution to one of the equations Z(�) = ±z, in which

case the corresponding limit would naturally be 0 or +∞ as

appropriate. Non-monotonic score functions for all contrasts

are also induced by the continuity correction. The bisection

root-finding algorithm for identifying confidence limits is

generally unaffected by the non-monotonic behaviour of the

score function, as long as the formulation in Equation (3)

is used instead of Equation (2). However, identification of

the point estimate (i.e. where Z(�) = 0) can be problematic,

as there may be more than one solution. It is curious to

note that in general the point estimate can be shifted by

the skewness corrections (this feature can be confirmed by

setting a confidence level close to zero), so it may not always

be appropriate just to use the crude point estimate. However,

this seems the only sensible option for RD when p̂1 = 0

and p̂2 = 0. For the continuity-corrected interval, the point

estimate should be calculated without the correction.

For the Gart-Nam parameterisation, the issue with inde-

terminate scores is more widespread and less trivial, in

particular resulting in the solution not being found for one

of the confidence limits for any case where p̂1 = 0 or 1, even

without the skewness correction term.

S1.3 Double-zero cells

For the stratified RD method with IVS weights, if there is

a stratum containing no events (or no non-events) on both

arms, 0.5 may be added to each cell, only to avoid the

stratum being given 100% weight. For RR and OR, a stratum

with no events may be excluded altogether [1] (similarly for

any stratum containing 100% events for OR), because it

essentially contributes no information to the estimate of �.
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(Objections to this practice have recently been made. [2,3]

However, the claim that ‘double-zero studies point to no

differences in treatment effects’ is only true for RD, not for

RR and OR. It may be true that a double-zero trial shows

that the event rate in both arms is low, but not that their

ratio is close to unity: the point estimate for such a trial is

indeterminate. For Poisson RR, and similarly for binomial

RR with rare events, the absence of information in double-

zero strata can be crudely demonstrated by doubling the

magnitude of the denominators, and observing no change in

the confidence interval. Having said that, there may therefore

be a counter-argument in favour of including double-zero

trials somehow if their sample size allocation ratio differs

greatly from that of the other trials.)

In the unlikely event that no events occurred whatsoever in

any strata, then there is no information about RR or OR, so

the confidence interval would be (0,∞).

APPENDIX S2

‘CONTINUITY CORRECTED’ AND OTHER CONSERVATIVE METHODS

There may be circumstances in which it is desirable to

select a ‘strictly conservative’ confidence interval, which

constrains coverage probabilities to be strictly above the

nominal confidence level at all times. This logically implies

the more stringent requirement for one-sided non-coverage

probabilities to be strictly below �∕2. For such applications,

a number of computationally intensive so-called ‘exact’

methods are available, which are beyond the scope of this

paper.

‘Exact’ methods are also often thought to be necessary when

sample sizes are small, perhaps for fear that violation of the

assumptions underlying the asymptotic methods could result

in severely erroneous type I error rates. This is certainly

true of the AN methods, but it is found not to be the

case for SCAS, which actually becomes more conservative

(but not excessively so) with smaller sample sizes (not

shown).

When large sample sizes preclude the use of an ‘exact’

method, an approximation may be used to achieve conserva-

tive coverage, using a ‘continuity correction’, in which case

a very small degree of under-coverage might be considered

acceptable.

It has been said that to describe such an adjustment as a

continuity ‘correction’ is something of a misnomer, as is

the term ‘exact’. [4] To some extent, this depends on one’s

preference regarding strictly conservative versus proximate

coverage. In any case, it is very important to note that some

‘exact’ methods, and many ‘continuity corrected’ methods,

fail to achieve strictly conservative one-sided coverage, [5]

and ‘continuity corrected’ methods can also have regions of

very poor two-sided coverage. [6]

A new continuity corrected SCAS method (‘SCAS-cc’) for

both binomial and Poisson RD can be obtained by using

a modified score function: S′(�) = S(�)−sign(S(�))×cc
where cc = (min(n1, n2))

−1, with  = 0.5 based on Hauck

and Anderson. [7]

For RR and OR, there is a common practice of adding

0.5 to cell counts, which was originally designed to reduce

bias due to infinite observed values. [8,9] Often this is used

selectively in meta-analyses, within strata where empty

cells occur (otherwise the offending strata are given zero

weight). This adjustment is often referred to as a ‘continuity

correction’, [10] but this is quite misleading, as it does not

have the usual effect of boosting coverage probabilities

above the nominal level: this ‘correction’ would perhaps be

better labelled as a ‘sparse data adjustment’, to distinguish it

from the continuity correction by Yates. [11] The sparse data

adjustment avoids uninformative (0,∞) intervals, but it does

not generally enhance one-sided or two-sided coverage (not

shown).

For a proper continuity correction for RR, the

adjustment for SCAS-cc described above produces uneven

coverage, and a tentatively suggested alternative is

cc = (1∕n1 + �∕n2).

A continuity correction for OR is possible by reinstating the

Cornfield correction [12] to the alternative formulation given

in Miettinen and Nurminen [13] (p.217). With the formulae

specified here, this adjustment is represented by

cc = 

[
1

n1p̃1(1 − p̃1)
+

1

n2p̃2(1 − p̃2)

]

.

For the single proportion case, cc = ∕n.

In each case, the conventional value for  is 0.5, but if very

rare under-coverage is tolerable, then a compromise may be

reached between over-conservative coverage and minimal

under-coverage, by using a smaller  such as 0.25.

An alternative for achieving the ‘minimum coverage’

criterion might be to apply the MOVER approach using

‘exact’ confidence intervals for the individual group rates

(e.g. Clopper-Pearson for binomial rates [14] or Garwood

intervals for Poisson rates, [15] which can be obtained as

quantiles of a Beta or Gamma distribution respectively,

as described in Section 2.2, but using ai = 0, bi = 1 for

the lower limit, and ai = 1, bi = 0 for the upper limit).

This ‘MOVER-E’ method is quite successful, although

it narrowly fails to achieve the strict minimum coverage

criterion for RD. Note that MOVER-J and MOVER-E are

both based on intervals using Beta or Gamma parameters of

the form ai = 0.5 −  , bi = 0.5 +  for the lower limit for pi,
and ai = 0.5 +  , bi = 0.5 −  for the upper limit (i.e.  = 0

for MOVER-J and  = 0.5 for MOVER-E). This leads to a
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more adaptable ‘MOVER-cc’ method which, like SCAS-cc,

allows a compromise to be reached using an intermediate

value of  .

Selected surface plots in Appendix S3.4 demonstrate the

potential of the SCAS-cc and MOVER-cc methods for

researchers wishing to align minimum coverage with the

nominal confidence level, either strictly or with a limited

degree of under-coverage. In these examples, with  = 0.5
strictly conservative one-sided coverage is achieved for

SCAS-cc but not MOVER-cc. The ‘compromise’ methods

with  = 0.25 are conservative in the vast majority of the

parameter space, but slightly less so for RD using the

MOVER method. In all cases the corresponding two-sided

coverage is above the nominal value in more than 99.5% of

the parameter space.

Further exploration of the coverage properties of both of the

above methods with different values of  at different sample

sizes is a subject for further research, as is the question of

continuity correction for stratified methods.

APPENDIX S3

EXTENDED GRAPHICAL EVALUATION FOR THE SINGLE STRATUM CASE

For reference, the precise calculation of RNCP for each

chosen sample size pair n1, n2 proceeds as follows at every

parameter space point (p1, p2):

(1) Identify the set of ‘observable’ integer values of

Xi for the given pi, i = 1, 2. For the Poisson case,

and if evaluating a subset of the binomial parameter

space, for practical purposes this is restricted to the

upper 99.999th percentile of the relevant probability

distribution. For the full binomial parameter space it

is simply Xi ∈ {0, 1, ..., ni}.

(2) Calculate the bivariate probability of every observable

outcome pair (X1, X2) as:
(n1
X1

)
p
X1

1
(1 − p1)

n1−X1

(n2
X2

)
p
X2

2
(1 − p2)

n2−X2 for the

binomial case, or

(p1n1)
X1e−p1n1(p2n2)

X2e−p2n2(X1!X2!)
−1 for the Pois-

son case (the ‘lfactorial’ function in R is useful here

when Xi is large).

(3) Calculate the 100(1 − �)% intervals for every observ-

able outcome, and ascertain in each case whether the

upper limit falls below the true value of � (i.e. p1 − p2
for RD, p1∕p2 for RR, etc). Incomputable AN intervals

for RR and OR are considered to have an infinite upper

limit.

(4) Sum the probabilities from (2) for all outcomes that

satisfy (3).

After this exercise has been repeated for every parameter

space point, the moving average RNCP is calculated as the

mean of the RNCP at all points within a square ‘window’

[p1 ± �, p2 ± �], where � may be varied depend on the desired

amount of surface smoothing.

The surface plots in the following sections provide a more

extensive evaluation in support of those contained in the

main paper.

Section S3.1 displays one-sided non-coverage probabilities

for sample sizes of (n1, n2) = (30, 30), (45, 15), and

(100, 100), first for binomial and Poisson RD, then

binomial and Poisson RR, and lastly OR. Plots with

(n1, n2) = (50, 150) are also included, because with p1 and

p2 transposed they can be interpreted as an assessment of

left-sided non-coverage for (n1, n2) = (150, 50).

Section S3.2 explores the coverage in the extreme lower

left portion of the parameter space, for assessment of the

methods for the analysis of rare events. Some of the Bayesian

methods are compared in Section S3.3, continuity corrected

methods for more conservative coverage are plotted in

Section S3.4, and intervals for the single rate are evaluated

in Section S3.5.
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S3.1 Primary methods under different sample size conditions

Binomial and Poisson Rate Difference: (n1, n2) = (30, 30)

Figure S1. Rate Difference: Right-sided non-coverage probability (RNCP) and moving average RNCP, for SCAS, MN, MOVER-J and AN, with n1 = 30, n2 = 30. Top: Binomial,

Bottom: Poisson.



P. J. Laud 5

Binomial and Poisson Rate Difference: (n1, n2) = (45, 15)

Figure S2. Rate Difference: Right-sided non-coverage probability (RNCP) and moving average RNCP, for SCAS, MN, MOVER-J and AN, with n1 = 45, n2 = 15. Top: Binomial,

Bottom: Poisson.



6 P. J. Laud

Binomial and Poisson Rate Difference: (n1, n2) = (100, 100)

Figure S3. Rate Difference: Right-sided non-coverage probability (RNCP) and moving average RNCP, for SCAS, MN, MOVER-J and AN, with n1 = 100, n2 = 100. Top: Binomial,

Bottom: Poisson.
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Binomial and Poisson Rate Difference: (n1, n2) = (50, 150)

Figure S4. Rate Difference: Right-sided non-coverage probability (RNCP) and moving average RNCP, for SCAS, MN, MOVER-J and AN, with n1 = 50, n2 = 150. Top: Binomial,

Bottom: Poisson.
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Binomial and Poisson Rate Ratio: (n1, n2) = (30, 30)

Figure S5. Rate Ratio: Right-sided non-coverage probability (RNCP) and moving average RNCP, for SCAS, MN, MOVER-J and AN, with n1 = 30, n2 = 30. Top: Binomial, Bottom:

Poisson.
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Binomial and Poisson Rate Ratio: (n1, n2) = (45, 15)

Figure S6. Rate Ratio: Right-sided non-coverage probability (RNCP) and moving average RNCP, for SCAS, MN, MOVER-J and AN, with n1 = 45, n2 = 15. Top: Binomial, Bottom:

Poisson.
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Binomial and Poisson Rate Ratio: (n1, n2) = (100, 100)

Figure S7. Rate Ratio: Right-sided non-coverage probability (RNCP) and moving average RNCP, for SCAS, MN, MOVER-J and AN, with n1 = 100, n2 = 100. Top: Binomial, Bottom:

Poisson.
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Binomial and Poisson Rate Ratio: (n1, n2) = (50, 150)

Figure S8. Rate Ratio: Right-sided non-coverage probability (RNCP) and moving average RNCP, for SCAS, MN, MOVER-J and AN, with n1 = 50, n2 = 150. Top: Binomial, Bottom:

Poisson.
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Odds Ratio: (n1, n2) = (30, 30) and (45, 15)

Figure S9. Odds Ratio: Right-sided non-coverage probability (RNCP) and moving average RNCP, for SCAS, MN, MOVER-J and AN, with (top) n1 = 30, n2 = 30, and (bottom)

n1 = 45, n2 = 15.
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Odds Ratio: (n1, n2) = (100, 100) and (50, 150)

Figure S10. Odds Ratio: Right-sided non-coverage probability (RNCP) and moving average RNCP, for SCAS, MN, MOVER-J and AN, with (top) n1 = 100, n2 = 100, and (bottom)

n1 = 50, n2 = 150.
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S3.2 Rare events: p1 and p2 <0.05

Rate Difference: (n1, n2) = (600, 200)

Coverage properties for Poisson and binomial RD in this region of the parameter space are very similar, so only the binomial

case is shown.

Right- and Left-sided non-coverage:

Figure S11. Rate Difference: Right- and Left-sided non-coverage probability (RNCP, LNCP) and moving average RNCP, LNCP, for SCAS, MN, MOVER-J and AN, with n1 = 600,

n2 = 200 and p1 < 0.05, p2 < 0.05. Top: RNCP, Bottom: LNCP.
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Rate Ratio and Odds Ratio: (n1, n2) = (600, 200)

Coverage properties for Poisson and binomial RR (not shown) in this region of the parameter space are very similar to those

shown below for OR.

Right- and Left-sided non-coverage:

Figure S12. Odds ratio: Right- and Left-sided non-coverage probability (RNCP, LNCP) and moving average RNCP, LNCP, for SCAS, MN, MOVER-J and AN, with n1 = 600,

n2 = 200 and p1 < 0.05, p2 < 0.05. Top: RNCP, Bottom: LNCP.
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S3.3 Bayesian methods

Here the other Bayesian methods for RD are seen to

be similar to MOVER-J when Jeffreys priors are used,

either using the exact Bayesian method (Agresti-Min

‘AMB-exact’) or the approximation using simulations

(‘AMB-approx’), [16] and relatively poor with Uniform

priors (Nurminen-Mutanen ‘NM’). [17] Similar observations

are made regarding other contrasts for binomial rates (not

shown), and for the Barker-Cadwell methods for Poisson RR

(‘BC-J’, ‘BC-U’). [18]

Binomial RD and Poisson RR: (n1, n2) = (150, 50)

Figure S13. Right-sided non-coverage probability (RNCP) and moving average RNCP, for approximate and ‘exact’ Bayesian methods, with n1 = 150, n2 = 50. Top: Binomial RD,

Bottom: Poisson RR.
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S3.4 Continuity corrected methods

Figure S14 illustrates the coverage properties of the

continuity corrected ‘SCAS-cc’ and ‘MOVER-cc’ methods,

using the default value of  = 0.5, and an experimental

‘compromise’ value of  = 0.25. In the context of aligning

minimum coverage with the nominal significance level,

a more relevant summary measure (pctCons) is shown,

indicating the percentage of the parameter space where

RNCP is below �∕2. Table S1 contains example intervals

calculated with these methods.

Binomial RD and Poisson RR: (n1, n2) = (150, 50)

Figure S14. Right-sided non-coverage probability (RNCP) and moving average RNCP, for continuity-corrected methods, with n1 = 150, n2 = 50. Top: Binomial RD, Bottom: Poisson

RR.
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Table S1. Example continuity-corrected 95% Confidence Intervals

Success rate: 12/16 (cisapride) vs 1/16 (placebo) (Milo 1984)

Binomial RD Poisson RD Binomial RR Poisson RR Binomial OR

SCAS-cc

 = 0.5 (0.348, 0.897) (0.252, 1.260) (2.133, 29123) (1.718, 72534) (3.819, 163689)

 = 0.25 (0.367, 0.888) (0.269, 1.240) (2.366, 647.609) (1.918, 736.308) (4.588, 3447.613)

MOVER-cc

 = 0.5 (0.319, 0.868) (0.224, 1.241) (2.246, 471.307) (1.830, 483.351) (4.497, 2038.097)

 = 0.25 (0.346, 0.859) (0.249, 1.221) (2.447, 199.968) (2.003, 207.752) (5.129, 915.275)

Adverse event rate: 5/56 vs 0/29 (Goodfield 1992)

Binomial RD Poisson RD Binomial RR Poisson RR Binomial OR

SCAS-cc

 = 0.5 (-0.048, 0.209) (-0.055, 0.221) (0.463, ∞) (0.432, ∞) (0.435, ∞)

 = 0.25 (-0.034, 0.198) (-0.039, 0.209) (0.585, ∞) (0.549, ∞) (0.561, ∞)

MOVER-cc

 = 0.5 (-0.044, 0.189) (-0.051, 0.201) (0.552, ∞) (0.515, ∞) (0.521, ∞)

 = 0.25 (-0.028, 0.183) (-0.033, 0.194) (0.666, 1.02×107) (0.626, 1.02×107) (0.643, 1.13×107)

S3.5 Equal-tailed intervals for a single rate

Figure S15 illustrates the one-sided coverage properties

of the SCAS and Jeffreys methods for a single binomial

proportion or Poisson rate, compared with the Wilson score

and approximate normal (Wald) methods, with n = 30. The

dashed line shows RNCP, the solid line is moving average

RNCP, and reference lines are drawn at �∕2 ± 0.1�∕2. The

systematic bias in the latter two methods was pointed out

by Cai. [19] Table S2 contains example intervals calculated

with these methods. RNCP plots for continuity-corrected

methods for the single rate are shown for reference in

Figure S16.

Figure S15. RNCP for single rate methods.
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Table S2. Example 95% Confidence Intervals for a single rate

5/56 0/29

Binomial Poisson Binomial Poisson

SCAS (0.034, 0.186) (0.033, 0.197) (0, 0.092) (0, 0.097)

Jeffreys (0.035, 0.185) (0.034, 0.196) (0, 0.082) (0, 0.087)

Score (0.039, 0.193) (0.038, 0.209) (0, 0.117) (0, 0.132)

Wald (0.015, 0.164) (0.011, 0.168) (0, 0) (0, 0)

Figure S16. RNCP for continuity-corrected single rate methods.

APPENDIX S4

FURTHER DETAILS FOR STRATIFIED SCORE METHODS

S4.1 Stratum weights

S4.1.1 Inverse variance

Inverse variance (IV) weights based on a crude estimate of

stratum variances are required for the random effects DL

and HKSJ methods. Unless stratum sizes are very large,

these weights are problematic, because estimating weights

using observed variances is biased. [20] The results of the

preliminary evaluation of stratified methods confirmed this

- in particular, for the AN method the performance using

IV weights was vastly inferior to ‘Mantel-Haenszel’ (‘MH’)

weights. (This was observed independently of whether the

conditions resulted in strata containing zero cell counts,

necessitating the addition of 0.5 to the counts in affected

strata, which can worsen coverage properties further.)

S4.1.2 Inverse variance of the score

As noted in Section 4, ‘Inverse variance of the score’ (IVS)

weights may be defined in the context of score methods

using the MLE of the stratum-specific variances of Sj(�)

at each value of �, i.e. wj = Ṽ −1
j

. It is worth noting that

for RR and OR, these weights are fundamentally different

from those usually employed in a meta-analysis, which are

conventionally based on the estimated variance of ln(�̂j).
A full evaluation of the operating characteristics of these

weights is beyond the scope of this paper, so it remains to

be seen whether the use of weights other than IVS would

improve or worsen coverage properties of the SCAS interval.

Using IVS weights for the asymptotic score method as

described here appears to remove the bias inherent in inverse

variance weighting - coverage was found to be similar for

SCAS using MH or IVS weights. This in turn enables the

TDAS method to have more consistent coverage than HKSJ

for a random effects analysis.

S4.1.3 Miettinen-Nurminen

Another alternative is to employ the iterative weights

proposed by Miettinen and Nurminen (‘MNi’). Their ‘first

approximation’ (where p̃1 = p̃2) is the same as the MH
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weights. [21] The formula defining the MNi weights can also

be rearranged to take a similar form as the IVS weights

presented here, differing only in the use of the weighted

averages for p̃1 and p̃2 instead of the stratum-specific

estimates. The conditions under which the MNi and IVS

weights are similar may merit further investigation.

The non-iterative weights defined for OR by Miettinen and

Nurminen appear to be effectively the same as wj = Ṽ −1
j

in

practice.

S4.1.4 Mantel-Haenszel

In the usual meta-analysis for RD, [1] the overall estimate

is constructed as a weighted sum of the stratum-specific

estimates, �̂ =
∑

j wj �̂j∕W , and the MH weights are

wj = n1jn2j∕Nj . In the context of the score method for RD,

this leads directly to the analogous weighted score function

S(�) =
∑

j wjSj(�)∕W .

For RR, the appropriate MH weights for the score

method are identical to those for RD, unlike the

usual MH weights. Usually, the MH estimator

�̂MH =
(∑

j n2jX1j∕Nj

)
∕
(∑

j n1jX2j∕Nj

)
is rearranged

to give �̂ =
∑

j w
′
j
�̂j∕

∑
j w

′
j

with w′
j
= n1jX2j∕Nj

[22]

(although this appears to require the assumption that the

ratio n1j∕n2j is constant across strata). For the score-based

method, the MH estimator may instead be rearranged (with

division by W in the numerator and denominator) as the

weighted score function:

S(�) =
∑

j

1

W

[
n1jn2j

Nj

X1j

n1j

]

− �
∑

j

1

W

[
n1jn2j

Nj

X2j

n2j

]

=
∑

j

wj p̂1j

W
− �

∑

j

wj p̂2j

W
=
∑

j

wjSj(�)∕W (S1)

(Note that in practice, division by the constant W =
∑

j wj

does not affect the calculations in Equation (4), because

terms of W in the numerator and denominator cancel each

other out.)

For OR, this conversion of the Mantel Haenszel estimator is

not so simple, so there is no similar theoretical justification

for the use of wj = n1jn2j∕Nj . The empirical performance

of the SCAS method with these weights appears to be

acceptable, although this is yet to be confirmed under a wider

variety of stratum size conditions.

S4.2 Heterogeneity and random effects

S4.2.1 Test for ‘quantitative’ interaction

Heterogeneity of treatment effects (i.e. treatment-by-stratum

interaction) can be described within the score test framework

using the following chi-squared test statistic,

Q =
∑

j

[Sj(�) −
∑

j(wj∕W )Sj(�)]
2

Ṽj

∼ �2
k−1

(S2)

where k is the number of strata.

This statistic is defined in its full form (based on the

usual form of the Cochran Q statistic [23]) for use in later

sections. For a heterogeneity test (as suggested by Gart

and Nam [24] from Tarone [25,26]) it is simplified by being

evaluated (under the null hypothesis assumption of constant

� across strata) at the maximum likelihood estimate �̂ML for

the common treatment effect, which is obtained by solving
∑

j wjSj(�̂ML) = 0. Therefore the test statistic simplifies to:

Q̂ =
∑

j

[Sj(�)]
2

Ṽj

|
||
|�=�̂ML

(S3)

The proportion of variability due to heterogeneity may be

quantified by using Q̂ in the usual formula [27] for I2, that is

I2 = max(0, (Q̂ − (k − 1))∕Q̂). The components of Q̂ may

also be used to produce a Q-Q plot or a Galbraith plot (i.e.

a plot of Sj(�)∕Ṽ
1∕2

j against 1∕Ṽ
1∕2

j ), to identify outliers

and explore the nature of any heterogeneity, or indeed to

visually confirm the consistency of treatment effects (i.e.

homogeneity). Note that this plot would not have the usual

feature of Galbraith plots such that the slope describes the

point estimate for �, because it is based not on � but S(�),
for which the expected value is always zero.

Note that Q̂ may be indeterminate for RR or OR

if
∑

j X1j = 0 or
∑

j X2j = 0, because �̂ML cannot be

determined. In such cases, a default value of 0 for Q̂ would

seem sensible.

S4.2.2 Test for ‘qualitative’ interaction

A test for ‘qualitative’ interaction is also possible, for

identifying crossover of treatment effects relative to the non-

zero null hypothesis value for �.

Usually, in the context of superiority testing, a ‘qualitative’

(or ‘crossover’) interaction indicates that the direction of

treatment effects varies across strata. This concept may be

adapted to describe the nature of heterogeneity in a stratified

non-inferiority analysis, by considering the direction of the

difference between the stratum treatment effects relative to

the non-inferiority margin. That is, a qualitative interaction

indicates that the comparative parameter falls below �0 for

some strata and above �0 for others.

Following a significant result from the interaction test in

Section S4.2.1, the nature of the type of interaction can

be explored using a generalisation of the Gail and Simon

approach [28] as follows, incorporating indicator functions I()
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for the direction of each stratum’s deviation from �0.

Q̂c = min

{∑

j

Sj(�0)
2I(Sj(�0) > 0)

Ṽj

,

∑

j

Sj(�0)
2I(Sj(�0) < 0)

Ṽj

}
||||�=�̂ML

(S4)

With �0 = 0, for RD it can be seen that this is essentially

the same as the Gail and Simon test, except for the use of the

maximum likelihood variance estimator in the denominators.

Under the assumption that theSj(�) are normally distributed,

the p-value for this test is calulated in the same way as for the

Gail and Simon test, as:

p(Qc) =
k−1∑

ℎ=1

(1 − Fℎ(Q̂c))B(ℎ; n = (k − 1), p = 0.5)

where Fℎ() is the cumulative chi-square distribution function

withℎ degrees of freedom andB() is the binomial probability

mass function with parameters n and p.

S4.2.3 Incorporating stratum variability (‘Random

effects’)

The ‘Hartung-Knapp-Sidik-Jonkman’ (‘HKSJ’) random

effects confidence interval, with a derivation based on

the t-distribution, has been found to be superior to

the DerSimonian and Laird method. [29] By adapting

the formulae defining the HKSJ method, [30,31,32] a new

t-distribution asymptotic score method (‘TDAS’) may be

devised as follows:

The variance of the stratum scores Sj(�) can be estimated

using the method of moments estimator, which, if inverse

variance weights are used, is:

�̃2 = max

{

0,
Q − (k − 1)

W − (
∑

j w
2
j∕W )

}

(S5)

where Q is defined as in Equation (S2). Then the IV weights

are updated as w∗
j
= (Ṽj + �̃2)−1, and W ∗ =

∑
j w

∗
j
.

Then, by analogy to Equation (3) of Sidik and Jonkman, [31]

assuming that asymptotically:

Z(�) =

∑
j(w

∗
j
∕W ∗)Sj(�)

1∕(W ∗)1∕2
∼ N(0, 1),

and

Q(�) =
∑

j w
∗
j

[
Sj(�) −

∑
j(w

∗
j
∕W ∗)Sj(�)

]2
∼ �2

k−1
,

it follows that t(�) =
Z(�)

[Q(�)∕(k − 1)]1∕2
∼ t(k−1), and then

the TDAS confidence interval is obtained by solving:

t(�) =

∑
j(w

∗
j
∕W ∗)Sj(�)

Ṽ
1∕2

S

= ±tk−1,1−�∕2 (S6)

where

ṼS =

∑
j(w

∗
j
∕W ∗)

[
Sj(�) −

∑
j(w

∗
j
∕W ∗)Sj(�)

]2

(k − 1)
(S7)

As before, throughout the iterative solution of the score

function in Equation (S6), the variance function and �̃2 need

to be recalculated for each given value of �. Here a p-value

for a null hypothesis value �0 for � is obtained directly from

t(�0). Interestingly, skewness correction does not appear to

be necessary here.

If MH or other fixed stratum weights are chosen, then an

approximate score function may be obtained by omitting the

calculation of �̃2, and simply using the selected weights in

Equations (S6) and (S7) instead of w∗
j
. The effect of different

weighting schemes may require further evaluation with a

focus on more extreme conditions, including small event

rates leading to many ‘double-zero’ strata.

Furthermore, it is possible that the t-distribution method

may be improved further, by using robust estimators in

Equation (S6), such as a sandwich variance estimator, [32]

or trimmed mean with Winsorized variance estimator, [33] to

reduce the impact of a small number of anomalous studies.

This may be useful when calculating intervals for RR, where

a stratum with very low event rates may be given excessive

weight due to the resulting small estimated variance of S(�).
Naturally, a trimmed method would only be feasible with a

reasonably large number of strata.
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APPENDIX S5

EXTENDED GRAPHICAL EVALUATION FOR THE STRATIFIED METHODS

S5.1 Simulation study

Figures S18 to S21 show the simulated type I error rates for

stratified confidence intervals for the parameters not shown

in the main paper.

Using a modification of the model used by IntHout et al, [29]

the simulations proceeded as follows, for each selected value

of k, I2 and allocation ratio n1j∕n2j :

For RD, given the selected overall ‘true’ population

values of p1 and p2, the true overall � is

p1 − p2. Stratum-specific �i were generated randomly

from N(�, �2), where �2 = �2I2∕(1 − I2), and

�2 = k−1
∑

j [p1(1 − p1)∕n1j + p2(1 − p2)∕n2j].

The nuisance parameter p̄j was also allowed to vary between

strata, by drawing randomly from a Beta(100p̄, 100(1 − p̄))
distribution, with p̄ = (p1 + p2)∕2.

Stratum-specific true values of p1j and p2j were derived as

p̄j ± �j∕2. Event rates below 0.001 or above 0.999 were

replaced with 0.001 and 0.999 respectively. Examples of

simulated values of p1j and p2j for k = 20 and constant nij

are shown in Figure S17 for the homogeneous and heteroge-

neous models (I2 = 0 and I2 = 0.25 respectively).

Event counts were then randomly generated for 10,000

simulations from binomial(nij , pij) distributions. Each

simulated dataset was analysed using each of the selected

methods using the metabin, metainc and scoreci functions in

R. The proportion of replications with an upper confidence

limit below the true � was recorded as the estimated type I

error rate.

For RR, a similar process was followed, but using a

lognormal distribution for �, i.e. �j = ln(�j) was drawn

from a normal distribution with mean ln(�) and variance

�2 = �2I2∕(1 − I2), where

�2 = k−1
∑

j [(n1jp1)
−1 − (n1j)

−1 + (n2jp2)
−1 − (n2j)

−1].
Then the stratum-specific p1j and p2j were generated as

exp[ln(p̄j) ± �j∕2].

For OR, a lognormal distribution was used with

�2 = k−1
∑

j [(n1jp1)
−1+(n1j(1−p1))

−1+(n2jp2)
−1+(n2j(1−p2))

−1],

and the stratum-specific pij = oij∕(1 + oij), where

the group odds oij = pij∕(1 − pij) were generated as

exp[ln(p̄j∕(1 − p̄j)) ± �j∕2].
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Figure S17. Simulated distributions of stratum rates. Left: homogeneous �, Right: heterogeneous �.
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Figure S18. Simulated right-sided type I error rate for meta-analysis of Poisson RD with different number of strata and sample size allocation (△ 3:1, ○ 1:1, ▽ 1:3), under four different

sets of conditions. Pattern 1: equal-sized strata; Pattern 2: one stratum 10× larger than other strata; I2=0: homogeneous treatment effects across strata; I2=0.25: modest heterogeneity.

True overall event rates p1 = 0.2, p2 = 0.1. Reference lines: �∕2 ± 0.2�∕2. ˆ indicates RNCP >0.1. (a): Fixed effects methods, (b): Random effects methods
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Binomial Rate Ratio
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Figure S19. Simulated right-sided type I error rate for meta-analysis of binomial RR with different number of strata and sample size allocation (△ 3:1, ○ 1:1, ▽ 1:3), under four

different sets of conditions. Pattern 1: equal-sized strata; Pattern 2: one stratum 10× larger than other strata; I2=0: homogeneous treatment effects across strata; I2=0.25: modest

heterogeneity. True overall event rates p1 = 0.2, p2 = 0.1. Reference lines: �∕2 ± 0.2�∕2. ˆ indicates RNCP >0.1. (a): Fixed effects methods, (b): Random effects methods
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Poisson Rate Ratio
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Figure S20. Simulated right-sided type I error rate for meta-analysis of Poisson RR with different number of strata and sample size allocation (△ 3:1, ○ 1:1, ▽ 1:3), under four different

sets of conditions. Pattern 1: equal-sized strata; Pattern 2: one stratum 10× larger than other strata; I2=0: homogeneous treatment effects across strata; I2=0.25: modest heterogeneity.

True overall event rates p1 = 0.2, p2 = 0.1. Reference lines: �∕2 ± 0.2�∕2. ˆ indicates RNCP >0.1. (a): Fixed effects methods, (b): Random effects methods
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Figure S21. Simulated right-sided type I error rate for meta-analysis of OR with different number of strata and sample size allocation (△ 3:1, ○ 1:1, ▽ 1:3), under four different sets

of conditions. Pattern 1: equal-sized strata; Pattern 2: one stratum 10× larger than other strata; I2=0: homogeneous treatment effects across strata; I2=0.25: modest heterogeneity. True

overall event rates p1 = 0.2, p2 = 0.1. Reference lines: �∕2 ± 0.2�∕2. ˆ indicates RNCP >0.1. (a): Fixed effects methods, (b): Random effects methods
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S5.2 Further discussion of random effects meth-

ods

It has been noted [34] that a severe reduction in power is

observed for the HKSJ method with a small number of

strata. This occurs because, for example, the confidence

interval for the combination of two trials can be much

wider than the intervals for each of the trials alone, due to

there being very little information on the between-stratum

variability. The same is true for the TDAS method, which

can exhibit a more extreme form of this behaviour, often

producing infinite width intervals, particularly for RR. This

is somewhat disconcerting, but perhaps simply serves as a

warning that there are insufficient strata to obtain a reliable

estimate of the between-stratum variability. Clearly for the

purposes of most meta-analyses, which often do contain

very few studies, an infinite width confidence interval would

be unsatisfactory. In such situations where the confidence

interval is not being used for a formal hypothesis test, the

HKSJ method can be recommended, provided treatment

allocation is reasonably balanced.

For the assessment of power in the context of clinical trials

with a non-inferiority objective, a simulation study could

be carried out for any proposed analysis, incorporating the

specific assumptions being made and the choice of weights.

For example, if combining the results of two trials each

with N = 400, giving 80% power for a 10% non-inferiority

margin on RD assuming true event rates of p1j = p2j = 0.15
in both strata, then the combined analysis has only 25%

power with either of the random effects methods.

If the same total sample size were divided amongst four

strata, the power for the TDAS method would increase to

around 75%. This raises the intriguing possibility that in the

situation with very few strata, both power and type I error

could be improved by splitting the data into multiple smaller

strata. For instance, if the results of two multi-centre trials

are to be combined, then stratifying by centre within trial

might be a pragmatic solution. Technically, this approach

would rely on an assumption that the variability in � between

centres within trials is similar to the variability between

centres across trials, and clearly it would be unable to

distinguish between these two sources of variability.

In contrast, the corresponding power for the SCAS method

would be 97%, therefore careful consideration should be

given to whether homogeneous treatment effects can be

assumed, in which case SCAS would be the preferred

method. However, this decision should be justified on the

basis of similarity of the trials, and not made on the basis

of a non-significant result in the test for heterogeneity. [35,36]

On the other hand, it has also been argued [34] that a small

number of trials should not be combined in a meta-analysis

at all if there is evidence of any heterogeneity.

Conditions with very small numbers of events need further

evaluation, but early indications (not shown) suggest that

type I error rates for TDAS can be slightly too low here,

while those for HKSJ become inflated, perhaps due to the

‘sparse data correction’ of 0.5 added to the cells of strata

containing zero cell counts. Implementation of a similar

(perhaps smaller) adjustment within the TDAS method may

deserve some consideration.
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