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Abstract

Deep Gaussian processes provide a flexible approach to probabilistic
modeling of data using either supervised or unsupervised learning. For
tractable inference approximations to the marginal likelihood of the model
must be made. The original approach to approximate inference in these
models used variational compression to allow for approximate variational
marginalization of the hidden variables leading to a lower bound on the
marginal likelihood of the model [Damianou and Lawrence, 2013]. In
this paper we extend this idea with a nested variational compression.
The resulting lower bound on the likelihood can be easily parallelised or
adapted for stochastic variational inference.

1 Introduction

Gaussian process (GP) models provide flexible non-parameteric probabilistic
approaches to function estimation in an analytically tractable manner. However,
their tractability comes at a price: they can only represent a restricted class of
functions. Gaussian processes came to the attention of the machine learning
community through the PhD thesis of Radford Neal, later published in book
form [Neal, 1996]. At the time there was still a great deal of interest in the result
that a neural network with a single layer and an infinite number of hidden units
was a universal approximator [Hornik et al., 1989], but Neal was able to show
that in such a limit the model became a Gaussian process with a particular
covariance function (the form of the covariance function was later derived by
Williams [1998]). Both Neal [1996] and MacKay [1998] pointed out some of the
limitations of priors that ensure joint Gaussianity across observations and this
has inspired work in moving beyond Gaussian processes [Wilson and Adams,
2013].

1.1 Process Composition

Deep Gaussian processes [Lawrence and Moore, 2007, Damianou et al., 2011,
Lázaro-Gredilla, 2012, Damianou and Lawrence, 2013] are an attempt to address
this limitation.
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In a deep Gaussian process, rather than assuming that a data observation,
y, is a draw from a Gaussian process prior,

y = f(x) + ε,

where f(x) is a vector-valued function drawn from a Gaussian process and ε is
a noise corruption, we make use of a functional composition,

y = f`(f`−1(. . . f1(x))) + ε,

where we assume each function in the composition, fi(·), is itself a draw from
a Gaussian process. In other words we develop our full probabilistic model
through process composition.

Process composition has the appealing property of retaining the theoretical
qualities of the underlying stochastic process (such as Kolmogorov consistency)
whilst providing a richer class of process priors. For example, for deep Gaussian
processes Duvenaud et al. [2014] have shown that, for particular assumptions
of covariance function parameters, the derivatives of functions sampled from
the process have a marginal distribution that is heavier tailed than a Gaussian.
In contrast, it is known that in a standard Gaussian process the derivatives
of functions sampled from the process are jointly Gaussian with the original
function.

2 Deep Models

Process composition in Gaussian processes has become known as deep Gaussian
processes due to the relationship between these models and deep neural network
models. A single layer neural network has the following form,

g(x) = V>φ(Ux)

where φ(·) is a vector valued function of an adjustable basis, which is controlled
by a parameter matrix W, and V is used to provide a linear weighted sum
of the basis to give us the resulting vector valued function, in a similar way
to generalised linear models. Deep neural networks then take the form of a
functional composition for the basis functions,

g(x) = V>` φ`(W`−1φ`−1(. . .W2φ(U1x)).

A serious challenge for deep networks, when trained in a feed-forward man-
ner, is overfitting. As the number of layers increase, and the number of basis
functions in each layer also goes up a very powerful representation that is highly
parameterised is formed. The matrix mapping between each set of basis func-
tions Wi has size ki×ki+1, where ki is the number of basis functions in the kth
layer. In practice networks containing sometimes thousands of basis functions
can be used leading to a parameter explosion.
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2.1 Weight Matrix Factorization

One approach to dealing with such matrices is to replace them with a lower
rank form,

Wi = UiV
>
i

where Ui ∈ <ki+1×qi and V ∈ <ki×qi , where qi < ki and qi < ki+1. Whilst
this idea hasn’t yet, to our knowledge, been yet pursued in the deep neural
network community, Denil et al. [2013] have empirically shown that trained
neural networks can have low rank matrices as evidenced by the ability to predict
one set of part of the weight matrix given by another. The approach of ‘dropout’
[Srivastava et al., 2014] is also widely applied to control the complexity of the
model implying the models are over parameterised.

Substituting the low rank form into the compositional structure for the deep
network we have

g(x) = V>` φ`(U`−1V
>
`−1φ`−1(. . . (U2V2φ(U1x)).

We can now identify the following form inside the functional decomposition,

fi(z) = V>i φi(Ui−1z)

and once again obtain a functional composition,

g(x) = f`(f`−1(. . . f1(x))).

The standard deep network is recovered when we set qi = min(ki, ki+1) and the
deep Gaussian process is recovered by keeping qi finite and allowing ki →∞ for
all layers. Of course, the mappings in the Gaussian process are treated proba-
bilistically and integrated out, rather than optimised, so despite the increase in
layer size the number of parameters in the resulting model is many fewer than
those in a standard deep neural network.

Deep Gaussian processes can also be used for unsupervised learning by re-
placing the input nodes with a white noise process. The resulting deep GPs can
be seen as fully Bayesian generalizations of unsupervised deep neural networks
with Gaussian nodes as proposed by Kingma and Welling [2013] and Rezende
et al. [2014].

Unfortunately, exact inference in deep Gaussian process models is intractable.
Damianou and Lawrence [2013] applied variational compression [Titsias, 2009]
to perform approximate inference. In this paper we revisit that bound and ap-
ply a nested variational compression to obtain a new bound on the deep GP.
The new bound factorizes across data points allowing parallel computation [Gal
et al., 2014] or optimization via stochastic gradient descent [Hensman et al.,
2013].

In the rest of the paper, we first review variational compression in the con-
text of Gaussian processes. We then introduce deep Gaussian processes and
show how the compression can be applied in a nested way to perform inference
through an arbitrary number of model layers. We end with experiments on
some standard data sets.
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3 Variational Compression in Gaussian Processes

Let’s assume that we are given a series of input-output pairs {yi,xi}ni=1, which
we stack into target vector and design matrix y,X. The data are modelled as
noisy observations of a function f , so that

yi = f(xi) + εi, (1)

with εi ∼ N
(
0, σ2

)
. In a Gaussian process model we assume that the function

f(x) is drawn from a Gaussian process, f(x) ∼ GP(µf (x), kff (x,x′)), by which
we mean that any finite set of values of the function will be jointly Gaussian
distributed with a mean given by computing µ(·) at the relevant points and a
covariance given by computing kff (·, ·) at the relevant points.

The consistency property of the Gaussian process enables us to consider the
values of the function on where the data are present, effectively marginalising
the remaining values. If we assume that the mean function is zero, then we can
write

p(f |X) = N (f |0,Kff ) . (2)

The beauty of Gaussian processes lies in their tractability. Using properties
of multivariate Gaussians it is straightforward to compute the marginal likeli-
hood (in O(n3) complexity), as well as the posterior of the latent function values
p(f |y,X) [see for example Rasmussen and Williams, 2006]. Note that the covari-
ance function, kff (·, ·), or kernel, is also dependent on parameters that control
properties (such as lengthscale, smoothness etc). We omit this dependence in
our notation, and we assume that such parameters might be determined as an
outer loop on our algorithm such as maximum (approximate) likelihood or an
appropriate approximate Bayesian procedure.

3.1 Inducing Points Representations

Gaussian processes are flexible non-parametric models for functions. However,
whilst inference is analytically tractable, a challenge for these models lies in
their computational complexity and storage which are worst case O(n3) and
O(n2) respectively.

To deal with this, in the machine learning community, there has been a
lot of focus on augmenting Gaussian process models by introducing an extra
set of variables, u, and their corresponding inputs, Z [see e.g. Csató and Op-
per, 2002, Snelson and Ghahramani, 2006, Quiñonero Candela and Rasmussen,
2005]. Augmentation occurs by assuming that there is an additional set of vari-
ables u which are jointly Gaussian with our original function f allowing us to
write

p(f ,u|Z,X) = N
([

f
u

]
|0,
[

Kff Kfu

Kuf Kuu

])
(3)

The multivariate joint Gaussian density has the convenient property that it is
trivial to decompose it into associated conditional and marginal distributions
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for each variable. We can decompose the joint distribution as follows

p(f ,u) = p(f |u)p(u) (4)

= N
(
f |KfuK−1uuu,Σ

)
N (u|0,Kuu) (5)

where Σ = Kff −KfuK−1uuKuf is the conditional covariance of f given u. The
model is now augmented with a set of additional latent variables u. Of course, we
can immediately marginalise these variables exactly and return to equation (2),
but through their introduction we will be able to apply a variational approach
to inference termed variational compression.

Reintroducing independent Gaussian noise we can write the joint density for
the data and the augmented latent variables as

p(y, f ,u) = p(y|f)p(f |u)p(u), (6)

where we have ignored the conditioning on the input locations X. The technique
of variational compression now proceeds by considering the conditional density

p(y|u) =

∫
p(y|f)p(f |u) df (7)

which we choose to lower bound through assuming an approximation to the
posterior of the form q(f ,u) = p(f |u)q(u) obtaining,

log p(y|u,Z,X) ≥ N
(
y|KfuK−1uuu, σ2I

)
− 1

2σ2 tr (Σ) (8)

This conditional bound now has two parts, a part that looks like a likelihood
conditioned on the inducing variables and a part that acts as a correction to the
lower bound.

3.2 Low Rank Gaussian Process Approximations

Since the conditional bound (8) is conjugate to the prior p(u), we can integrate
out the remaining variables u. The result is

log p(y|X,Z) ≥ logN
(
y|0,KfuK−1uuKuf + σ2I

)
− 1

2σ2 tr (Σ) , (9)

Note the similarity here between the approximation and a traditional Bayesian
parametric model. In a parametric model we normally have a likelihood condi-
tioned on some parameters and we integrate over the parameters using a prior.
Our inducing variables appear somewhat analogous to the parameters in that
case. However, before marginalization the likelihood is independent across the
data points. This observation inspires stochastic variational approaches [Hoff-
man et al., 2012] to allow GP inference for very large data sets Hensman et al.
[2013].
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3.3 Stochastic Variational Inference

Direct marginalization of the inducing variables, u, is tempting as it is ana-
lytically tractable. However it results in an expression which does not factor
in n, and so does not lend itself to stochastic optimization. Now if we ap-
ply traditional parametric variational Bayes to this portion (treating u as the
‘parameters’ of the model) we obtain

log p(y|X,Z) ≥ logN
(
y|KfuK−1uum, σ2I

)
− 1

2σ2
tr
(
SK−1uuKufKfuK−1uu

)
−KL (q(u) ‖ p(u))− 1

2σ2
tr (Σ) (10)

where the variational distribution is q(u) = N (u|m,S). This method was
used by Hensman et al. [2013] to fit GPs to large datasets through stochastic
variational optimization [Hoffman et al., 2012].

3.4 Mutual Information and the Total Conditional Vari-
ance

There are two conditions under which the variational compression will provide
a tight lower bound. First, if the data y are less informative about the latent
function variables f , and second where the inducing variables u are highly infor-
mative about f . The former depends on the noise variance, σ2, and the latter
on the conditional entropy of the latent variables given the inducing variables.
The conditional entropy for the GP system is given by

H(f |u) =
1

2
log |Σ| .

From an information theoretic perspective, the conditional entropy represents
the amount of additional information we need to specify the distribution of f
given that we already have the inducing vector, u. This required additional
information can be manipulated by changing the relationship between u and
f . The inducing points themselves are parameterised by Kfu and Kuu which
introduce a new set of variational parameters to the model. Those parame-
ters typically include the inducing input locations and any parameters of the
covariance function itself. We can be quite creative in how we specify these
relationships, for example, placing the inducing variables in separate domain
was suggested by Álvarez et al. [2010]. By minimizing this term we improve the
quality of the bound.

Computing this entropy requires O(n3) computations due to the log deter-
minant, but the log determinant of the matrix is upper bounded by its trace,
this is trivially true because log determinant is the sum of the log eigenvalues
of Σ whereas the trace is the sum of the eigenvalues directly. The logarithm is
upper bounded by the linear function. So it is a sufficient condition for tr (Σ)
to be small, to minimize the conditional entropy of the inducing point relation.
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The trace of a covariance is sometimes referred to as the total variance of the
distribution. We therefore call this bound on the conditional entropy the total
conditional variance (TCV).

The TCV of the density, p(f |u), tr (Σ), appears in in (8) and remains
throughout (9) and (10). It controls conditional entropy and the information
in the data and upper bounds the additional information that is contained in
the data that is not represented by u. When this term is small, we expect the
approximation to work well. Indeed, the two extrema of the variational compres-
sion behaviour are given when the TCV term is zero: either the noise variance
is very large scaling out the term or the TCV is zero because the conditional
entropy H(f |u) is zero.

The TCV ensures that the inducing variables take up appropriate positions
when manipulating Z to tighten the variational bound. It also plays a key role
in the formulation for of the variational bound we now present for deep GPs.

4 Variational Compression in Deep GPs

Deep Gaussian processes are models of the form

y = h`(h`−1(...h1(x))) + ε, (11)

where we then make an assumption that each of the hidden (potentially multi-
variate) functions hi is given by a Gaussian process. For a fixed set of inputs
X and a series of observed responses y, and taking the vector hi to contain
the vector of variables representing function values in the ith layer, the joint
probability can be written

p(y, {hi}`i=1|X) = p(y|h`−1)
∏̀
i=2

p(hi|hi−1)p(h1|X) (12)

with

h1|x ∼ N
(
0,Kh1h1 + σ2

1I
)
,

hi|hi−1 ∼ N
(
0,Khihi

+ σ2
i I
)
,

y|h`−1 ∼ N
(
0,Kf`f` + σ2

` I
)
.

Inference over the latent variables h is very challenging. Not only will compu-
tations scale with the usual O(n3) rule for GPs, but the hidden layer variables
are also dependent between layers. We turn to approximate Gaussian processes
based on variational compression. Then to deal with the dependence between
layers we will To deal with the dependence between layers we use the VC trick
again. The result is a tractable bound on the marginal likelihood of a deep GP
which is scalable and interpretable.
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4.1 Augmenting Each Layer

As per the original formulation [Damianou and Lawrence, 2013], we assume
that the function at each layer includes some independent Gaussian noise with
variance σ2

i , and we augment that layer with a set of inducing variables ui in
the same way as a for a single-layer GP model. Within each layer, then, we can
apply variational compression to achieve a bound on the conditional probability,
as per equation (8). Substituting this result in to the structure (13) results in

p(y, {hi}`−1i=1 |{ui}
`
i=1,X) ≥ p̃(y|u`,h`−1)

×
`−1∏
i=2

p̃(hi|ui,hi−1)p̃(h1|ui,X)

× exp

(∑̀
i=1

− 1

2σ2
i

tr (Σi)

)
, (13)

where we have omitted dependence on Z variables for clarity, and have defined

p̃(hi|ui,hi−1) = N
(
hi|Khiui

K−1uiui
ui, σ

2
i I
)
.

The conditional covariance matrices have been indexed by layer, so that

Σi = Khihi
−Khiui

K−1uiui
Kuihi

.

If we ignore the TCV terms, then the remaining factors in (13) describe a joint
probability density over y and f conditioned on u. Figure 1 shows the resulting
graphical model associated with this distribution. The plate notation indicates
that the terms factorize across data points, this property will be preserved when
we apply variational compression through the layers.

Here, our work diverges from that of Damianou and Lawrence [2013]. In
their work, the inducing variables u are marginalised (similarly to equation
(9)), and a variational distribution q(h) is introduced for the hidden variables.
This has two consequences: marginalising u re-introduces dependencies between
the hidden variables within a layer, resulting in an objective function which
cannot be written as a sum of independent data terms. Secondly, the size of the
optimization problem grows with n, as distributions representing latent variables
have to be introduced, corresponding to each datum in each of the hidden layers.
In this alternative formulation we will seek to retain the factorization across the
data points allowing us to consider stochastic variational inference approaches
to the model.

4.2 The First Layer

We now apply the variational compression approach to marginalise the variables
associated with the first Gaussian process. Although to ensure the cancellation
we now assume that

q(h1|u1) = p̃(h1|u1,X), (14)
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xi

h1iu1

z0

z1

h2iu2z2

yiu3

i = 1...n

Figure 1: A graphical model representation of the deep GP structure with inducing
variables. Nodes arranged horizontally form part of the same layer. we’ve added the
index over i to highlight the fact that conditioned on ui we obtain independence over
the data points.
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and form a bound on the conditional distribution. Taking the relevant terms
from equation (13), we obtain

log p(h2|u1,u2) ≥p̃(h1|u1) 〈log p̃(h2|h1,u2)〉

−
〈

1

2σ2
2

tr (Σ1)

〉
− 1

2σ2
1

tr (Σ0) . (15)

The second stage of variational compression is to marginalize u1. Since the
above expression is not conjugate to the Gaussian prior p(u1), we must introduce
variational parameters q(u1) = N (u1|m1,S1). Along with (14), we now have:

q(h1) =

∫
p̃(h1|u1)q(u1)du1, (16)

which is a straightforward Gaussian integral.
Although our approximation to the latent space is not factorized across the

data dimension n, we are still able to construct an algorithm that depends on the
data points independently; in practice, we need only ever compute the diagonal
parts of the covariance in q(h) at each layer.

Using this definition of q(f1) with equation (15) allows us to variationally
marginalize u1:

logp(h2|X,u2) ≥

− 1

σ2
1

tr (Σ0)− 1

σ2
2

〈tr (Σ1)〉q(h1)

−KL (q(u1) ‖ p(u1)) +〈
logN

(
h2|Kh2,u2

K−1u2u2
u2, σ

2
2I)
)〉
q(h1)

. (17)

The expectations under q(h1) involve the covariance function in the same
way as Titsias and Lawrence [2010], Damianou and Lawrence [2013]. The re-
quired quantities are

ψi = 〈tr (Khihi)〉q(hi−1)

Ψi = 〈Khiui〉q(hi−1)

Φi = 〈Kuihi
Khiui

〉q(hi−1)
.

which can be computed analytically for some popular choices of covariance func-
tion including the exponentiated quadratic,

k(x,x′) = α exp

(
1

`2
‖x− x′‖22

)
,

and linear forms,
k(x,x′) = x>x.
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With these definitions, it is possible to substitute into (17) and re-arrange to
give

log p(h2|X,u2) ≥ − 1

σ2
1

tr (Σ0)− 1

σ2
2

〈tr (Σ1)〉q(h1)

−KL (q(u1) ‖ p(u1))

− 1

σ2
2

tr
(

(Φ2 −Ψ>2 Ψ2)K−1u2u2
u2u

>
2 K−1u2u2

)
+ logN

(
h2|Ψ2K

−1
u2u2

u2, σ
2
2I
)

(18)

where we have completed the square to ensure that the h2 appears in a nor-
malised Gaussian distribution. We are left with a conditional expression for the
second layer, where the information from the layer above has been propagated
variationally, as well as a series of terms that ensure that the expression remains
a variational bound.

4.3 Subsequent Layers

Having arrived at an expression for the second layer, with the first layer marginal-
ized, we are in a position to apply variational compression again to marginalize
layer 2. The procedure follows much the same pattern as for the first layer.The
result is a bound on p(h3|u3), with some additional terms, where the relation
h3|u3 is again a normal distribution.

Recursively applying this formulation through an arbitrarily deep network
results in the following bound:

log p(y|X) ≥− 1

σ2
1

tr (Σ1)−
∑̀
i=2

1

2σ2
i

(
ψi − tr

(
ΦiK

−1
uiui

))
−
∑̀
i=1

KL (q(ui) ‖ p(ui))

−
∑̀
i=2

1

2σ2
i

tr
(

(Φi −Ψ>i Ψi)K
−1
uiui

〈
uiu

>
i

〉
q(ui)

K−1uiui

)
+ logN

(
y|Ψ`K

−1
u`u`

m`, σ
2
` I
)

(19)

This expression constitutes the main contribution of this work. We now have
a bound on the marginal likelihood, parameterised by variational distributions
q(ui) at each layer, along with inducing inputs for each layer Zi and covariance
parameters of the kernel at each layer. Importantly, each part of the bound
can be written as a sum of n terms, with each term depending on only one
datum. This allows straightforward inference in the model using parallelized
or stochastic methods, without having to deal with large numbers of latent
variables, hi.
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All the latent variables {hi}`i=1 have now been marginalised using our vari-
ational compression scheme. From the previous discussion, we know that the
approximation will be reasonable if they are highly correlated with the inducing
points ui. These correlations are reduced if we inject a larger amount of noise at
each hidden layer: if the variance variables σ2

i are large, then our approximation
will fail.

4.4 Examining the Bound

Our bound on the marginal likelihood has a single ‘likelihood’ expression (equa-
tion (19), last line), preceded by a series of ‘regularizing’ terms. We first examine
the likelihood part, which has a similar form to a neural network. The term is
Gaussian with mean given by a linear combination of the columns of Ψ`, with
weights, Ku`u`

m`, which are given by the mean of the variational distribution
q(u`) weighted by its prior covariance. Information from previous layers feeds
in through the matrix,

Ψ` = 〈Kf`u`
〉q(f`−1)

.

We can examine the jth column of this matrix for the ith input in the case of
the exponentiated quadratic covariance,

ψ`i,j =

〈
α exp

(
−
‖f`−1 − z`−1‖22

2`2

)〉
q(f`−1)

.

We can compare this with a radial basis function network. In deep versions of
those models the ith layer the basis functions would be centred on particular
values, ci. Those centres are functionally equivalent to our inducing inputs
z`−1. However, in our model they are variational parameters, rather than model
parameters. This is an important difference because we can increase the number
of them at any time without risk of overfitting. If we do use more centres
we can only reduce the conditional entropy H(fi|ui) thereby improving the
quality of the variational bound. In each layer, we can adjust the weights
Ku`u`

m` through varying the mean of the variational distribution over the
inducing variables. If we were to use other covariance functions we would obtain
similar neural network-like models but with different activation functions.

A significant difference to a neural network approach is that we are propagat-
ing distributions through each layer of the network rather than just point values.
In each layer we must compute q(hi) =

∫
p̃(hi|ui)q(ui)dui, and propagate this

to the next layer, where it is used to take expectations of the kernel function to
pass into the subsequent layers. The form of our variational compression means
that these distributions are Gaussian, so we are propagating both a mean and a
variance through the model at every layer. On computing the derivative of any
part of the approximation, we must do a feed-forward pass of these Gaussian
messages, followed by a backpropagation step using the chain-rule.

Our bound contains the trace of the conditional matrix (now in expectation),
which we have studied in section 3.4. It also contains the usual KL divergence

12



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

prop:  0.79
  ind:  0.05

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

prop:  5.00
  ind:  0.02

prop: 26.66
  ind:  0.10

prop:  3.13
  ind: 14.50

Figure 2: Forward propagation of Gaussian messages through a layer of a deep
GP. Bottom right: four colour-coded Gaussian distributions to be passed through the
GP layer. Top-right: a Gaussian process, represented by a finite series of inducing
variables u, depicted by vertical red bars. Left: the responses of the GP to the input
distributions, with Gaussian approximation shown in colours matching bottom right,
and the ground truth represented by a solid line, computed by Monte Carlo. Below
each approximation we give the two penalty terms associated with propagating this
distribution. The propagation term (top) is large when the function is locally highly
nonlinear, and the compression term (below) is large when the input is far from the
inducing variables.

term from the prior. The final ‘regularization’ term (third line of (19)) has
interesting regularization properties: it contains the variance of the GP function
at each layer, under our approximation. To see this, if we are given the values
of a GP function u at Z, the mean of the prediction for the points f at X
is given by 〈f〉 = KfuK−1uuu. The sum of the variance of this vector is then
tr
(
KfuK−1uuuu>K−1uuKuf

)
, and the ‘regularization’ term is the variance of this

under q(hi−1), in expectation under q(u). The term summarizes how the values
of the function will change as the input to the function changes: a measure of
the local ‘wiggliness’ of the function under the variational input distribution.

We refer to these two regularization terms as the ‘compression term’ and the
‘propagation term’. In figure 2, we illustrate the forward passing of the Gaussian
distributions (according to our likelihood computation) for different scenarios,
and the incurred penalty terms. In summary, the regularization terms encourage
approximations that can be well represented by the limited representative power
of q(u).

5 Experiments

We present three applications of the variationally compressed deep GP method.
In each case, we used simple gradient based optimization to maximize the bound
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on the marginal likelihood with respect to the covariance function parameters,
the inducing input positions Z in each layer, and the variational parameters of
q(u) in each layer, mi,Si. To maintain positive-definiteness of the covariance
matrices, we employed a lower-triangular factorized representation, Si = LiL

>
i .

To exploit the factorised nature of the objective function, our python imple-
mentation uses MPI to parallelize computation across several cores of a desktop
machine. Parallelism is across chunks of data, since equation ?? can be written
as a sum of data dependent terms. Parallelization to larger systems is straight-
forward, and the objective lends itself to stochastic optimization.

5.1 Step Function Data

In Rasmussen and Williams [2006], a simple example is presented which is chal-
lenging for standard GP regression: data representing a noisy step function
as in Figure 3. The GP with exponentiated quadratic covariance is unable to
satisfactorily fit to the data, as the top plot in Figure 3 shows. Rasmussen
and Williams [2006] propose using a neural-network based covariance function,
which is able to model the data somewhat better. Calandra et al. [2014] pro-
pose a two layer model where the data are transformed by some deterministic
function before being passed into a GP, which appears to perform somewhat
better, though this is arguably still a kernel selection problem, with parameters
of the deterministic function being incorporated into the kernel.

The idea of deep networks is to avoid this kind of kernel selection, using layers
of representation to infer features from the data. Can deep GPs do away with
the problem of having to select a kernel in a Bayesian fashion? Figure 3 suggests
that this might be the case. Moving down the panels of the Figure, the depth
of the model is increased from 1 (a GP model) to 3. The GP model is unable
to cope with the non-smoothness of the function, provides an ‘overshot’ mean
function and extrapolates poorly. The two layer deep GP has more capability
to fit the sharp change in the function though it still overshoots a little, and the
three layer deep model performs well, with a sharp mean function at the step.
Extrapolation from the data has interesting behaviour, we note that despite
the posterior appearing bimodal, any sample drawn from the posterior will be a
continuous function, which will switch between the two modes with a lengthscale
of around 0.2.

5.2 Robot Wireless Data

Our second data set consists of a robotics localization problem [Ferris et al.,
2007]. We are presented with the signal strengths of thirty wireless access
points located around a building, as detected by a robot which is tracing a path
through the corridors. The wireless signal strengths fluctuate as a function of
time as the robot moves nearer of further from each access point. The underlying
structure of the signals must surely represent the position of the robot in the
building.
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Figure 3: Regression on the noisy step-function data [Rasmussen and Williams, 2006].
Top: Gaussian process regression, middle: deep GP with one hidden layer, bottom:
deep GP with two hidden layers. In each plot, the posterior predictive density is shown
in blue.
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Figure 4: Latent representation of the robot wireless data. In each figure, time
(the input to the deep model) is represented by color, and each circle represents one
temporal data point. (a) the latent representation in the first layer. (b) The latent
representation in the second layer. (c) The ground truth: the known path of the robot.
The latent representations qualitatively represent the topology (a) and finer structure
(b) of the ground truth. (d) Shows a typical signal, with data represented by black
points and the posterior density for this signal in blue.

We build a 3 layer deep GP, in which the input layer was time, through two
hidden layers with 3 dimensions each, and finally mapping to the 30 dimensional
signal strengths. After optimization of the marginal-likelihood bound using L-
BFGS-B [Zhu et al., 1997], the learned structure of the model is as in Figure
4.

Figure 4 (c) shows the true path of the robots, which completes a rectangular
loop around the building, with a ’tail’ of data at the start. In the fist hidden layer
(figure 4(a)), the models learns the topology of the structure: a loop closes at
the correct point. In the subsequent layer, the representation contains ‘corners’,
representing structure in the data where correlations in the signal strength must
vary rapidly or slowly. This hierarchically structured learning of features is a
key feature of the deep GP model which is not possible using a standard GP.

The final frame of figure 4 shows on of the thirty signals used. Two interest-
ing features are prominent: the deep GP is insensitive to outliers (some occur
at around t = 0.85), and the deep GP predicts structure where none is present
(around t = 0.2). Both of these effects are a result of the strong structural prior
imposed by the deep GP model: output variables are expected to covary in a
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consistent way, and structure in some part of the data is imposed on other parts
also.

In both these cases, the strong structural prior is reasonable. At around
t = 0.2 the WiFi drops out because the device only retains the largest signals it
can measure. However, the true underlying signal is still likely to covary with
the other measurements in a fashion as predicted by the model. The outlying
data are also explained well by the deep GP.

The variational approximation to the posterior is unimodal, and the deep
GP prior contains many possible modes which can be constructed by symmetri-
cal and rotational arguments. Re-running the experiment shown in figure 4 will
result in a different representation each time. Selection of the ‘best’ approximat-
ing posterior is possible by comparing the bounds on the marginal likelihood.
We note that the majority of solutions found for this problems qualitatively
represent that presented in figure 4. There would also be scope to combine the
variational approximations through mixture distributions [Lawrence, 2000].

5.3 Autoencoders

Building auto-encoding deep GPs is straightforward: we simple use the same
data as input and output to the model.

We build a two-layer deep GP, with the same data on the input and output.
That is, a single hidden representation with an ‘encoding’ layer and a ‘decoding’
layer. Using the Frey faces dataset [Frey et al., 1998], which has 784 dimensions
(pixels) and approximately 2,000 training points, we optimized the marginal
likelihood bound using L-BFGS-B [Zhu et al., 1997].

6 Discussion

We have shown how variational compression bounds can be applied to inference
in deep Gaussian process models. The resulting bounds are scalable due to
their decompositional nature over the data points. In analysing the bound on
the deep GP marginal likelihood, we have seen that the approximation appears
as a neural network structure, but with Gaussian messages being fed forward.
We have shown how natural penalty terms arise which decrease the bound when
the propagation of the Gaussian messages performs poorly.

This work opens the possibility of application of Deep GPs to big datasets
for the first time.
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Figure 5: Latent space of the Frey faces data set using an autoencoding deep GP. We
show illustrative latent points shown reconstructed. Each point is colored according to
its position in the video, although the model is trained ignoring the temporal structure
of the data.
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