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Abstract— Mind-wandering (MW) constitutes one of the 

most ubiquitous mental activity humans engage in but it comes 

at a significant cost. Internal distractions are believed to be a 

leading cause of performance errors and unhappiness. A brain 

computer interface (BCI) able to predict the disengagement of 

attention, e.g. lapses of attention resulting from mind-

wandering episodes, harbors numerous useful applications. In 

this study, the SART was applied to quantify EEG correlates of 

lapses of attention to assess the viability of a BCI able to 

monitor attentional states in real-time. Both spatio-temporal 

classification and filter bank common spatial patterns were 

applied on a single-trial basis with accuracy reaching 92%. 

This work represents a potential step towards enhanced 

human-machine systems and BCI-based treatments of 

perseverative disorders such as depression. 

I. INTRODUCTION 

MW dominates the mental landscape, constituting the 
default mode of our minds, and occupying up to 50% of our 
conscious cogitations [1]. In a world in which inattention 
comes at an ever-higher price, the potential costs of MW 
ranges from the benign, such as zoning out while reading, to 
the disastrous, e.g. missing a light at an intersection or 
failing to recognize a medical condition [2]. Distractions, 
internal chatter and spontaneous ideation all exact our 
attention rendering monitoring tasks daunting if not 
impossible [3]. The fickle nature of attention has been firmly 
established after decades of research and a plethora of 
experimental paradigms. 

In the present work, we were specifically interested in 
internally driven interferences, further categorized as either 
being an intrusion, i.e. spontaneously arising MW leading 
momentary lapses of attention, or an internal interruption, 
i.e. a deliberate redirection of engaging of cognitive 
processes to a secondary task. Both kinds of MW typically 
occur at rest or while performing an undemanding or highly 
automated task, during which attentional resources are left 
idle, e.g. driving on a familiar route. MW perpetrated in a 
deliberate manner qualifies as multitasking because attention 
is simultaneously being engaged for internal thought 
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processes in addition to the primary task [4]. A large body of 
research has conclusively demonstrated that humans are 
inapt at multitasking with attempts invariably resulting in 
performance deficits (for a review see [5]). The other main 
cause for performance errors, disregarding external 
interferences, stems from lapses of attention, when the mind 
becomes involuntarily distracted by task-unrelated thoughts. 
Therefore, performance errors either result from a failure to 
switch from internal cogitations to the task at hand [6] or 
from an inadequate allocation of attentional resources across 
multiple tasks. In both cases MW reveals itself as the main 
culprit behind such errors in both laboratory and real-world 
tasks (for a review see [7]). The sustained attention to 
response task (SART; [8]) has been widely used as a 
laboratory task to assess sustained attention with 
commission errors serving as a measure of MW related 
interferences [9]. 

From a neurophysiological perspective, MW is 
characterized by a decoupling of attention from the external 
environment. The same top-down mechanisms which 
facilitate attendance to an external stimulus are recruited 
during MW with the difference that external input is 
suppressed instead of enhanced. During periods of 
inattention cortical processing of sensory information has 
been observed to be significantly reduced [10], [11]. Lapses 
of attention, as operationalized by performance errors, have 
been shown on multiple occasions to be reliably 
foreshadowed by reduction in ERP amplitudes [10], [12], 
[13].  

MW and attentional lapses are not only characterized by 
a reduction of perceptual processing but also by an active 
suppression of sensory input [14]. Amongst neural 
oscillations, the alpha band (8 – 14 Hz) has been of interest 
to MW and sustained attention research. At present, a large 
body of work explicates alpha activity as an inverse correlate 
of cortical excitability. In other words, high alpha over 
visual brain areas is believed to signify a suppression of 
visual information. Indeed, numerous study conclusively 
linked increased alpha power over visual areas as reflecting 
a disengagement from external visual input in favor of a 
different sensory modality or internal thought processes (for 
a review see [15]). High parieto-occipital alpha has been 
identified as a robust predictor of lapses of attention [12], 
[13]. Moreover, electroencephalographic (EEG) correlates of 
MW gradually develop over time before leading to a 
performance error and thus hold predictive power potentially 
allowing for their detection in real-time with a brain-
computer interface (BCI).  
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The aforementioned studies employed simple statistics like 

grand averages to draw their conclusions. To develop more 

powerful models and to more accurately assess the viability 

of the recorded signal, more sophisticated methods are 

required. In recent decades, BCIs have garnered 

considerable attention due to the attractive promise of 

covertly monitoring mental states via EEG signals and 

consequently much effort has been devoted toward the real-

time monitoring of mental states such as workload [16], 

drowsiness [17], fatigue [18] to name a few (for a review see 

[19]). Failures of attention are a prime cause of traffic 

fatalities [20], medical misdiagnosis [21], and security 

screening failings [22] to name but a few. In addition, 

boredom and the ensuing MW is estimated to be one of the 

greatest drain on the economy, leading to procrastination and 

productivity loss [23]. Therefore, a system capable of real-

time assessment of attentional levels would not only find use 

in the training of attention to increase productivity [24] but 

could also be deployed in safety-critical environment as a 

redundant control feature to minimize human error. Such 

systems have become particularly relevant with the advent 

of ubiquitous automation which have increasingly relegated 

humans to surveillance roles [25]. Lastly, it could be used in 

a NFT as a potential treatment for depression as MW has 

been associated with ruminative thoughts and perseverative 

disorders [7]. 

 
Therefore, the aim of our work was to investigate the 

theoretical viability of offline EEG data for prospective use 
in a BCI-based system for the real-time prediction of MW 
episodes. To this end, we recorded the EEG correlates 
preceding attentional lapses during a sustained attention 
task, the SART, and applied BCI methods to determine 
whether commission errors can be detected on a single-trials 
basis. 

 

II. MATERIALS & METHODS 

A. Experimental paradigm 

Twenty-six healthy subjects (12 female; 23.4 ± 3.2 
years) performed the SART, a commonly used GO/NOGO 
task. Participants performed the fixed SART which 
presented them with centrally and individually displayed 
digits from 1 to 9 for 250 ms each. The NOGO target to 
which the participants were instructed to withhold response 
was the number 6 (11% of the trials) leaving the numbers 1 
to 5 and 7 to 9 as GO stimulus to which they were instructed 
to respond with a left mouse button press. An inter-stimulus 
interval of 2.3 s was chosen to maximize the number of MW 
episodes and of lapses of attention without making the task 
too challenging. The fixed variant of the SART was picked 
over the traditional random version to ensure the accurate 
recording of perceptual decoupling as opposed to motor 
decoupling. Many have argued that the random version of 
the SART fosters a speed-accuracy tradeoff (SATO) and that 
errors during the SART are thus likely to be cause by 
failures of response inhibition due to speeded responses. To 
remedy this issue a fixed version was developed [26] in 
which the numbers are shown in a predictable order giving 

the participants ample time to prepare their response. Hence, 
errors due to SATO should be minimized or even 
eliminated, ensuring that most, if not all, commission errors 
are the result of perceptual decoupling.    

B. EEG data acquisition, segmentation & analysis 

64-channel EEG data was acquired at 512 Hz using a 

BioSemi ActiveTwo system (biosemi.com) placed as per the 
international 10-20 system. To assess eye movements and 
blinks, 4 electrooculography electrodes (EOGs) were placed 
above and beneath the left eye, and on the side of the left 
and right eye near the temples. All data were processed, 
analyzed and visualized through Matlab (The Mathworks) 
with the help of custom written scripts. 

The data were preprocessed with was high-pass filtered 
at 0.5 Hz, down-sampled to 250 Hz and finally baseline-
corrected to the time interval 200 ms to the onset of the 
SART stimulus. A period of approximately 10 s prior to a 
target trial probe was considered to reflect the reported 
attentional state, in accordance with prior studies [11], [27]. 
To categorize the SART stimuli according to the subject's 
attentional state the EEG time-course was segmented into 
stimulus-locked 2.8 s epochs (-200 to 2400 ms relative to 
SART stimulus) extending backwards for a maximum of 
four trials (spanning 9.3 s) from the target.  

 The SART paradigm instructs participants of to inhibit 
their response to targets. Epochs preceding a failure of to do 
were categorized as belonging to the commission error 
(ERR) condition, i.e. MW. Accordingly, epochs prior to 
correctly withheld responses (CWR) were associated with 
focused attention.  

 

C.  Feature selection & classification 

The goal of the analysis was to identify and maximize 
the temporal and spatial differences between the classes 
CWR and ERR. Two different approaches were undertaken, 
a spatio-temporal and spatial filter based classification. The 
former consists of extracting discriminative intervals and 
channels in the ERP domain. This was achieved by 
calculating the signed point-biserial coefficient correlation 
coefficient (sgn r

2
; [28]) iteratively on each channel and 

moving time window over the epoch. This allowed for the 
identification of the most discriminative channels 
(classification rate > 70%) and time intervals for the 
subsequent classification. The second approach centered 
around the identification of spatial filters with common 
spatial patterns (CSP). CSP is a popular and effective BCI 
method which maximizes the variance of the signal from one 
class while minimizing it for the second class. It is typically 
used on oscillatory activity and since alpha is of particular 
interest, CSP was applied on bandpass filtered data between 
8 to 14 Hz. The results were compared with an extension of 
the algorithm, the multi-band CSP (MBCSP), which applies 
five bandpass filters (delta: 1 – 3 Hz; theta: 4 – 7 Hz; alpha: 
8 – 14 Hz; beta: 15 – 30 Hz & gamma: 30 – 70 Hz). While 
there is an ongoing debate in the literature whether nonlinear 
classifier perform better than linear classifiers, the latter has 
been repeatedly shown to perform just as good as the former 
at a fraction of the computational costs. Accordingly, 



  

regularized linear discriminant analysis (RLDA) with 
shrinkage was applied on the extracted feature vectors [27]. 

Lastly, a further extension to the multi-band CSP, filter 
bank CSP (FBCSP; [29]), was applied on neighboring bands 
(10 bandpass filters with a width of 4 Hz with lower bounds 
from 4 to 40 Hz) and overlapping bands (20 bandpass filters 
with a width of 8 Hz with lower bounds from 4 to 80 Hz), 
This method uses a mutual information criterion to select an 
optimal set of spatio-spectral features which is then 
classified using a naïve-Bayesian Parzen window algorithm. 
The number of features utilized for the classification ranged 
from 1 to 10. We only report on the set of features returning 
the highest classification rate. 

Due to the negative impact of muscular artifacts on 
classification accuracy, the epochs exhibiting max-min 
differences exceeding 300 µV on EOG channels were 
automatically rejected as were all epochs with excessive 
variance.  

The reported classification accuracies represent the 
average rate of 10-fold cross-validations, achieved by 
randomly dividing the dataset into 10 subsets, training the 
model on 9 and testing it on 1. This was repeated until 
testing was conducted on each subset. 

III. RESULTS 

A. Spatio-temporal classification results 

The classification on temporal features after selection of 

most discriminative channels faired worst of all applied 

methods, remaining at around chance level (see right column 

of Table 1). It is worth noting that the channels selected with 

the highest discriminative power were all over parieto-

occipital sites. The classification on temporal features, 

selected with sgn r
2, 

returned better results with a 

classification accuracy reaching 63% when including all four 

trials preceding a target trial. 

TABLE I.  SPATIO-TEMPORAL CLASSIFICATION ACCURACIES 

 

# of epochs Temporal 
 

Spatio-temporal 

-1 trial  61 % 

 

49 % 

-1 to -2 trials 49 % 
 

51% 

-1 to -3 trials 58 % 
 

48 % 

-1 to -4 trials 63 % 
 

51 % 

 

B. CSP classification results 

Spatial filters identified by applying CSP on the alpha 
band and subsequent classification with RLDA did not 
contain sufficient information for a competitive 
classification as can be taken from the maximal accuracy of 
61% with all four prior trials considered (see leftmost 
column of Table 2). Including multiple bands did boost 
results slightly with a maximum accuracy of 73% when the 
total number of pre-trials were considered.  

The optimal selection of spatio-temporal features by the 
FBCSP method resulted in a significant increase in 
performance. Applied on neighboring bands, classification 
accuracy reached 82% for one and four pre-trials with the 
most contributive features belonging to the alpha (8 – 12 Hz) 
and beta band (36 – 40 Hz). The best classification rates 
were obtained by the FBCSP algorithm with overlapping 
bands, reaching 92% with only one pre-trial and most 
contributive features belonging to the high gamma (76 – 84 
Hz) and low gamma band (44 – 52 Hz). Selecting the most 
discriminative bands from overlapping FBCSP had a 
substantial impact on classification rates (see rightmost 
column in Table 2).  

TABLE II.  CSP CLASSIFICATION ACCURACIES 

 
CSP (8- 

14Hz) 

MBCSP 

(separate 

bands) 

FBCSP 

(separate 

bands) 

FBCSP 

(overlapping 

bands) 

-1 trial 59 % 73 % 

 

82 % 

 

92 % 

-1 to -2 

trials 
58 % 62 % 

 

76 % 

 

87 % 

-1 to -3 

trials 
53 % 59 % 

 

80 % 

 

86 % 

-1 to -4 

trials 
61 % 71 % 

 

82 % 

 

91 %  

 

IV. DISCUSSION 

Amongst the methods tested, the spatio-temporal 
classification fared worst. This is probably due to the reduced 
information available to the model after removing less 
discriminative channels. These results indicate that ERPs are 
less suited for single-trial classification, at least with the 
SART paradigm. This is not necessarily a negative outcome 
since a system able to predict inattention solely based on 
oscillatory activity is desirable as it obviates the need to 
probe the individuals’ cognition to evoke ERPs. In any case, 
the spatio-temporal model with one pre-trial did reach the 
accuracy threshold of 70% required for BCI-usability. 

 The best classification accuracy, 92%, was achieved by 

applying FBCSP with 10 overlapping bands and one pre-

trial. Interestingly, adding more information in the form of 

pre-trial numbers did not increase classification 

performance. Performance worsened with the addition of the 

second and third pre-trial before stabilizing by the fourth. 

Although the earlier a system can predict an attentional state 

the better, it could be a case of overfitting by the model 

which could result in an increased number of premature false 

alarms. The lack of a gradual increase in certainty might 

render the successful implementation in a real-time setting 

somewhat more challenging. A classification accuracy above 

90% for up to 4 trials (approximately 10 s) preceding a 

NOGO trial is nonetheless very promising for the 

prospective implementation of a real-time monitoring BCI 

capable of reliably predicting and informing users of 

impeding lapses of attention. Our results are of relevance for 

experimental paradigms employing the SART, as they could 



  

potentially form the basis of a continuous index of attention 

and allow for the accurate assessment and prediction of 

inadequate levels of attention. Moreover, applications for 

attentional training can be envisaged to mitigate the negative 

consequences of MW [30]. Nevertheless, more research is 

still required to validate our findings on a larger sample size 

and across experimental paradigms before the practical 

implementation of a BCI for the real-time assessment of 

MW can be contemplated.  

 

Further improvements, which are currently being tested, 

include a larger number of overlapping bands and the 

development of a subject independent classifier with 

identification of the highest contributing bands specific to 

each subject. A subject independent or general classifiers, as 

opposed to the subject-dependent classifier trained here, 

severely reduces calibration and subject-training time and 

are thus preferred for their ease of use and wider application 

scope [31]. Additionally, subject-independent classifiers are 

often necessary in clinical applications because building a 

Neurofeedback application trained on the abnormal brain 

activity patterns of a patient might potentially reinforce 

these, thus further deteriorating the patient's condition. 
 

Contingent on these results, future work should focus on 
the development of a FBCSP-based general classifier and its 
deployment for the real-time monitoring of attentional states.  
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