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Abstract 

This paper presents the simulator �HIPERSIM� which was developed and used to examine the 

behavior of HIPERLAN. HIPERSIM simulates the HIPERLAN network under various conditions, 

assuming that the communication range and the sense range (signal detection range) of a node are 

different. In a wireless LAN, like HIPERLAN, the medium access protocol, the hidden nodes, the 

packet forwarding and the power saving mechanism are important issues that affect significantly the 

overall performance. The intention is to provide a HIPERLAN specialized tool (HIPERSIM) which can 

simulate most of the features of this WLAN protocol, in order to examine the performance of 

HIPERLAN. The main focus is to simulate the channel access mechanism accurately, so as to examine 

the effectiveness of the EY-NPMA protocol, and underline its advantages and the elements that need 

improvement. Also, in HIPERSIM, there is emphasis on the �hidden nodes� issue. More specifically, 

we distinguish between the communication range and the signal detection range of a node, since this is 

a characteristic of the wireless nature and it affects the network operation. The simulation results show 

that EY-NPMA is effective and suitable for WLANs. Probably there could be some improvement in 

order to avert the collisions close to the receiver.  
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1. Introduction 

Lately, there is a significant growth in the area of the wireless communication networks. There is great 

emphasis on the wireless local area networks [WLAN]. The need for mobility and �stay connected� has 

led to the development of WLAN standards in Europe (ETSI: HIPERLAN) and in the USA (IEEE 

802.11). Their main intention is to expand the range of the fast backbone wired networks, and enhance 

the wide area wireless communication networks (such as the cell networks). A full replacement of 

wired networks by wireless networks is at the moment out of scope.  

HIPERLAN (HIgh PErformance Radio Local Area Network) is a standard for wireless LANs 

that was defined by the European Telecommunications Standards Institute [ETSI]. HIPERLAN is a 

rather short range WLAN (~50m), it supports slow moving stations (1.4 m/s), it can be an 

infrastructured or an ad hoc network, its high transmission rate is 23.529Mbps, and it operates at 5GHz. 

An important characteristic of HIPERLAN is that it can support a variety of services. It 

combines asynchronous communication, such as file transfer, with time bounded communication, such 

as voice and video transmission. This is due to the fact that the Medium Access Control protocol 

supports Quality of Service [QoS], aided by the Channel Access Mechanism [CAM] that assigns the 

packet priorities. 

The need to evaluate the HIPERLAN standard before it eventually reaches the market has 

arisen. So, in order to analyze the performance and the behavior of HIPERLAN under various 

operation conditions, a full parameterized simulator, called HIPERSIM, was developed in C++. 

HIPERSIM has the ability to distinguish hidden nodes between those that are in sense range (the signal 

can be detected) and those that are out of sense range. Mainly because of the complexity of the medium 

access mechanism and in order to have as fewer simplifications as possible, the simulator operation is 

almost exhaustive. This means that at every time unit each node is examined separately. The duration 

of a time unit is 1 high rate bit-period, that is the time interval required to transmit a bit in maximum 

bit-rate. The end of the simulation is defined by the simulation time, which is set by the user in msecs. 

The user is able to parameterize the simulator in order to represent a specific network environment. 

HIPERSIM was developed in the W32 platform and it uses the respective Graphical User Interface in 

order to be easy to use. The base of the application structure is object oriented. The results of every 

simulation and the current values of the parameters are automatically saved in a database file, by using 
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the ADO mechanism. Every record stores the values of the parameters and the results of the 

corresponding simulation. 

  

2. The HIPERLAN Network 

2.1. The Channel Access Mechanism Priority 

The QoS support is based on two mechanisms: the user priority assigned to a packet and the lifetime of 

the latter. The user application sets the user priority of a packet at the value low or high, according to 

its importance and the need for fast transmission. For example, during a file transfer the packets can be 

set at �user priority = low�, while during a video transmission it is preferred to set user priority at 

�high�. 

When a packet is generated, it is assigned a lifetime. If the packet does not reach its 

destination within the specific time interval, then it is assumed to be invalid and it is rejected. The 

default value of the packet lifetime is 500msecs. According to the kind of the transmission and the 

offered service, the lifetime may take small values (synchronous transmission of voice - video) or large 

values (file transfer). During the lifetime of a packet the residual lifetime is continuously updated 

[Figure 1]. When the value of the residual lifetime becomes 0, the packet is rejected. The user priority 

and the residual lifetime of the packet, give its CAM priority. By default there are five values � levels 

of CAM priorities (0 � 4), where the highest priority is the one with the smallest value. In Figure 2, the 

CAM priority values are shown, according to the user priority and the residual lifetime. [1,2,3] 

 

2.2. Queuing Discipline : Earliest Deadline First 

Every node has a buffer where the packets to be sent are stored. In HIPERLAN, the mechanism that 

selects a packet from the buffer is based on the Earliest Deadline First (EDF) queuing discipline. 

According to it, the necessary steps in order to select a packet to be sent are: The packet that carries the 

highest (arithmetically minimum) CAM priority is selected. If there are more than one packets of the 

same highest CAM priority, then the packet having the minimum RML is selected. In case there are 

more than one packets having the same minimum RML, then the packet carrying the highest 

(arithmetically minimum) User Priority is selected. If there are still more than one packets of the same 

highest User Priority, then one of them is selected randomly. 
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It becomes obvious that this packet selection mechanism eventually favors the packets of the 

highest priority, which must be sent earlier than the others [Figure 3]. This method contributes in 

supporting different kinds of communication (asynchronous and time bounded). The HIPERSIM 

results show the efficiency of the above mentioned packet selection mechanism in contrast to the poor 

performance of the classic method �FIFO�.[1,2] 

 

2.3. The Medium Access Protocol : EY-NPMA 

The medium access protocol that is used in HIPERLAN is the Elimination Yield Non-pre-emptive 

Priority Multiple Access (EY-NPMA) protocol. A problem related to the wireless networks is that a 

node is not always able to detect the transmission from another node, because of the limited 

communication and sense range. EY-NPMA defers from the conventional MAC protocols used in the 

wired networks, because it is based on active signaling instead of passive signaling. Active signaling is 

a channel contesting method that reduces the collisions caused in the wireless environment. The 

medium access mechanism is based partially on the well known CSMA, since the node eventually 

�listens� to the medium to find out if it can transmit or not. However, the main mechanism differs from 

CSMA, since every node contests for the medium access in an active way by transmitting some special 

signals. It has been proved that active signaling has a better performance than passive signaling, 

especially when the number of nodes increases [4]. Below, the operation of the EY-NPMA protocol is 

presented, according to the  �ETSI functional specification EN 300 652 v1.2.1� [1]. 

EY-NPMA operates in channel access cycles. Every node that has a packet to send initially 

senses the channel to find out whether it is idle. If the node does not �listen� any transmission for a 

time interval equal to 2000 high rate bit-periods, it enters the  �channel free condition� and transmits 

the packet. One high rate bit-period is the time interval required to transmit one bit in high transmission 

rate, that is the maximum transmission rate 23.529Mbps. In case the channel is not idle and a data 

transmission is detected, all stations that want to transmit a packet synchronize at the end of the 

expected acknowledgement packet. At that time, these stations enter the �synchronized channel 

condition�. The synchronized channel access cycle consists of three phases, which define the access 

pattern for the competitive nodes. These are described below. [1,4,5] 

 
2.3.1 Prioritization Phase 
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In the first phase of the synchronized channel access cycle, known as the Prioritization Phase, every 

node allows a number of idle slots, where the default slot length is 168 high rate bit-periods. The 

number of the idle slots is equal to the arithmetic value of the CAM priority of the packet. Every 

contending node senses the channel, while it allows the idle slots. If it detects a signal transmission, it 

defers, that is it quits the effort to gain access to the channel and waits for the next channel access cycle 

to try to transmit. When a node detects no transmission during the Prioritization Phase, it transmits a 

pulse right after the idle slots, and proceeds to the next phase. This pulse is the one listened by every 

�defeated� node. The nodes that proceed to the next contention phase have a packet to send of the same 

highest CAM priority. In Figure 4, it is shown how node B �wins� during the Prioritization Phase and 

makes node A to defer. CAM priority of node A packet is 2, while CAM priority of node B packet is 1 

(higher priority). 

 

2.3.2 Elimination Phase 

The nodes that �survive� the Prioritization Phase keep on trying to gain access to the channel. The 

objective of this medium access mechanism is to eliminate as more contending nodes as possible, but 

of course not all of them. During the Elimination Phase, a great percentage of the contending nodes is 

eliminated, but at least one of them survives. Every node that has not been defeated during the 

Prioritization Phase transmits an elimination pulse which is actually the lengthening of the priority 

pulse. Every node lengthen its pulse independently of the others according to a geometric distribution 

of probability p = ½. So, the probability the pulse is longer than 1 slot is 1 / 2, longer than 2 slots is 1 / 

4 and so on. However, there is a limit for the length of the elimination pulse. Right after the end of this 

pulse, the nodes allow an idle slot, which is called survival verification slot, during which they sense 

the channel. If a node detects a transmission during this time interval, this means that the specific node 

is �defeated�, so it defers. Thus, the nodes that survive the Elimination Phase carry the packets of the 

highest priority and they have transmitted the longest elimination pulse. In Figure 5, it is shown how 

node B �wins� during the Elimination Phase and makes node A to defer. Node A transmits an 

elimination pulse 1 slot long, while node B transmits an elimination pulse 2 slots long. 

 

2.3.3. Yield Phase 
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The Yield Phase is the last phase before the transmission of a data packet and it is the last effort to 

reduce the number of the contending nodes. The nodes that have survived the Elimination Phase enter 

the Yield Phase allowing a number of idle slots. Every node that detects transmission during these slots 

quits the current effort to gain access to the channel and waits till the next channel access cycle. If a 

node detects no transmission, it eventually transmits its data packet. Thus, a node �loses� in Yield 

Phase, when it listens some other node transmitting a data packet. The number of the idle slots is 

random and uniformly distributed between 0 and 9. In Figure 6, it is shown how node B �wins� during 

the Yield Phase and makes node A to defer. Node A allows 3 idle slots, while node B allows 2 idle 

slots. 

An overview of the EY-NPMA protocol is shown in Figure 7. Conclusively, EY-NPMA 

protocol is appropriate for use in a wireless LAN, although it is rather complicated. HIPERSIM tries to 

simulate it accurately, that is why the simulation mechanism is almost exhaustive.  

 

2.4. Range Issues 

2.4.1 The Communication and Sense Range Distinction 

In a WLAN, not all of the nodes are expected to be able to communicate directly with each other. This 

is due to the fact that the antenna of a node has a limited range, and the obstacles that might intercept 

the communication. Specifically, the range of HIPERLAN is approximately 50 meters when the nodes 

are moving slower than 1.4m/s.  

 In the wired networks there can actually be only two cases regarding communication range: In 

the first case, two nodes are directly connected and they are able to communicate directly with each 

other. In the second case, the two nodes are not directly connected with a cable, so they are not able to 

communicate directly or even to detect each other. In this case, there might be a forwarder between 

these two nodes, but there is no way to physically �listen� directly to each other. However, in WLANs, 

there can be a third case regarding communication range. According to this case, two nodes are not 

able to communicate directly, but they can sense the signal transmitted by each other. This is a special 

characteristic of the wireless nature.  

 More specifically, in HIPERLAN two nodes are able to exchange data packets when they are 

able to detect the transmitted signal and identify the bits sent. This happens when the signal attenuation 

due to distance and the signal fading are not intense enough to make the communication between the 
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two nodes impossible. In this case, the two nodes are assumed to be in communication range. When the 

quality of the received signal is not good enough to allow data transmission, but it can still be detected, 

then the two nodes are assumed to be in sense range (signal detection range). Obviously, the sense 

range is greater than the communication range, since the former includes the latter, so it is likely that in 

a WLAN two nodes can detect each other even when they are not able to communicate directly. 

HIPERSIM distinguishes between these two kinds of ranges, when it simulates the hidden nodes. [6] 

 

2.4.2. The Hidden Nodes 

The �hidden nodes� issue is important for the wireless LANs including HIPERLAN. The hidden nodes 

are pairs of nodes where the one cannot receive data from the other, because of the distance or the 

obstacles between them. They cause overall reduction of the system performance. The range issues 

mentioned before are related to the �hidden nodes�. We assume that two nodes are hidden when they 

are out of communication range. Two hidden nodes might be in sense range or not. The HIPERSIM 

results show that a great reduction of the HIPERLAN performance is caused by hidden nodes that are 

out of sense range. In Figure 8, we can see three nodes of a HIPERLAN network. Every Ci area 

represents the communication range (data reception range) for node ǿ and every Si area represents the 

signal detection range (sense range) for node I. As we can see, node B is able to send and receive data 

from nodes A and C, while nodes A and C are hidden from each other, that is they are not in 

communication range. All three nodes are able to detect the signal of the others. In general, EY-NPMA 

takes advantage of the fact that two hidden nodes in sense range are able to detect the transmitted 

signal. [3,7] 

 

2.4.3. Packet Forwarding 

There are two types of nodes in HIPERLAN: the forwarders and the non-forwarders. The non-

forwarders know only their direct neighbors, that is the nodes which are in communication range, while 

the forwarders are aware of the network topology. In case a non-forwarder wants to transmit a packet 

to a node that is not in communication range (hidden node), it sends it to a forwarder, by setting the 

latter as the intermediate node of the transmission. The packet forwarding in HIPERLAN is based on a 

table-driven routing protocol. This forwarding mechanism increases the system complexity, since it 

requires the continuous watch of the network topology which changes dynamically. In Figure 9, three 
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nodes (A, B, C) of a HIPERLAN network are represented, where nodes ǹ and Ǻ are in communication 

range, nodes B and C are in communication range, while nodes A and C cannot communicate directly 

with each other. Nodes ǹ and C constitute a hidden pair, while node B is a forwarder, that is it 

forwards packets from node A to B and vice-versa. The packet forwarding mechanism is simulated in 

HIPERSIM. [1,7,8] 

 

2.5. Power Saving 

The nodes of a WLAN are wireless mobile devices that use batteries with limited energy. Thus, the 

objective is to minimize power consumption in the wireless networks, so that to ensure the highest 

energy autonomy of the mobile devices. The process of an antenna transmitting or receiving signal is 

high energy consuming, so a possible solution to the power problem is to turn the antenna off when 

there is no data transmission or reception. In HIPERLAN, some nodes are P_Savers, while some others 

are P_Supporters. P_Savers are set at status �OFF� for specific time intervals. During these time 

intervals, they are not able to receive data packets. P_Supporters have the responsibility to collect the 

data packets that have as destination a P_Saver which is �OFF�. When the P_Saver returns to normal 

operation status, the P_Supporters forward the packets to it. Power saving is optional and it is not fully 

defined by the HIPERLAN protocol. The HIPERLAN products manufacturers are free to decide the 

method they will use to support power saving. The HIPERSIM simulates the power saving mechanism 

and shows that it has satisfactory results.[1,8] 

 

3. The HIPERSIM Simulator 

3.1. Environment Description 

Figure 10 shows the environment of HIPERSIM. 

In this image we can see the parameters that are set by the user, the simulation results, the 

�start� button that starts or ends the simulation, the �about� button that shows some information about 

the developer, and the simulation progress bar. 

The most important of the HIPERLAN features that are simulated by HIPERSIM were 

presented in the previous section. The HIPERSIM simulation engine is based on the �ETSI functional 

specification EN 300 652 v1.2.1� for HIPERLAN. In the next two subsections, the parameters that are 

set by the user, and the simulation results are presented one by one. 
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3.1.1 HIPERSIM Parameters 

- Simulation Time (msecs): This is the �virtual� time duration of the simulation in msecs. 

- Number Of Nodes: This is the total number of nodes that constitute the LAN. 

- Number Of Forwarders: This is the number of the nodes that work as forwarders. When the 

simulation starts, the forwarders are chosen randomly. We assume that every forwarder can 

communicate with all the nodes of the LAN, it is aware of the overall topology and it is not hidden 

from anyone. Any forwarder can be P_Supporter at the same time, but it is definitely not a 

P_Saver. Any non-forwarder node can use any forwarder at any time needed. 

- Number Of P_Supporters: This is the number of the nodes that work as P_Supporters. When the 

simulation starts, the P_Supporters are chosen randomly. We assume that every P_Supporter can 

communicate with all the nodes of the LAN, it is aware of the overall topology and it is not hidden 

from anyone. Any P_Supporter can be forwarder at the same time, but it is definitely not a 

P_Saver. Any P_Saver can use any P_Supporter at any time needed. 

- Number Of P_Savers: This is the number of the nodes that work as P_Savers. When the simulation 

starts, the P_Savers are chosen randomly, satisfying the limitations that were mentioned above 

relatively to the forwarders and the P_Supporters. There cannot be any P_Saver, if there is no 

P_Supporter.  

- Probability Of Hidden Pair: This is the probability two nodes are hidden from each other, that is 

they cannot receive data directly from each other (out of communication range). When the 

simulation starts, the pairs of hidden nodes are chosen randomly, satisfying the limitations that 

were mentioned above relatively to the forwarders and the P_Supporters. The user can choose a 

value for this parameter between 0 and 1 (step 0.01). When there are forwarders in the LAN, the 

hidden nodes that want to communicate with each other communicate through a randomly chosen 

forwarder. If there are no forwarders, the hidden nodes never even try to communicate with each 

other during the simulation. 

- Queue Discipline: It concerns the method used by every node for the management of the packet 

buffer. There are two options: Earliest Deadline First (EDF) and First In First Out (FIFO). EDF is 

the default option, as it is defined by the HIPERLAN standard. 
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- Packet Arrival Method: This is the way that the packet generation takes place in every node. 

HIPERSIM uses the value of this parameter to calculate the time of the next packet arrival. The 

packet arrival can be Poissonian or bursting. 

- Poisson Parameter (packets per msec): This parameter is enabled only when the Poisson packet 

arrival method is selected. It defines the packet generation rate in every node, that is the number of 

packets generated per msec. When the value of this parameter increases, the load of the network 

increases as well. 

- Average Burst Length: This parameter is enabled only when the Bursting packet arrival method is 

selected. It defines the average number of packets generated the one after the other (per 1 msec), 

creating by this way a burst. In general, we can say that the bigger the burst length is, the less the 

times a burst appears [9]. 

- Packet Buffer Max Size (Kbits): This is the size of the buffer that keeps all the packets to be sent in 

a node. If a packet arrives and it must be stored in the buffer but does not fit, it is rejected. 

- Bit Error Rate % (after check): This is the rate a bit error occurs, after the appliance of all the error 

detection and error correction checks that are defined by the HIPERLAN standard. Obviously, 

after all these checks, the probability of a bit error decreases significantly, that is why the default 

value of this parameter is so low. The simulator uses the value of the packet size and the Bit Error 

Rate to decide whether a bit error will occur in the transmitted packet, and if it does, then the 

packet is assumed invalid. 

- Average Packet Size (bits): This is the average size of the generated packets, which measures in 

bits. The packet size is calculated according to the exponential distribution. The value of this 

parameter is the average value of this distribution. 

- Max Packet Life Time (msecs): When a packet is generated, its MPDU Lifetime (ML) is set. This 

is the time interval that the packet is valid. If this time interval expires before the packet reaches its 

destination, then the packet is rejected. The value of the ML is chosen randomly between 10 and 

the value of this parameter. 

- Packet User Priority: This is the user priority that every packet carries. The user�s options are: a) 

high , b) low or c) random User Priority for all the packets. 
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- Power On Period (msecs): This parameter is enabled only when there are P_Savers in the 

simulated network. It defines the time interval during which a P_Saver works as a common node, 

which means that it is able to send and receive packets. 

- Power Off Period (msecs): This parameter is enabled only when there are P_Savers in the 

simulated network. It defines the time interval during which a P_Saver is in power saving mode, 

which means that it is able only to send but not receive packets. 

- Add Control Bits: The user chooses to add extra control bits, headers etc in every generated packet 

or not. Obviously, when the value of this parameter is �TRUE�, the real average packet size, that is 

the size of the packets when they are transmitted, is rather greater than the value of the parameter 

�Average Packet Size (bits)�. 

- Probability Of Sensing Hidden Signal: It defines the probability two hidden nodes are in sense 

range. When the simulation starts, the pairs of hidden nodes, which are in sense range, are 

randomly selected, according to the value of this parameter. 

 

3.1.2 HIPERSIM Results 

- Successfully Transmitted Packets: This is number of the packets that were successfully 

transmitted, which means that they reached their destination, during the simulation. 

- Successfully Transmitted Bits: This is the number of the bits that were successfully transmitted, 

which means that they reached their destination, during the simulation. 

- Rejected Packets: This is the number of the packets that were rejected because their lifetime (ML) 

was over before their successful transmission or because there was not enough space for them in 

the packet buffer in the node. 

- Load (packets): This is the number of the packets generated in the system. 

- Load (Kbits): This is the number of the Kbits generated in the system. 

- Load (percentage of bitrate): The bitrate is the maximum transmission rate at 23.529Mbps. The 

value is the result of the operation [Load / 23.529 * 106], assuming Load in bits. 

- Throughput (packets per msec): This value is the result of the number of the successfully 

transmitted packets divided by the simulation time in msecs. It is a good indication of the overall 

system performance. 
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- Throughput (bits per msec): This value is the result of the number of the successfully transmitted 

bits divided by the simulation time in msecs. It is a good indication of the overall system 

performance. 

- Throughput (percentage of bitrate): This value is the result of the operation [Throughput / 23.529 

* 106], assuming Throughput in bits per msec. It is a good indication of the overall system 

performance. 

- Average Delay (msecs): �Delay� is the time a packet remains in the system until its successful 

arrival at the destination node. The average delay is the sum of all the delays of the successfully 

transmitted packets divided by the number of these packets. It is an indication of the overall 

system performance. 

- Number Of Transmissions: This is the total number of the transmissions that were attempted 

during the simulation. 

- Collisions: This is the number of the collisions when trying to transmit data. 

- Collisions (Percentage of Transmissions): This is the number of the collisions divided by the 

number of the transmissions. 

 

3.2. Code Structure 

As it was mentioned before, the basic structure of the code is object oriented. The implemented classes 

in the simulation mechanism are: �Packet�, �Carrier� and �Node�. 

 

3.2.1. The Class “Packet” 

The class �Packet� represents the common packet in the network. Whatever transmitted in HIPERLAN 

is a �Packet� object. Some of the properties of the �Packet� are the size, the generation time, the 

sender�s ID, the receiver�s ID, the lifetime, the priority et al. The basic methods are the �GetRML� that 

returns the residual packet lifetime (Residual ML), and the  �GetCAM_Priority� which returns the 

CAM priority of the packet. In Figure 11, the structure of the class �Packet� is presented. 

 

3.2.2 The Class “Carrier” 

The class �Carrier� represents the communication medium of the network. In general, the class 

�Carrier�, which produces a single object, �stores� the current transmitted packet, the status of the 
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medium (idle or data transmitting or in collision et al), the nodes transmitting the current moment, the 

time that the current transmission will be completed et al. The basic methods are the 

�PutPacketOnCarrier� which �puts� a packet on the medium, and the �AddNodeInTransmittingInfo� 

which adds the node that starts transmitting in the list of the nodes that are currently transmitting. A 

view of the class �Carrier� is shown in Figure 12. 

 

3.2.3 The Class “Node” 

The class �Node� is definitely the most significant class and it implements the most of the operations of 

the simulator. Every node is represented by an object of the class �Node� and carries a unique ID. 

There is a great number of properties and methods in the class �Node�. The most important properties 

are the ID of the node, the type of the node (Simple or Forwarder or P_Supporter or P_Saver), the list 

of nodes that are hidden from it, the list of the hidden nodes that it can sense, the Packet Buffer, the 

packet to be sent, a great number of variables that are time indicators and which help to implement the 

medium access protocol of HIPERLAN et al. The methods of the class �Node� constitute the �heart� of 

the simulation mechanism. Below, these methods are presented one by one.  

- AddPacketInBuffer: It adds a packet in the buffer. 

- ChangeP_Status: It concerns only the P_Savers. It checks the conditions and changes the status of 

the node from On to Off and vice-versa. 

- ChannelAccess: This is the basic function that implements the MAC protocol of HIPERLAN, the 

�EY-NPMA�. When a node has a packet to transmit, it uses this method to gain access to the 

channel. 

- CheckExpiredPackets: It checks the packets in the buffer to discover the packets that their lifetime 

has expired. After that, it rejects them. 

- CheckNode: This is the method that is called at every time unit for every node � object of the 

network. It checks the node state and decides which actions must be executed by calling other 

methods. 

- GetCurrentBufferSize: It returns the current size of the packet buffer in bits. It is used to find out if 

there is enough space in the buffer to add a packet. 

- InternalPacketArrival: It implements the generation of a new packet inside the node. It decides the 

size of the packet, the destination, the lifetime et al. 
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- IsNodeHidden: The Boolean returned result shows if the node, which is the argument of the 

method, is hidden from the node that calls the method. In case the node is hidden, it shows if its 

signal can be at least detected. 

- IsTransmissionListened: If the node that is calling this method can detect the current transmission, 

then the method returns the time that this transmission is completed. 

- NextArrival_Burst: It computes the time that the next packet generation takes place, when the 

selected packet arrival method is the �Bursting�.  

- NextArrival_Poisson: It computes the time that the next packet generation takes place, when the 

selected packet arrival method is the �Poisson�. 

- ReceiveData: This method receives the transmitted data packet which is destinated to the calling 

node. If the calling node is an intermediate (Forwarder or P_Supporter) for this packet, then the 

packet is added in the buffer so that it is sent later to its final destination.  

- RetransmitData: After the transmission of a data packet and the non-reception of the 

corresponding acknowledgement, this method is called in order to reschedule the transmission of 

the packet that was not acknowledged. 

- SelectPacketToSend: The packet to be sent is selected from the buffer. The selection is made using 

the �EDF� or the �FIFO� method, according to the user�s choice. 

- SendAck: It implements the acknowledgement sending, after the successful reception of a data 

packet. 

- SendData: This method is responsible for the transmission of a data packet. If it is necessary, an 

intermediate node for this transmission is set. 

 

In Figure 13, the whole structure of the class �Node� with its properties and methods is presented. 

 

3.3. Operation Sequence 

Here we describe briefly the sequence of the actions that take place during the simulation. First of all, 

we must make clear that every simulation is independent from any other, since the simulation 

mechanism is initiated every time. 

 According to the parameters set, packets are generated inside the nodes, and if there is enough 

space they are stored in the buffer. The destination of every packet is another node of the LAN. The 
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source node tries to gain access to the channel, according to EY-NPMA, in order to send the packet 

selected from the buffer. In an exhaustive way, the nodes are checked one by one at every time unit. 

The simulation is terminated when the simulation time is over and the results are calculated and stored.   

In the beginning of every simulation, all the nodes are initiated as elements of a dynamic list 

of �Node� objects. The carrier, which is represented by the single object of the class �Carrier� 

(objCarrier), is also initiated. Next, the �forwarders� and the �P_Supporters� are selected, provided that 

the user has made the corresponding choices. After that, the P_Savers, the pairs of hidden nodes and 

the hidden nodes that are in sense range are selected. As it was mention before, a special feature of 

HIPERSIM is the fact that it distinguishes hidden nodes between those that are in sense range and those 

that are out of sense range. In the next section, the HIPERSIM results show that the hidden nodes that 

are out of sense range affect significantly the HIPERLAN performance. The time the first packet 

generation takes place is calculated for every node. Afterwards, the application enters the main loop of 

the simulation, which checks every node at every time unit, by using the method �CheckNode�.  

The function �CheckNode� decides whether some other methods of the class �Node� will be 

called. Initially, it checks if there is a packet arrival from another node, so as to call the function 

�ReceiveData�. Then, it checks if a data packet retransmission is needed, and if it does, it calls the 

function �RetransmitData�. After that, the function �ChannelAccess� is called. If there is no packet to 

be sent at the current moment, the �ChannelAccess� function performs no action. Then, the function 

�CheckNode� checks if an acknowledgement must be sent, so as to call the function �SendAck�. 

Afterwards, if it is time to generate a new data packet, the function �InternalPacketArrival� is called. 

Lastly, the function �CheckNode� checks if the node status must change from On to Off and vice-

versa, by using the function �ChangeP_Status�. It is obvious that the latter function can be called only 

when the calling node is a P_Saver. 

When the simulation time is over and the simulation is completed, the results are calculated 

and presented. A new record is created in the table of the results.mdb, and the values of all the 

parameters and the results are recorded there. In order to get these results, some special variables are 

inserted in different places in the code and their values are updated during the simulation. There are 

also some global, assistant functions, which are called when needed. For example, one of these 

functions is the msecs conversion to high rate bit-periods (1 msec = 23529 high rate bit-periods). An 

overview of the simulation mechanism is shown in Figure 14. 
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4. HIPERSIM Simulation Results 

This section analyses the HIPERSIM results about the HIPERLAN operation under various conditions.  

In every simulation the packet generation inside the nodes is Poissonian. The packet size is 

variable and exponential. Its default average value is 3000 bits, without counting in the added control 

bits. The packet lifetime is randomly selected between 10 and 800 msecs.  

Initially, we examine the system throughput depending on the number of the nodes that 

constitute the WLAN. The throughput measures as a percentage of high bit-rate. In Figure 15, we 

notice that the throughput value remains almost stable when the number of nodes increases. This 

satisfactory performance is due to the fact that EY-NPMA deters the great increase of the collisions 

even when the number of nodes increases significantly. 

Likewise, the average packet delay, that is the average time the packet remains in the system 

from its generation time till its successful transmission and reception, is almost stable while the number 

of nodes increases (Figure 16). 

Figure 17 presents the average packet delay depending on the Poisson parameter which 

concerns the packet generation in every node every msec. Actually, the increase of the value of the 

Poisson parameter causes the increase of the system load, since the packet generation rate increases. In 

this graph, we examine the performance of the Earliest Deadline First buffer discipline in comparison 

to the traditional First In First Out. As it was expected, the average delay is bigger when FIFO is used, 

especially when the load increases. HIPERSIM can simulate both the EDF and the FIFO queue 

discipline. 

We examine the way that the average packet size affects the throughput, assuming two 

different values for the Bit Error Rate (after check). The �bit error rate� is the rate a bit error occurs, 

after the appliance of all the predefined error detection and error correction checks (that is why we 

assume so low bit error rates and we add the �after check� characterization). According to the value of 

the bit error rate and the current packet length, HIPERSIM decides whether a bit error occurs during a 

packet transmission. In Figure 18, we see that the increase of the average packet size initially causes 

some increase of the throughput (because of the smaller overhead) which eventually stabilizes. But 

when we increase the bit error rate, the increase of the average packet size eventually causes a 

decrement of the throughput.  
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Another issue is the LAN performance when there are nodes that operate as P_Savers. When 

the number of the P_Savers increases, the system throughput decreases. HIPERSIM simulates the 

�ON� and �OFF� P_Saver periods. In Figure 19, the simulation results are presented for different 

numbers of P_Savers, when the total number of nodes is 30 and the number of P_Supporters is 2. 

Every P_Saver can randomly use any P_Supporter. 

HIPERSIM simulates active signaling, a feature of EY-NPMA, according to which a node that 

can just sense the signal of another node (sense range) is able to participate successfully with the latter 

in the synchronized channel access cycle. In case there are two hidden nodes that cannot even detect 

the signal of one another (they are not in sense range), there is a big possibility collisions to happen, 

which would lead to significant performance reduction. The reason for this performance reduction is 

the fact that these two nodes would not be able to synchronize directly, since each one would have a 

different view of the channel status. In HIPERSIM, every node has its own view of the channel status, 

depending on the network topology. 

In Figures 20 and 21 we use the term �Probability Of Sensing Hidden Signal�. This is the 

probability two hidden nodes are in sense range. The �Probability Of Hidden Pair� is the probability 

two nodes are hidden from each other. As we can see in Figures 20, when the Probability Of Hidden 

Pair increases, the network throughput decreases. Especially when the Probability Of Sensing Hidden 

Signal is low (less than 0.5), the system performance can be characterized as unacceptable. But when 

the value of the Probability Of Sensing Hidden Signal is high and close to one, then the throughput is 

sufficiently high. The same behavior can be seen in Figures 21, by studying collisions rate. As it was 

expected, the Percentage Of Collisions is high when the Probability Of Hidden Pair is high. When the 

Probability Of Sensing Hidden Signal increases, the collisions rate decreases. 

 

5. Conclusion 

HIPERSIM is a simulation environment for the HIPERLAN WLAN. It is a full parameterized 

simulator that can test the performance of HIPERLAN under various conditions. It simulates the 

special features of the wireless environment, like the �hidden nodes�. The hidden nodes are pairs of 

nodes that are out of communication range. HIPERSIM distinguishes between the communication 

range and the sense range (signal detection range), in order to simulate accurately the wireless 

topology. The simulation mechanism includes the priority mechanism of HIPERLAN, the EY-NPMA 
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protocol, the packet forwarding and the power saving. HIPERSIM is based on the �ETSI functional 

specification EN 300 652 v1.2.1� for HIPERLAN. 

 The simulation engine of HIPERSIM is almost exhaustive, so as to simulate the complicated 

EY-NPMA protocol and the wireless environment accurately. Every node is examined separately at 

every time unit. When the simulation time is over, the results are presented and recorded. The code 

structure of HIPERSIM is object oriented and the base classes are: the �Packet�, the �Carrier� and the 

�Node�. HIPERSIM has a graphical user interface according to the W32 pattern. 

The HIPERSIM results have shown that HIPERLAN is an efficient WLAN standard. 

Probably, some improvement of the protocol is necessary, so that the frequent collisions between nodes 

that are out of sense range are avoided. Basically, the �hidden nodes� problem concerns the collisions 

that take place close to the receiver and not in the sender�s region. So it would be efficient if there were 

a mechanism that informed the neighbors of the receiver about the oncoming transmission. In that case, 

the receiver�s neighbors would not collide the arrived data, so the overall system performance would 

improve. 
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Notation: 

ML: MPDU Lifetime 

RML: Residual MPDU Lifetime 

UP: User Priority (low = 1 , high = 0) 

 

Figure 1. The Packet Lifetime 

 

 

UP ↓ RML (msec) → < 10 10 - 20 20 - 40 40 - 80 > 80 

0 0 1 2 3 4 

1 1 2 3 4 4 

Figure 2. The CAM Priority Assigning 

 

 

 

Figure 3. The Priority Scheme 

 

 20



 

Figure 4. The Prioritization Phase 

 

 

 

Figure 5. The Elimination Phase 

 

 

 

Figure 6. The Yield Phase 
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Figure 7. Overview of the EY-NPMA protocol 

 

 

 

Figure 8. Representation of the Communication Range (Ci) and the Sense Range (Si) 
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Figure 9. Representation of the Packet Forwarding 

 

 

Figure 10. The Graphical User Interface of HIPERSIM  
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Figure 11. The class �Packet� 

 

 

 

Figure 12. The class �Carrier� 
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Figure 13. The class �Node� 
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Figure 14. Overview of the HIPERSIM simulation mechanism 
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Figure 15. System throughput versus number of nodes 
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Figure 16. Average delay versus number of nodes 
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EDF -  FIFO
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Figure 17. Comparison between the EDF and the FIFO queuing discipline  
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Figure 18. System throughput as a function of the average packet size and the bit error rate 
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Figure 19. System throughput versus number of P_Savers 
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Hidden - >  Throughput
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Figure 20. Throughput as a function of the �Probability Of Sensing Hidden Signal� and the �Probability Of Hidden Pair� 
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Figure 21. Collisions as a function of the �Probability Of Sensing Hidden Signal� and the �Probability Of Hidden Pair� 
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