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Abstract—Traffic engineering in networking is defined as
the process that incorporates sophisticated methods in order
to ensure optimization and high network performance. One of
the most constructive tools employed by the traffic engineering
concept is the traffic prediction. Having in mind the hetero-
geneous traffic patterns originated by various modern services
and network platforms, the need of a robust, cognitive, and
error-free prediction technique becomes even more pressing.
This work focuses on the prediction concept as an autonomous,
functional, and efficient process, where multiple cutting-edge
methods are presented, modeled, and thoroughly assessed. To
this purpose, real traffic traces have been captured, including
multiple multimedia traffic flows, so as to comparatively assess
widely used methods in terms of accuracy.

Keywords—extrapolation; automata; markov chains; prediction;
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I. INTRODUCTION

Modern services and applications require a robust net-
work framework, including many intelligent, cognitive, and
sophisticated processes and procedures, in order to reach
the maximum of their capabilities. Latest wireless standards
incorporate intelligent functionality, dynamic allocation, and
expanded control; however they entail an efficient supportive
suite of surrounded protocols and algorithms. For instance,
semi-persistent scheduling in Long Term Evolution (LTE) net-
works involves dynamic scheduling in allocating burst grants
in voice packet transmission. Moreover, traffic engineering
emerges as a beneficial and supportive framework towards
ensuring high levels of network performance. Among others,
traffic engineering adopts prediction/estimation techniques in
order to provide various decision processes with complete or
insightful picture on critical information. Multitude prediction
tools have been developed for providing forecasting in wireless
networks [1], cognitive networks [2], and wired networks, such
as optical networking [3].

In general, a prediction tool is used to forecast a sequence
of time series. In the context of wireless networking, the
values represented by the series may be attached to various
performance parameters such as a) packet size. b) interarrival
time, c) number of users, d) duration of a sleeping period,
e) burstiness, and f) signal or noise levels. In essence, by

applying a prediction process an a priori knowledge is ob-
tained regarding a specific network parameter. For example,
by forecasting the packet size and the interarrival time of
users’ traffic requests the efficacy of the computed decisions
could be thoroughly improved even totally optimized if the
prediction process is quite accurate. In wireless environments,
where the main goals are the low user’s perceived latency,
due to application sensitivity, and the high channel utilization,
due to bandwidth limitations, the utilization of a rigorous
prediction tool could be extremely beneficial. In this way,
modern wireless networks could cope with the proliferation
of cellular network, accompanied with the vast growth of
users involved, as well as the fast penetration of bandwidth-
demanding Internet services.

Following the definition given in [4], traffic prediction is
the task of retrieving the past traffic requests in deducing
what the future bandwidth requests will be. Accordingly, traffic
prediction can positively affect the network performance by
allowing more efficient decisions. For example, in a time
instance, a decision component can allocate surplus bandwidth
from users that will not use it to users that really need it if
it is aware of users’ bandwidth requests in advance. Thus, the
channel utilization is improved since the wasted bandwidth,
due to idle/inactive users, is properly exploited and user latency
is reduced due to the fact that the bandwidth requests of
active users are faster satisfied. However, the applied prediction
method is necessary to be accurate enough inducing low error
rate. It is obvious that an inefficient traffic estimation could
lead to performance impairments such as unfair schedule,
under-utilization, and high delays.

In this work, the cognitive capabilities of several cutting-
edge prediction methods are identified. In order to stimulate
the solidity of our research, we apply these methods to real
traffic traces obtained from a Worldwide Interoperability for
Microwave Access (WiMAX) infrastructure. Yet, the obtained
traces belong to various multimedia flows such as Voice over
IP (VoIP) and live streaming, offering even more credibility
in our research findings. The contributions of this work are
summarized as follows:

• It presents the most popular, efficient, and effective
prediction tools focused on the traffic prediction.
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• It thoroughly assesses the prediction tools in terms of
accuracy and effectiveness.

• It incorporates a real-time prediction framework by
using real traffic traces captured during actual multi-
media data delivery.

• It identifies each tool’s merits and inefficiencies. Fur-
thermore, it infers about the most applicable predic-
tion tool regarding multimedia traffic of a broadband
wireless network.

The remainder of this paper is organized as follows. Section
III describes the adopted prediction tools in detail, while
Section II outlines previous work in communication networks.
Section IV presents evaluation results accompanied by detailed
comments. Finally, Section V concludes this paper.

II. RELATED WORK

Considering modern communication networks and proto-
cols, three of the most popular and effective cognitive pre-
diction tools are a) interpolation and extrapolation, b) Markov
chains, and c) learning automata (LAs).

Interpolation and extrapolation methods are quite popu-
lar in approximating unknown functions. Furthermore, they
are employed to dynamically determine the most appropriate
downlink-to-uplink width ratio in accordance to traffic de-
mands in WiMAX systems [5], facilitate the spectrum access in
cognitive radio networks [6], estimate channel characteristics
in Multi-User Multiple Input Multiple Output (MU-MIMO)
systems [7], and approximate the item demand probability
distribution function in wireless push systems [8].

LAs have found use in communication networks, espe-
cially in wireless networking. In underwater acoustic wireless
networks the authors in [9] investigate the data dissemination
and the high latency problem by enhancing an adaptive push
system with a LA component. A paradigm of developing traffic
engineering using LA can be found in [10]. Lastly, in [11] the
BaseStation (BS) of a WiMAX access network is strengthened
by utilizing a LA in order to improve the bandwidth allocation
process.

Models built by Markov chains are quite popular in com-
munication and networking. In [12] a framework that performs
Quality of Experience (QoE) estimation and prediction using
passive probing mechanisms is presented, while in [3] a
Hidden Markov Chain (HMC) is designed to predict individual
Quality of Service (QoS) features is suggested. The authors in
[13] introduced a Markov renewal process for both mobility
modeling and predicting in wireless networks. The work
in [14] inaugurates an efficient content sharing scheme for
smartphone networks. Lastly, a new algorithm for predicting
audio packet playout delay for VoIP conferencing applications
is implemented in [15].

III. PREDICTION TOOLS

A. Extrapolation Techniques

Both interpolation and extrapolation methods are quite
popular on fitting smooth continuous functions through dis-
crete data. Interpolation uses actual scattered data to estimate

unknown values between the lower and the upper value of the
actual set. On the other hand, extrapolation estimates values
beyond the limits of the actual set. For example, assuming
that for the time series of x = [1.2, 2.3, 3.7, 4.3, 5.5] the
values of function F are F = [5.2, 4.6, 3.4, 2.1, 0.5], the
aim of interpolation is to estimate the value of F given that
1.2 ≤ x ≤ 5.5, e.g., the value of F (3.9). On the contrary, the
extrapolation technique intends to predict the F value when
x > 5.5 or x < 1.2, e.g., the value of F (6.1).

In the context of traffic prediction the extrapolation method
is functional since it allows the prediction of future values in
advance. Among other interesting extrapolation techniques, the
Lagrangian Polynomials and the Spline Curves are the most
attractive ones.

Maybe the most straightforward way to extrapolate data
is the Lagrangian Polynomials. Given a set of historical
data, the method of Lagrangian Polynomials forms a sum
of polynomials in order to fit the unknown function that
generated the actual (historical) data. Consider an actual set
of F (x1), F (x2), ..., F (xn) values for a given set of x values,
x1, x2, ..., xn. These values are real and have been measured
in the context of an experiment. The Lagrangian Polynomial
forms the polynomial R(x) aiming at fitting the unknown
function F , where R(x) =

∑n
j=1

Rj(x). The function Rj(x)

is further defined as Rj(x) = F (xj)
∏n

k=1,k 6=j
x−xk

xj−xk
. It is

obvious that the estimated polynomial R(x) passes through
the known values trying to extend the form of the estimated
function F . In addition, the polynomial R(x) has a degree of
at most n− 1.

Polynomials of high degrees may present great deviations
resulting in high estimation error. Spline Curves, or simply
Splines, constitute piecewise polynomial functions that com-
bine simplicity, in terms of computing parameters, and flexibil-
ity, in terms of smoothness and easiness on handling arbitrary
functions. In essence, Splines are piecewise polynomials with
pieces that are smoothly connected together.

One of the most interesting advantages of Splines is
the low complexity, since they keep the computational re-
quirements low compared to other interpolation techniques
that include complex numerical calculations, involving higher
degree curves. The Cubic Spline is further popular, since it
offers minimum curvature property, high-quality fitting, simple
representation, and smoothness.

Given a set of n+1 knots, that is historical (actual) values,
each pair of successive knots (xj , xj+1), j = [1, 2, ..., n, n+1],
corresponding to F (xj), F (xj+1), defines a Spline. This means
that a Spline fits a set of nth-degree polynomials between each
pair of knots. The approximation function S(x) is defined as
follows:

S(x) =











S1(x) if x1 ≤ x ≤ x2

S2(x) if x2 ≤ x ≤ x3

. . . . . .
Sn(x) if xn ≤ x ≤ xn+1

(1)

The Sj(x) denotes a third (cubic) degree polynomial be-
tween the jth knot, that is (xj , xj+1), j = [1, 2, ..., n]. It has
the following form:



Sj(x) = aj(x− xj)
3 + bj(x− xj)

2 + cj(x − xj) + dj (2)

The aj , bj, cj and dj parameters are determined as follows:

aj =
Sj+1 − Sj

6(x− xj+1)
, bj =

Sj

2

cj =
F (xj+1)− F (xj)

(x− xj+1)
−

2(x− xj+1)Sj + (x− xj+1)Sj+1

6

dj = F (xj)

Both Lagrangian Polynomial and Cubic Spline techniques
are incorporated and assessed in this work. The function of
the extrapolation techniques in order to be able to predict
network traffic is modeled as follows. The time domain is
divided into discrete time instances, T = [0, 1, ...]. Each
arrival represents a time instance, i.e., the first arrival triggers
time instance T = 0, the second happens in T = 1 etc.
On the one hand, each arrival generates an integer value
corresponding the data packet size in [64, 1518], in terms of
Bytes, since an Ethernet network is considered. Hence, the
extrapolation intends to predict the (next) packet size at time
T = tn+1, known the actual values of all previous arrivals
0 ≤ T ≤ tn. In other words, the extrapolation method tries to
estimate the actual value of F size(xtn+1

), i.e., actual packet

size, by forming the polynomials Rsize
tn+1

(x) and Ssize
tn+1

(x) for
Lagrangian Polynomials and Splines respectively. In a similar
way, the estimation of the (next) arrival time in sec follows
the same structure in time domain; however the polynomials
Rtime

tn+1
(x) and Stime

tn+1
(x) indicate (arrival) time values based

on the (arrival) times of the past given by the actual function
F time(xtn+1

).

B. Markov Chains

Markov processes provide very flexible, powerful, and
efficient means for the description and analysis of dynamic
(computer) system properties. Markov processes constitute
a special subclass of stochastic processes. In particular, a
stochastic process provides a relation between the elements
of a possibly infinite family of random variables. A series of
random experiments can thus be taken into consideration and
analyzed as a whole [16].

Considering a number of n observations obtained from an
experiment, an actual set of F (x1), F (x2), ..., F (xn) values
for a given set of x values, x1, x2, ..., xn is defined. In general,
a stochastic process, Xt is defined as a set of random variables
in the time domain, t ∈ T , where T ⊆ R+ = [0,∞]. Taking
into account that our objective is to predict the (future) values
of F , the problem is formulated in estimating the values of Xt

when t > tcurrent where tcurrent is the current time instance.

The stochastic process incorporates a state space B which
represents the set of all possible values of Xt. In our case, the
state space B represents all possible values of the underlying
function F . In addition, we consider a countable time param-
eter T resulting in a discrete-parameter process, thus T obeys
to N0. For instance, if F (x) generates the number of users
connected to a wireless BS at time x, then F (x) ∈ [0, n], where

n is the maximum accepted number of users in the BS. The
state space B in this case is defined as B = [B1, B2, ..., Bn]
indicating the number of connected users as a distinct state.

In the light of the aforementioned observations, a stochastic
process Xt defines a Markov process if for all t, t1 < t2 <
... < tn and all states of B the Xtn+1

depends only on the last
value Xtn and not on the earlier values:

P (Xtn+1
≤ Bn+1|Xtn = Bn) (3)

In predicting the packet size, each state corresponds to
all possible values, i.e., Bsize = [64, 65, ..., 1518]. However,
predicting (arrival) times is not straightforward, because the
actual values are real numbers. To remedy this difficulty,
we normalize the allowable arrival times in equally divided
spaces of 0.2 sec. Hence, Btime = [0.2, 0.4, ...]. For each
time instance t, the actual state is denoted as qsizet (qtime

t ).
Since each state corresponds to a specific observation notation,

the specifications and the observation features, O
size/time
t , are

defined below:

P (Osize
t = ksizez |qsizet = Bsize

z ) (4)

P (Otime
t = ktime

y |qtime
t = Btime

y ) (5)

where 1 ≤ z ≤ 1455, 1 ≤ y ≤ 301, while ksize1 =
64, ksize2 = 65, . . . ksize1455 = 1518, and ktime

1 = 0.2, ktime
2 =

0.4, . . . ksize301 > 60. The special value of ksize301 is associated
with (arrival) time values larger than 1 min. The state transition
probability distribution is described by the following equation:

asizei,j = P
[

qsizet′ = Bsize
j |qsizet = Bsize

i

]

(6)

atime
m,n = P

[

qtime
t′ = Btime

j |qtime
t = Btime

i

]

(7)

where 1 ≤ i, j ≤ 1455 and 1 ≤ m,n ≤ 301. asizei,j (atime
m,n )

denotes the transition probability from state i (m) to state
j (n), and i, j (m, n) symbolize the length of the packet
arrived (arrival time) at (between) t and t′, respectively, while
t′ denotes the next time instance. Each state stores the number
transitions for all other states. Finally, the most frequent
transition from the actual one is selected by the prediction
model as the next (estimated) action.

C. Learning Automata

LAs are artificial intelligence tools that can provide adap-
tation to systems operating in changing and/or unknown en-
vironments. A LA is a finite state machine that interacts with
a stochastic environment and tries to learn the optimal action
offered by the environment via a learning process. There is
a bidirectional information exchange between the environment
and the LA module. First, a specific action is chosen by the LA
from a pool of allowable actions. Second, a reaction is emerged
by the environment resulting in a feedback. The feedback is
received by the LA and it is appropriately processed so as to
compute the next action to perform. The goal for the LA is to
choose the best possible action from the allowable ones. One



of the major merits the LAs exhibit is their low computational
complexity.

An LA continuously interacts with the random operating
environment so as to find among a set of actions the one
that minimizes the average penalty the system receives by
the environment [17]. Assuming a set of n allowable actions,
e(1), e(2), ..., e(n) this process can be modeled considering a
probability distribution vector, Li, i = 1, 2, ..., n, which keeps
and calculates the probability of each action e(j). In order to
preserve model’s consistency, it holds that

∑n
i=1

Li = 1.

The operation of predicting is based on a specific process
which is incorporated by the prediction module. This process
is called probability updating algorithm and its functionality
is inherited by the features of the reinforcement learning. The
time is divided into cycles (time instances), where the LA in
each cycle t utilizes the feedback received by the environment
in the previous cycle t− 1 to perform a prediction concerning
the next cycle t + 1. Upon performing the prediction, the
LA receives (again) a feedback, as a result of the action
performed, which is used in order to update the probability
distribution vector. In general, the probability of the actual
action is favored, while all others are slightly reduced. To this
end, the optimal action is distinguished from the action set
by emerging as the most probable, and therefore preferable,
action to the environment.

The probability updating algorithm may have multiple
versions according to the subtle features of the environment.
For example, the Linear Reward-Penalty (LR-P) scheme could
be followed, where the LA selects an action from the pool
and, after reception of a favorable response for the action
that was selected, the corresponding probability of selecting
this action again is increased, whereas after reception of an
unfavorable response the probability of selecting this action
again is decreased. On the other hand, the Linear Reward-
Inaction (LR-I) scheme involves inaction upon the reception
of an unfavorable response regarding the probability of the
selected action. In this paper, the LR-I scheme is adopted
and the update algorithm is structured as follows, where
e(o), 1 ≤ o ≤ n denotes the action the environment responds:

Li(t+ 1) = Li(t)− V (Li(t)− u), ∀e(i) 6= e(o) (8)

Li(t+ 1) = Li(t) + V
∑

i6=o

(Li(t)− u), if i = o (9)

The V parameter constitutes the convergence rate of the
learning process. A larger V leads to faster convergence
since the update probability process is accelerated but causes
higher fluctuation. The u parameter simply stands to avoid the
probabilities from taking zero values. Hence, it usually receives
a minimum value, e.g., 10−5.

Here, the allowable actions
esize(1), esize(2), ..., esize(1455) and
etime(1), etime(2), ..., etime(301) denote all possible values
of packet length, i.e., [64, 1518], and all possible (normalized)
values if arrival time, i.e., [0.2, 60]. Initially, all probabilities,
i.e., Lsize

i (Ltime
i ) are received the initial value of 1/1455

(1/301).
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Fig. 1. Lagrangian Polynomials vs. Cubic Splines in terms of mean error
rate.

IV. PERFORMANCE EVALUATION

1) Environment: In order to provide a robust evaluation en-
vironment, we engaged real WiMAX multimedia traffic traces
stemming from a WiMAX access network during sessions
between a BS and a Mobile Station (MS). The captured
traffic corresponds to the downlink direction, i.e., the traffic
delivered by the MS from the BS. The captured traffic streams
were obtained using the Wireshark tool. Two traffic streams
have been utilized: a) a VoIP session between a BS and a
MS using the User Datagram Protocol (UDP) and the Skype
application and b) a Real Media Streaming application based
on Transmission Control Protocol (TCP). In each traffic stream
two objectives are set, namely a) to predict the packet size in
bytes and b) to predict the time of the next (packet) arrival
(between two successive arrivals) in seconds. The simulator
has been implemented in Matlab, while for each traffic stream
three traffic parameters have been used: a) the packet serial
number (ID), b) the packet size in Bytes, and c) the arrival
time.

The assessment is based on accuracy in terms of mean error
rate. In particular, the mean error rate is defined as follows:

E =
|ActualV alue− PredictedV alue|

TotalPossibleV alues
(10)

Concerning the VoIP application, the MS produced an
average traffic of 0.038 Mbps, while the average packet size is
equal to 1372 Bytes. The streaming application generated an
average traffic of 0.04 Mbps having an average packet size of
121 Bytes. A number of 10000 samples, known as cycles, for
both packet and interarrival time prediction has been retrieved.
For each prediction tool a learning period is initiated, where
the prediction module learns without providing output. The
default value of the learning period duration is the 10% of the
total cycles. Common values of V and u are 0.1 and 10−5 and
these are adopted as default values for the present evaluation.

2) Numerical Results: First, the extrapolation method is
assessed in terms of accuracy using as the captured data of the
packet size originated from the streaming session. To be more
specific, the Lagrangian Polynomials versus the Cubic Splines
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Fig. 2. Hidden Markov Chains evaluation in terms of training period.
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Fig. 3. Learning Automata evaluation in terms of convergence speed.
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Fig. 4. Streaming session. Mean error rate on predicting the packet size in
Bytes.

have been comparatively evaluated. Fig 1 depicts the results
of this comparison. Initially both techniques experience high
error rates due to the fact that the prediction process endeavors
to learn the most frequent, and therefore, the appropriate
packet size values. After 2000 cycles both techniques converge
presenting an almost stable error rate of 8 · 10−3. In general,
similar accuracy is observed for both techniques. However, the
Cubic Splines technique seems to offer slightly more accurate
predictions, due to its ability to smoothly engaging polynomi-
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Fig. 5. Streaming session. Mean error rate on predicting the arrival time in
sec.
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Fig. 6. VoIP session. Mean error rate on predicting the packet size in Bytes.
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Fig. 7. VoIP session. Mean error rate on predicting the arrival time in sec.

als, hence it is indicated as the representative technique of the
extrapolation method.

Second, the HMC prediction framework is investigated by
changing the learning period. As previously mentioned, the
learning period of each prediction module was set to 1000
cycles. In Fig 2 the results of the conduced simulations are



shown where the learning period takes three different values,
i.e., 100, 1000, and 3000. Once more the captured data of
the streaming session were utilized in terms of data packet
size. The results do not reveal anything special regarding the
performance of HMC. In any case, the error rate reaches 0.07
approximately, hence it can be deduced that HMC is quite well
on predicting the length of data packets regarding a streaming
session. Another aspect raised has to do with the learning
capability of the HMC tool. Indeed, Markov chains are able
to adapt fast in the environment, offering immediate positive
results.

In Fig 3 the efficiency of the LA tool is inspected. Again,
the set of packet size data of the streaming session was fed
to the model. Here, the parameter under evaluation is the
convergence speed V which determines the impact of the
probability updating algorithm in Eq. (8). It is obvious that the
value of V = 0.1 is the most effective one. This is attached to
the fact that predicting data packet length is a job that could
allow a fast convergence since identical data packets are often
repeated, hence the prediction module has the potential to learn
quickly.

The next two figures, namely Fig 4 and Fig 5 provide an
evaluation comparison between all prediction tools when the
data packet size and the arrival time is estimated respectively.
As previously, a total of 10000 samples have been utilized. The
default value of the learning period is 1000 cycles. Two major
aspects are raised by observing the Fig 4: a) the extrapolation
technique seems to be the most efficient and b) all methods
offer low levels of error rate, i.e., below 10%. Maybe, the
superiority of the extrapolation method is a combination of
smooth fitting and good matching due to the nature of the data
under prediction. Furthermore, the above observations are yet
enhanced by noticing that both HMC and LA require some
time to converge. Similar conclusions are drawn by examining
the Fig 5. It is worth mentioning that the obtained error level
of the extrapolation method is quite low, while it converges
almost immediately. LA present the highest levels of error,
fact that stems from its functional operation; it often changes
its optimal decision.

Lastly, Fig 6 depicts the prediction results on estimating the
data packet size using the VoIP session as input. Accordingly,
in Fig 7 the arrival predictions are illustrated. The observation
of these figures lead to three critical remarks. First, the
extrapolation technique looks as the most promising one since
it provides accurate predictions for both data packet size and
arrival time. Thus, it is capable of adequately estimating the
main parameters of a (multimedia) traffic flow. Second, the
HMC tool presents a fair error rate, below 10%. Third, the
use of the LA tool is deemed as good enough, however it
fails to ensure quite precise estimations as the extrapolation
techniques does. In a nutshell, the usage of the extrapolation
tool is indicated for multimedia traffic estimations based on
our findings.

V. CONCLUSION

Three heterogeneous, cognitive prediction frameworks
were modeled, presented, and evaluated on the basis of multi-
media traffic prediction. All techniques utilized, namely extrap-
olation, Markov chains, and learning automata, demonstrated

notable estimation capabilities on predicting critical traffic
parameters such as the data packet length and the arrival
time. Our findings indicated that the usage of the extrapolation
technique seems the most effective due to its ability to offer
smooth fitting and fast learning ability.
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