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ABSTRACT Ϯϱ 

Phase 2 pulmonary oxygen uptake kinetics (2ࢥ ĲVሶ O2P) reflect muscle oxygen consumption Ϯϲ 

dynamics and are sensitive to changes in state of training or health. This study identified an Ϯϳ 

unbiased method for data collection, handling and fitting to optimize Vሶ O2P kinetics Ϯϴ 

estimation. A validated computational model of Vሶ O2P kinetics and a Monte Carlo approach Ϯϵ 

simulated 2 x 105 moderate intensity transitions using a distribution of metabolic and ϯϬ 

circulatory parameters spanning normal health. Effects of averaging (interpolation, binning, ϯϭ 

stacking or separate fitting of up to 10 transitions) and fitting procedures (bi-exponential ϯϮ 

fitting, or 2ࢥ isolation by time removal, statistical or derivative methods followed by mono-ϯϯ 

exponential fitting) on accuracy and precision of Vሶ O2P kinetics estimation were assessed. The ϯϰ 

optimal strategy to maximize accuracy and precision of ĲVሶ O2P estimation was 1-s ϯϱ 

interpolation of 4 bouts, ensemble averaged, with the first 20 s of exercise data removed. ϯϲ 

Contradictory to previous advice, we found optimal fitting procedures removed no more than ϯϳ 

20 s of 1ࢥ data. Averaging method was less critical: interpolation, binning and stacking gave ϯϴ 

similar results, each with greater accuracy compared to analyzing repeated bouts separately. ϯϵ 

The optimal procedure resulted in 2ࢥ ĲVሶ O2P estimates for transitions from an unloaded or ϰϬ 

loaded baseline that averaged 1.97 ± 2.08 and 1.04 ± 2.30 s from true, but were within 2 s of ϰϭ 

true in only 47-62% of simulations. Optimized 95% confidence intervals for ĲVሶ O2P ranged ϰϮ 

from 4.08-4.51 s, suggesting a minimally important difference of ~5 s to determine ϰϯ 

significant changes in ĲVሶ O2P during interventional and comparative studies. ϰϰ 

 ϰϱ 

NEW & NOTEWORTHY ϰϲ 

We identified an unbiased method to maximize accuracy and precision of oxygen uptake ϰϳ 

kinetics (ĲVሶ O2P) estimation. The optimum number of bouts to average was four; ϰϴ 

interpolation, bin and stacking averaging methods gave similar results. Contradictory to ϰϵ 
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previous advice, we found that optimal fitting procedures removed no more than 20 s of ϱϬ 

phase 1 data. Our data suggest a minimally important difference of ~5 s to determine ϱϭ 

significant changes in ĲVሶ O2P during interventional and comparative studies. ϱϮ 

 ϱϯ 

KEYWORDS ϱϰ 

Oxygen uptake kinetics; Accuracy and precision; Data handling; Computational modeling.ϱϱ 
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INTRODUCTION ϱϲ 

 ϱϳ 

At the onset of constant power exercise below the lactate threshold (LT) in humans, ϱϴ 

mitochondrial oxidative phosphorylation and, subsequently, muscle oxygen uptake (Vሶ O2m) in ϱϵ 

activated muscle increase in a manner that is an approximate first order exponential in vivo ϲϬ 

(2, 22, 48; cf. 30). The kinetics of phase (ࢥ) 2 of the pulmonary Vሶ O2 (Vሶ O2P), characterized ϲϭ 

by the response time constant (Ĳ) from repeated breath-by-breath gas exchange ϲϮ 

measurements, are commonly used to infer Vሶ O2m kinetics and provide a non-invasive tool to ϲϯ 

investigate the control of exercise energetics (27, 41, 46). Fast 2ࢥ Vሶ O2P kinetics reflect ϲϰ 

effective cardiopulmonary and neuromuscular integration, and are associated with high ϲϱ 

endurance exercise performance (29, 38, 41), whereas 2ࢥ Vሶ O2P kinetics are slowed in the ϲϲ 

elderly (1) and with chronic disease (12, 23, 40, 46, 51). In addition, 2ࢥ Vሶ O2P kinetics are ϲϳ 

sensitive to interventions that influence blood flow distribution and muscle O2 delivery, ϲϴ 

muscle metabolism, or muscle recruitment (41, 46), making them a useful prognosticator (49) ϲϵ 

and method for evaluation of therapeutic benefit (44). Furthermore, the kinetics of 1ࢥ of the ϳϬ 

Vሶ O2P response (1ࢥ duration and amplitude) are clinically discriminatory (50) and sensitive to ϳϭ 

age (37). Thus, the strong link between Vሶ O2P kinetics and state of health provides the basis ϳϮ 

for an inherently attractive, non-invasive and effort-independent method to characterize the ϳϯ 

efficacy of the integrated physiologic systems response to exercise. ϳϰ 

 ϳϱ 

While there are general guidelines for characterizing Vሶ O2P kinetics in terms of data ϳϲ 

collection, processing and fitting procedures (56), a range of proposals exist for each of these ϳϳ 

steps (e.g. 10, 14, 19, 20, 26, 33, 39, 58). However, a systematic quantification of the effects ϳϴ 

of these different procedures on the precision and accuracy of the final 1ࢥ duration and ϳϵ 
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amplitude and 2ࢥ ĲVሶ O2P characterization, as well as a standardization of these procedures, is ϴϬ 

lacking.  ϴϭ 

 ϴϮ 

This study therefore aimed to identify an unbiased (i.e. free from human error) method for ϴϯ 

Vሶ O2P data collection, handling and fitting that allows the most accurate and precise ϴϰ 

estimation of Vሶ O2P kinetics. We identified this optimal criterion by systematically ϴϱ 

determining the influences of a range of common and uncommon collection, averaging and ϴϲ 

fitting strategies on both the precision and accuracy of 1ࢥ duration and amplitude and 2ࢥ ϴϳ 

ĲVሶ O2P estimation, using a validated cardiopulmonary simulation of exercise gas exchange (8) ϴϴ 

and a Monte Carlo approach. ϴϵ 

 ϵϬ 

THEORETICAL CONSIDERATIONS ϵϭ 

 ϵϮ 

The process linking Vሶ O2P data collection in the laboratory or clinic, to kinetics ϵϯ 

characterization, is typically undertaken in three distinct steps: (i) data collection, (ii) data ϵϰ 

processing, and (iii) data fitting. ϵϱ 

 ϵϲ 

Step 1 � data collection: Strategies employed in this step include identification of the optimal ϵϳ 

algorithms for calculating breath-by-breath gas exchange to improve signal-to-noise for ϵϴ 

kinetic fitting (6, 13, 14, 55). Strategies to improve primary Vሶ O2P data also include the ϵϵ 

repetition of identical bouts of exercise with the intention of combining and averaging those ϭϬϬ 

data in the data processing step (Fig. 1B) (10, 26, 33, 57). The breath-by-breath fluctuations ϭϬϭ 

(also referred to as “noise”) inherent in any Vሶ O2P measurement are uncorrelated (33) and ϭϬϮ 

have a Gaussian distribution in adults (although not in children; 42) with the standard ϭϬϯ 

deviation (SD) of this distribution ranging from approximately 30 to 110 ml.min-1 (33, 47), ϭϬϰ 
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independent of metabolic rate (33). What is less clear, however, is how different signal-to-ϭϬϱ 

noise ratios (or, analogously, the number of combined exercise bouts) affect Vሶ O2P kinetics ϭϬϲ 

estimation and, therefore, whether there is an optimal number of exercise bouts required to ϭϬϳ 

estimate Vሶ O2P kinetics to a given level of confidence. ϭϬϴ 

 ϭϬϵ 

Step 2 � data processing: After the removal of outlying breaths generated by swallows or ϭϭϬ 

coughs or other ‘mistriggers’ of the breath identification algorithms, and unrelated to tidal ϭϭϭ 

breathing [typically those breaths more than 3 or 4 SDs from the local mean (33, 57)], the ϭϭϮ 

second step involves averaging of the data collected from multiple exercise bouts to obtain a ϭϭϯ 

single (processed) Vሶ O2P signal with a high signal-to-noise ratio, prior to kinetic ϭϭϰ 

characterization. Several averaging techniques are employed (Fig. 1C-E), the most widely-ϭϭϱ 

used involving some form of interpolation and/or averaging. Linear interpolation of data prior ϭϭϲ 

to averaging (commonly to 1 s intervals) is necessary to normalize gas exchange sampling ϭϭϳ 

frequency, from the non-uniform breath-by-breath sampling, and therefore ensure equal ϭϭϴ 

weighting of data among repeated trials (Fig. 1C) (57). Averaging may be in the form of post-ϭϭϵ 

interpolation ensemble averaging (56), or by arranging un-interpolated data from all bouts in ϭϮϬ 

time (10) before averaging the combined breaths into bins whose size depends on the number ϭϮϭ 

of averaged bouts (38) or time (9, 26) (Fig. 1D). This “binning” approach to averaging, while ϭϮϮ 

improving the signal-to-noise ratio, may help to maintain the density of the data close to that ϭϮϯ 

at which it was collected (i.e. breathing frequency), and improve the validity of the estimated ϭϮϰ 

confidence intervals (21, 38). Despite the general popularity and acceptance of these ϭϮϱ 

approaches, several other data processing methods warrant investigation. Recent simulation ϭϮϲ 

studies have suggested that simple superimposition of all data from all bouts before fitting ϭϮϳ 

can give accurate 2ࢥ ĲVሶ O2P estimates, with the added simplicity of reducing the requirement ϭϮϴ 

for complex data treatments (Fig. 1E) (19). Another alternative averaging approach, and ϭϮϵ 
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maybe one that is statistically more robust (16) yet is not typically used for estimating Vሶ O2P ϭϯϬ 

kinetics, involves fitting the individual exercise bouts then averaging the resulting fit ϭϯϭ 

parameters (32). Kier et al. (26) showed that various stacking, interpolation, and bin or ϭϯϮ 

ensemble averaging procedures had essentially no effect on the precision of subsequent ϭϯϯ 

ĲVሶ O2P estimation. It remains unclear, though, how averaging strategies affect both the ϭϯϰ 

precision and accuracy of Vሶ O2P kinetics estimation in the context of different numbers of ϭϯϱ 

averaged bouts and different approaches to fitting the data. ϭϯϲ 

 ϭϯϳ 

Step 3 � data fitting: The third step involves the fitting of the processed Vሶ O2P data in order to ϭϯϴ 

obtain an estimate of the kinetics of Vሶ O2P. The Vሶ O2P response to a step change in work rate ϭϯϵ 

in the moderate intensity domain consists of an initial “cardiodynamic” phase (largely a result ϭϰϬ 

of increased blood flow through the pulmonary circulation; 56) followed by a “fundamental” ϭϰϭ 

phase, the kinetics of which closely represent those of Vሶ O2m in young healthy adults (Fig. ϭϰϮ 

1A) (22, 48). This entire response has been described mathematically using a piecewise bi-ϭϰϯ 

exponential equation of the form ϭϰϰ 

Vሶ O2Pሺݐሻ ൌ Vሶ O2Pǡbase ൅ ଵൣͳܣ െ ݁ି௧ ఛభΤ ൧ ൅ ଶൣͳܣሻݐሺܪ െ ݁ିሺ௧ି்஽ሻ ఛమΤ ൧ , 
ሻݐሺܪ ൌ ൜Ͳ, ݐ ൏ ,ͳ,ܦܶ ݐ ൒  ,ܦܶ

(1)

where t is time, Vሶ O2Pǡbase is baseline Vሶ O2P, A1 and A2 are the amplitudes of the first and ϭϰϱ 

second phases of the response, Ĳ1 and Ĳ2 are time constants associated with each phase of the ϭϰϲ 

response, TD is a time delay and H(t) is the Heaviside step function (cf. 36). Generally, the ϭϰϳ 

parameter of most interest is Ĳ2, i.e. 2ࢥ ĲVሶ O2P. However, 1ࢥ is a complex physiological ϭϰϴ 

construct, influenced by several processes including changes in mixed venous gas tensions, ϭϰϵ 

pulmonary perfusion and end-expiratory lung volume, which sum to generate a response that ϭϱϬ 

often deviates from a mono-exponential (15, 55). In addition, there are several practical ϭϱϭ 
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difficulties when using Equation (1) to fit Vሶ O2P data: Phase 1 typically contains only a few ϭϱϮ 

breaths (typically 5 or 6 in our simulations; see Fig. 1B), and fitting so few data points with ϭϱϯ 

the first exponential term in Equation (1) drastically reduces the confidence of the parameter ϭϱϰ 

estimations in that first exponential term. The influence of this potentially unconfident 1ࢥ fit ϭϱϱ 

continues into 2ࢥ, affecting Ĳ2 (2ࢥ ĲVሶ O2P) estimation, particularly if the fit to the 1ࢥ data does ϭϱϲ 

not reach a steady-state before 2ࢥ begins (i.e. at t = TD). Furthermore, most nonlinear least ϭϱϳ 

squares algorithms used by data fitting software (the Levenberg-Marquardt algorithm being ϭϱϴ 

the standard; 43) require the calculation of derivatives and cannot handle the Heaviside step ϭϱϵ 

function in Equation (1); the parameters A1 and Ĳ1 are shared over, and influenced by the data ϭϲϬ 

in, the two different sub-domains (t < TD or 1ࢥ, and t ≥ TD or 2ࢥ), and the extents of the sub-ϭϲϭ 

domains themselves are determined by the parameter TD. As such, fitting Equation (1) is ϭϲϮ 

difficult without custom implementation of alternative, potentially less robust, nonlinear ϭϲϯ 

fitting algorithms such as direct search methods (35). As the parameter of most interest is the ϭϲϰ 

time constant of 2ࢥ, an alternative (and the most commonly used) approach is to isolate the ϭϲϱ 

data then fit these data with a mono-exponential equation of the form ϭϲϲ Vሶ 2ࢥ OʹPሺݐሻ ൌ Vሶ OʹPǡbase ൅ ͳൣܣ െ ݁ିሺ௧ି்஽ሻ ఛΤ ൧ . (2)

Such a mono-exponential equation accurately describes the 2ࢥ Vሶ O2P response to moderate ϭϲϳ 

intensity step exercise (4, 5) and can be handled by most nonlinear least squares algorithms. ϭϲϴ 

If Equation (2) is used to fit the Vሶ O2P data and obtain an estimate of 2ࢥ ĲVሶ O2P, it is necessary ϭϲϵ 

to omit the 1ࢥ data from the fit. The most widely-used methods for removing 1ࢥ data are ϭϳϬ 

empirically-derived time-removal methods, where “at least” the first 20 s of data from the ϭϳϭ 

exercise transient are removed prior to fitting (7, 39, 54, 57). The rationale behind this ϭϳϮ 

strategy is that, because 1ࢥ is expected to last less than 20 s and the 2ࢥ Vሶ O2P response is ϭϳϯ 

expected to be exponential, starting the fit from any given point past the 2-1ࢥ transition will ϭϳϰ 

yield an identical time constant that represents the underlying 2ࢥ kinetics; whereas starting ϭϳϱ 
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the fit from any point before the 2-1ࢥ transition will result in a larger (incorrect) time ϭϳϲ 

constant for (57 ,54 ,39) 2ࢥ. However, the 2ࢥ Vሶ O2P response is not truly exponential, but ϭϳϳ 

rather is a non-linear distortion of a mono-exponential Vሶ O2m response (3, 5, 8, 25; cf. 18). ϭϳϴ 

Thus, contrary to ĲVሶ O2m, the ĲVሶ O2P is not a “true” constant throughout the transient, and ϭϳϵ 

fitting an exponential equation from different points in such a non-exponential 2ࢥ will yield ϭϴϬ 

varying values for ĲVሶ O2P; progressively larger values as the fit is started from later in 2ࢥ (cf. ϭϴϭ 

8). Such behavior is suggested in the empirical results of Murias et al. (39) where ĲVሶ O2P ϭϴϮ 

becomes larger as the imposed exponential fit is started from later in the exercise transient, at ϭϴϯ 

least in older adults. Although ĲVሶ O2P is influenced by a complex interaction of circulatory ϭϴϰ 

and gas exchange responses to exercise, and 2ࢥ Vሶ O2P is not quite exponential, a mono-ϭϴϱ 

exponential fit of moderate intensity Vሶ O2P kinetics remains a useful, concise and effort-ϭϴϲ 

independent method to characterize the integrated dynamic responsiveness of ϭϴϳ 

cardiopulmonary and neuromuscular health. Nevertheless, it seems crucial that all data ϭϴϴ 

contained in the 2ࢥ response, but none of the 1ࢥ data, are fitted in order to obtain the most ϭϴϵ 

accurate characterization of Vሶ O2P kinetics (57). As such, accurate identification of the 2-1ࢥ ϭϵϬ 

transition is paramount. ϭϵϭ 

 ϭϵϮ 

When using the mono-exponential Equation (2) to fit Vሶ O2P data, human error in selecting the ϭϵϯ 

transition can lead to an unintended bias in ĲVሶ 2-1ࢥ O2P estimation, and so an ideal, unbiased ϭϵϰ 

method for isolating 2ࢥ data for such a fit would be based on either (i) identification of some ϭϵϱ 

consistent time period (rather than leaving the choice to the individual researcher) at the start ϭϵϲ 

of exercise during which data should be removed, or (ii) some other information in the data ϭϵϳ 

itself that could algorithmically identify the 2-1ࢥ transition. ϭϵϴ 

 ϭϵϵ 
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Rather than employing empirical time-removal methods, the abrupt change in Vሶ O2P at the ϮϬϬ 

transition may be identifiable from the Vሶ 2-1ࢥ O2P data using either the peak time-derivative ϮϬϭ 

of the Vሶ O2P data (34) or statistical measures reflecting the best confidence in the fit ϮϬϮ 

parameters [e.g. the smallest confidence interval of the obtained time constant; (48)]. ϮϬϯ 

Although theoretically sound, in that both methods can identify abrupt changes in a ϮϬϰ 

continuous signal, their application to experimental Vሶ O2P data may be hindered by the low ϮϬϱ 

sampling rate (relative to the duration of 1ࢥ) and noise inherent in those data. Whether the ϮϬϲ 

use of derivatives or statistical methods to identify the 2-1ࢥ transition results in improved ϮϬϳ 

ĲVሶ O2P estimates over the empirical time-removal methods currently favored remains to be ϮϬϴ 

investigated. ϮϬϵ 

 ϮϭϬ 

Several studies have examined the effects of the different strategies employed in the three Ϯϭϭ 

steps described above on the confidence of Vሶ O2P kinetic parameter estimates using ϮϭϮ 

experimental data [e.g. 2-1ࢥ transition and 2ࢥ ĲVሶ O2P; (10, 26, 39, 54)]. However, a limitation Ϯϭϯ 

of such studies is that the true underlying Vሶ O2P kinetic parameters are unknown: such Ϯϭϰ 

experimental methods can therefore give an indication of the precision of Vሶ O2P kinetics Ϯϭϱ 

estimation but not of its accuracy. Computational approaches using Monte Carlo methods Ϯϭϲ 

(17) can overcome some of these limitations. For this, a simulation is first used to produce a Ϯϭϳ 

clean, continuous Vሶ O2P trace with known kinetic parameters. This trace is then sampled Ϯϭϴ 

using simulations of breathing frequency and Gaussian noise is added (using known Ϯϭϵ 

characteristics) to produce a dataset with similar sampling, noise and kinetic characteristics as ϮϮϬ 

experimentally-obtained Vሶ O2P data, but where the underlying Vሶ O2P kinetic parameters are ϮϮϭ 

known (33). In addition, the same clean trace can be randomly resampled and new noise ϮϮϮ 

added to produce further noisy datasets (but all with the same underlying kinetic parameters), ϮϮϯ 

analogous to obtaining experimental Vሶ O2P data during repeated bouts of exercise from a ϮϮϰ 



ϭϭ 
 

single subject. Thus, these Monte Carlo methods allow both the precision and accuracy of ϮϮϱ 

Vሶ O2P fitting methods to be systematically assessed.  ϮϮϲ 

 ϮϮϳ 

Computational approaches have been previously applied using a simple delayed mono-ϮϮϴ 

exponential (19, 20) or a bi-exponential (10, 33) Vሶ O2P response generated in silico. However, ϮϮϵ 

as the underlying Vሶ O2P kinetics do not follow a simple mono- or bi-exponential time course ϮϯϬ 

(3, 5, 8), it is necessary to use a validated simulation of Vሶ O2P kinetics that takes into account Ϯϯϭ 

how circulatory dynamics modulate the mono-exponential Vሶ O2m response to produce the 1ࢥ ϮϯϮ 

and 2ࢥ Vሶ O2P responses (8). Such computationally-produced datasets can therefore contain Ϯϯϯ 

the influence of normal variation in the steady states and kinetics of, for example, cardiac Ϯϯϰ 

output, muscle blood flow and Vሶ O2m, to derive a distribution of Vሶ O2P characteristics Ϯϯϱ 

(including 1ࢥ duration and amplitude, and 2ࢥ ĲVሶ O2P), analogous to collecting experimental Ϯϯϲ 

Vሶ O2P data from a large number of healthy human subjects.   Ϯϯϳ 



ϭϮ 
 

METHODS Ϯϯϴ 

 Ϯϯϵ 

We used a validated simulation of Vሶ O2 and circulatory dynamic interactions during moderate ϮϰϬ 

intensity cycling exercise in humans (8) that accounts for the vascular capacitances and Ϯϰϭ 

circulatory dynamics that cause a mono-exponential Vሶ O2m response to manifest at the lungs ϮϰϮ 

as a three-phase Vሶ O2P response, with a cardiodynamic 1ࢥ, a near-exponential fundamental Ϯϰϯ 

The simulation Vሶ .3ࢥ and a steady-state ,2ࢥ O2P outputs initially have no noise, so the Ϯϰϰ 

baseline Vሶ O2P steady-state, 1ࢥ duration and amplitude, 2ࢥ ĲVሶ O2P, and 3ࢥ Vሶ O2P steady-state Ϯϰϱ 

for each output are precisely known. This allows quantification of both the accuracy and the Ϯϰϲ 

precision of subsequent fits to the data. Ϯϰϳ 

 Ϯϰϴ 

Data production: The minimum required number of Monte Carlo iterations, n, was estimated Ϯϰϵ 

from the central limit theorem (17) using ݊ ൌ ൫ݖఈ ଶΤ ߪ Τߝ ൯ଶ, where ݖఈ ଶΤ  is the z score ϮϱϬ 

associated with significance level ߪ ,ߙ is the estimated SD of the simulation output, and ߝ is Ϯϱϭ 

the acceptable margin of error for the simulation output (equal to half the required confidence ϮϱϮ 

interval). We set ߙ at 0.05 to give ݖఈ ଶΤ ൌ ͳǤͻ͸, it was assumed that the SD of 2ࢥ ĲVሶ O2P (our Ϯϱϯ 

parameter of interest) produced by stochastic simulations would be 4.3 s [based on the Ϯϱϰ 

experimental data used to parameterize the simulations (8, 22)], and the acceptable margin of Ϯϱϱ 

error was set at 0.1 s (the same as the simulation time resolution). This predicted a minimum Ϯϱϲ 

iteration number of ݊ = 7104; we therefore performed 104 iterations during the Monte Carlo Ϯϱϳ 

simulations. Ϯϱϴ 

 Ϯϱϵ 

We examined two protocols for a step increase in work rate (WR), both constrained to be ϮϲϬ 

within the moderate intensity exercise domain: the first from unloaded pedaling (UP-WR) Ϯϲϭ 

and the second from a raised baseline (WR-WR). For each of these two protocols, 104 clean ϮϲϮ 



ϭϯ 
 

(time resolution = 0.1 s) Vሶ O2P simulations, each with different kinetics, were produced (see Ϯϲϯ 

Fig. 1A for an example). The start of the step increase in WR was set to t = 0 s. Simulation Ϯϲϰ 

input parameters were varied stochastically (43) using distributions taken from the data of Ϯϲϱ 

Grassi et al. (22) and Benson et al. (8) (Table 1). This provided simulations with normal Ϯϲϲ 

physiologic variation in, for example, baseline Vሶ O2P, Vሶ O2P gain (οVሶ O2P οWΤ ), the relative Ϯϲϳ 

increase in cardiac output (οQሶ m οVሶ O2mΤ ), and the kinetics of cardiac output and Vሶ O2m Ϯϲϴ 

(ĲQሶ m ĲVሶ O2mΤ ). Parameter sets that resulted in venous O2 concentration dropping to zero at Ϯϲϵ 

any point during the simulated exercise transient were discarded, and a new parameter set ϮϳϬ 

was generated.  Ϯϳϭ 

 ϮϳϮ 

Each of these 2 × 104 clean traces (one set of UP-WR, and one set of WR-WR simulations) Ϯϳϯ 

was then sampled at a variable breathing frequency. The sampling interval was based on the Ϯϳϰ 

relationship between breathing frequency (bf) and Vሶ O2P in data collected during moderate Ϯϳϱ 

intensity exercise in our laboratory, and was given by bfሺݐሻ ൌ ͺ ൈ Vሶ O2Pሺݐሻ ൅ ͺ. Gaussian Ϯϳϲ 

noise with an SD of ͲǤʹͷ ൈ bfሺݐሻ was subsequently added to this interval (11, 28), with the Ϯϳϳ 

noise constrained to be no greater than 2 SDs to avoid unphysiologically-large intervals Ϯϳϴ 

between sampled “breaths”. Ϯϳϵ 

 ϮϴϬ 

We then added Gaussian Vሶ O2P noise to each “breath”: the SD of this noise distribution was Ϯϴϭ 

randomly sampled for each clean trace from a Gaussian distribution with a mean of 67.96 ϮϴϮ 

ml.min-1 and an SD of 25.54 ml.min-1 [calculated from the individual values reported in Ϯϴϯ 

Lamarra et al. (33) and Rossiter et al. (47); n = 22], with the obtained value constrained to be Ϯϴϰ 

within 2 SD of the mean, to avoid datasets that were unphysiologically noisy. Ϯϴϱ 

 Ϯϴϲ 



ϭϰ 
 

These procedures produced, from the clean simulation output, a trace with the sampling, Ϯϴϳ 

noise and kinetic characteristics observed in experimentally-collected data (see Fig. 1B for Ϯϴϴ 

examples). For all 2 x 104 clean simulations, this sampling and noise procedure was Ϯϴϵ 

performed 10 times to simulate 10 bouts of exercise repeated by a single subject (see Fig. 1A-ϮϵϬ 

B for examples). At the end of this Monte Carlo procedure, we therefore had 104 noisy UP-Ϯϵϭ 

WR datasets, i.e. 104 “subjects”, each with different physiological characteristics, who ϮϵϮ 

performed moderate intensity step exercise from unloaded pedaling: each dataset contained Ϯϵϯ 

10 noisy traces from separate “exercise bouts”, i.e. each subject performed the same WR Ϯϵϰ 

protocol 10 times. A further 104 noisy WR-WR datasets, with each dataset again containing Ϯϵϱ 

10 traces from separate exercise bouts, were produced. Thus, a total of 2 x 105 simulated Ϯϵϲ 

moderate-intensity “exercise bouts” in 2 x 104 “subjects” were produced, which sampled the Ϯϵϳ 

normal variation of key parameters observed in healthy young humans. Note that, despite the Ϯϵϴ 

sampling and noise procedure used to produce the data, the true underlying kinetic Ϯϵϵ 

characteristics of any given noisy trace were known from the kinetics of the original clean ϯϬϬ 

simulation from which it was produced. ϯϬϭ 

 ϯϬϮ 

Data processing: Outlying breaths were first removed by fitting Equation (2) to the noisy ϯϬϯ 

traces and removing breaths that lay further than 3 SDs away from the local mean (i.e. ϯϬϰ 

outside the 99.7% prediction bands of the fit) (33). For each dataset, we used the following ϯϬϱ 

data processing techniques, covering a range of commonly-used or potentially-useful ϯϬϲ 

methods, to process up to 10 bouts of noisy data (see Fig. 1 for examples): (i) Interpolation of ϯϬϳ 

each bout to 1-s intervals before ensemble averaging across bouts (“interpolated”); (ii) Time ϯϬϴ 

alignment of data from the bouts to be averaged, before bin averaging into bins whose size ϯϬϵ 

depends on the number of bouts being averaged (“binned”); (iii) Superimposition, or ϯϭϬ 

stacking, of the data from different bouts, with no further interpolation or averaging ϯϭϭ 



ϭϱ 
 

(“stacked”); (iv) Fitting of individual bouts (see below) followed by averaging of fit ϯϭϮ 

parameters across bouts (“separate”). ϯϭϯ 

 ϯϭϰ 

Data fitting: For each processed Vሶ O2P trace, we fit the bi-exponential Equation (1) to the ϯϭϱ 

entire 1ࢥ and 2ࢥ data, and used the following strategies for identification of the 2-1ࢥ ϯϭϲ 

transition and subsequently fit the mono-exponential Equation (2) to the isolated 2ࢥ data: (i) ϯϭϳ 

Empirical time-removal methods, where 10, 15, 20, 25 or 30 s of data were removed from the ϯϭϴ 

beginning of each processed Vሶ O2P trace. (ii) Use of Vሶ O2P time derivatives on both ϯϭϵ 

unsmoothed and smoothed (with a moving 5-breath average) processed data, where the ϯϮϬ 

highest derivative of Vሶ O2P with respect to time during the first 60 s of exercise was taken as ϯϮϭ 

the 2-1ࢥ transition. (iii) Statistical methods to identify the 2-1ࢥ transition, where a datum was ϯϮϮ 

incrementally removed from the beginning of each dataset (until 60 s into exercise) and the ϯϮϯ 

remaining data were fit using the mono-exponential Equation (2); the reduced chi-squared ϯϮϰ 

(߯red
ଶ ), adjusted coefficient of determination ( തܴଶ), confidence interval for the time constant ϯϮϱ 

(CIĲ) and the corrected Akaike information criterion (AICc) were then calculated for each fit ϯϮϲ 

(42, 46); the first datum in the fit that returned the minimum statistical value (or maximum ϯϮϳ 

for തܴଶ) was taken as the identified 2–1ࢥ transition for that statistical method; See Rossiter et ϯϮϴ 

al. (48) for an example using CIĲ to identify the 2–1ࢥ transition. For each processed trace we ϯϮϵ 

therefore obtained 12 fits to the data: one using the bi-exponential fit to the entire 1ࢥ and 2ࢥ ϯϯϬ 

data, and 11 using a mono-exponential fit to isolated 2ࢥ data (five using empirical time ϯϯϭ 

removal methods, two using Vሶ O2P time derivatives, and four using statistical measures). As a ϯϯϮ 

control condition, for each processed trace we also fit the true isolated noisy 2ࢥ data with ϯϯϯ 

Equation (2), i.e. the data were fit beginning at the true first “breath” in 2ࢥ, known from the ϯϯϰ 

clean simulation. Each of these 13 methods provided an estimate of the 2–1ࢥ transition [i.e. ϯϯϱ 

TD from Equation (1) when using the bi-exponential fit, or the identified first breath in 2ࢥ ϯϯϲ 



ϭϲ 
 

when using the mono-exponential fits] and an estimate of 2ࢥ ĲVሶ O2P [i.e. Ĳ2 from fits using ϯϯϳ 

Equation (1), or Ĳ from fits using Equation (2)]. The 1ࢥ amplitude (as a percentage of the ϯϯϴ 

steady-state response) was estimated from the value of the fit at the identified 2–1ࢥ transition. ϯϯϵ 

Each of the 2-1ࢥ transition, 1ࢥ amplitude and 2ࢥ ĲVሶ O2P estimates were then compared to the ϯϰϬ 

known true underlying values obtained from the clean simulated Vሶ O2P trace. These true ϯϰϭ 

values represent the most accurate estimates possible of 1ࢥ and 2ࢥ Vሶ O2P kinetics. ϯϰϮ 

 ϯϰϯ 

Numerical methods and statistical analyses: Details of the model used to produce the clean ϯϰϰ 

Vሶ O2P data, along with numerical methods, are given in Benson et al. (8). Because of its ϯϰϱ 

unique piecewise nature, Equation (1) was fit using a custom direct search method (35), ϯϰϲ 

although this precluded calculation of parameter confidence intervals. Equation (2) was fit ϯϰϳ 

using the Levenberg-Marquardt algorithm (43). Values are presented as mean ± SD unless ϯϰϴ 

otherwise stated. Significant differences between data were tested for using two-sample t-ϯϰϵ 

tests, or one-way repeated measures analysis of variance (ANOVA) with Tukey’s post hoc ϯϱϬ 

tests, as appropriate. Significance level was set at P < 0.05.  ϯϱϭ 



ϭϳ 
 

RESULTS ϯϱϮ 

 ϯϱϯ 

Simulation outputs: Simulation input WR and output Vሶ O2P characteristics are summarized in ϯϱϰ 

Table 2. Time of the 2-1ࢥ transition was significantly different between UP-WR and WR-ϯϱϱ 

WR simulations (19.8 ± 3.4 s vs. 15.9 ± 3.4 s, respectively; P < 0.05, t-test), as was 1ࢥ ϯϱϲ 

amplitude (reported as percentage of the steady-state response: 28.2 ± 8.3 % vs. 28.9 ± 7.7 %, ϯϱϳ 

respectively; P < 0.05, t-test) and 2ࢥ ĲVሶ O2P (22.4 ± 7.2 s vs. 25.0 ± 7.2 s, respectively; P < ϯϱϴ 

0.05, t-test). These different Vሶ O2P characteristics from UP-WR and WR-WR protocols can be ϯϱϵ 

explained by the increased baseline cardiac output associated with starting an exercise ϯϲϬ 

transition from a raised WR: muscle-to-lung transit time is shortened, reducing 1ࢥ duration ϯϲϭ 

(3), and the altered blood flow during the exercise transient modifies the association between ϯϲϮ 

muscle and pulmonary Vሶ O2 kinetics (8). The Monte Carlo simulation output data (104 clean ϯϲϯ 

UP-WR traces and 104 clean WR-WR traces, along with the corresponding 2 x 105 noisy ϯϲϰ 

traces, and details of the input and output characteristics for each simulation) are available ϯϲϱ 

from the corresponding author upon request. ϯϲϲ 

 ϯϲϳ 

The results below present in detail the findings for UP-WR simulations. The key differences ϯϲϴ 

between UP-WR and WR-WR simulations are then presented. For the sake of brevity, we ϯϲϵ 

present only data pertinent to our significant findings.  ϯϳϬ 

 ϯϳϭ 

Number of averaged exercise bouts: Figure 2 shows the effects of averaging exercise bouts ϯϳϮ 

on the precision and accuracy of 2ࢥ ĲVሶ O2P estimation (generally the parameter of most ϯϳϯ 

interest) during UP-WR simulations. For this example, data from different bouts were ϯϳϰ 

interpolated to 1-s intervals then ensemble averaged (see “Averaging methods” below), and ϯϳϱ 

fitting was made beginning at the known first breath in 2ࢥ (i.e. control fits). Qualitatively ϯϳϲ 
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similar results were found for the other averaging and fitting methods. The mean and SD of ϯϳϳ 

the estimated 2ࢥ ĲVሶ O2P are shown in Fig. 2A, and example distributions of the estimated 2ࢥ ϯϳϴ 

ĲVሶ O2P for 1, 4 and 10 exercise bouts are shown in Fig. 2B. The 2ࢥ ĲVሶ O2P estimates obtained ϯϳϵ 

by averaging 1, 2 or 3 bouts were significantly greater than using 10 bouts (P < 0.05, ϯϴϬ 

ANOVA; there was no difference when averaging 4-9 bouts; Fig. 2A). This indicates that ϯϴϭ 

precision and accuracy of 2ࢥ ĲVሶ O2P estimation is not statistically improved by averaging data ϯϴϮ 

from more than four bouts of exercise.  ϯϴϯ 

 ϯϴϰ 

Figs. 2A and 2B demonstrate that ĲVሶ O2P tends to be overestimated on average by ~2 s, ϯϴϱ 

irrespective of the number of bouts averaged: mean difference between estimated and true ϯϴϲ 

ĲVሶ O2P was 1.92 ± 4.24 s with 1 bout, 1.68 ± 2.06 s with 4 bouts and 1.62 ± 1.37 s with 10 ϯϴϳ 

bouts. Figure 2C shows the percentage of estimated 2ࢥ ĲVሶ O2P values that lay within ± 2 s of ϯϴϴ 

true. Using data from a single exercise bout, the estimated 2ࢥ ĲVሶ O2P was within 2 s of the ϯϴϵ 

true value in only 41.3% of cases. When 4 bouts were averaged, the percentage of estimated ϯϵϬ 

values within 2 s of the true value increased to 53.0%, even when the first breath in 2ࢥ is ϯϵϭ 

known precisely (see also “Data fitting and kinetic characterization” below). The asymptote ϯϵϮ 

of this relationship is 62.0% (Fig. 2C), indicating that the maximum probability of returning a ϯϵϯ 

ĲVሶ 2ࢥ O2P estimate within 2 s of true is 62%, even when the first breath in 2ࢥ is known and no ϯϵϰ 

matter how many bouts are averaged. ϯϵϱ 

 ϯϵϲ 

Averaging methods: Figure 3A shows the effects on 2ࢥ ĲVሶ O2P estimation of the different ϯϵϳ 

averaging methods during UP-WR simulations. For the example shown, data from four ϯϵϴ 

exercise bouts were averaged and fitting was from the known first breath in 2ࢥ (i.e. control ϯϵϵ 

fits). Qualitatively similar results were found for other numbers of averaged bouts and for the ϰϬϬ 

other fitting methods. Each averaging method returned significantly different 2ࢥ ĲVሶ O2P ϰϬϭ 
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estimates (P < 0.05, ANOVA), although the mean 2ࢥ ĲVሶ O2P values obtained using the ϰϬϮ 

interpolated, binned and stacked averaging methods were quantitatively very similar, being ϰϬϯ 

within 0.1 s of each other (i.e. within the acceptable margin of error set for our Monte Carlo ϰϬϰ 

simulations). Mean 2ࢥ ĲVሶ O2P estimation with the interpolation method was 1.68 ± 2.06 s ϰϬϱ 

from true (53.0% of values within ± 2 s of true), compared to 1.76 ± 2.17 s (50.7%) for ϰϬϲ 

binned, 1.72 ± 2.13 s (51.4%) for stacked and 2.04 ± 2.34 s (46.9%) for separate. The ϰϬϳ 

distribution of the confidence intervals of the estimated 2ࢥ ĲVሶ O2P are shown in Fig. 3B. Each ϰϬϴ 

averaging method returned a significantly different confidence interval distribution (P < 0.05, ϰϬϵ 

ANOVA), although the confidence interval distributions for the binned and stacked averaging ϰϭϬ 

methods were quantitatively similar (the difference between the means of these two ϰϭϭ 

distributions was 0.14 s). ϰϭϮ 

 ϰϭϯ 

Data fitting and kinetic characterization: Figures 4 to 6 compare the different methods for ϰϭϰ 

estimating the 2-1ࢥ transition (Fig. 4), and the subsequent estimation of 1ࢥ amplitude (Fig. 5) ϰϭϱ 

and 2ࢥ ĲVሶ O2P (Fig. 6), during UP-WR simulations. In Figs. 5 and 6, the distributions of 1ࢥ ϰϭϲ 

amplitude and 2ࢥ ĲVሶ O2P estimates obtained from control fits (i.e. fits from the known first 2ࢥ ϰϭϳ 

breath) are shown as dashed curves. The examples shown use data from four bouts averaged ϰϭϴ 

using the interpolation method, although qualitatively similar results were found for other ϰϭϵ 

numbers of averaged bouts and for the other averaging methods. Only removal of the first 20 ϰϮϬ 

s of data (Panel B in Figs. 4-6) resulted in the accurate identification of the first breath in 2ࢥ, ϰϮϭ 

and 1ࢥ amplitude and 2ࢥ ĲVሶ O2P values that were not significantly different from the control ϰϮϮ 

fits; all other methods were significantly different from true (P < 0.05, ANOVA). Using this ϰϮϯ 

empirical 20 s removal method, the identified 2-1ࢥ transition was within ±2 breaths of true in ϰϮϰ 

99.3% of cases, estimated 1ࢥ amplitude was within ±5% of true in 32.6% of cases (vs. 34.2% ϰϮϱ 

with control fits), and estimated 2ࢥ ĲVሶ O2P was within ±2 s of true in 46.5% of cases (vs. ϰϮϲ 



ϮϬ 
 

53.0% with control fits). Although the bi-exponential fitting method (Panel A in Figs. 4-6) ϰϮϳ 

returned the second best estimates of the 2-1ࢥ transition (93.8% of estimates within ±2 ϰϮϴ 

breaths of true), the over-parameterization of the model resulted in less accurate and precise ϰϮϵ 

ĲVሶ 2ࢥ O2P estimates (only 32.0% of estimates within ±2 s of true) than both the empirical 15 s ϰϯϬ 

and 25 s removal methods (37.9% and 37.6%, respectively) (Panel B in Figs. 4-6). ϰϯϭ 

Interestingly, removal of 15 s of data (i.e. including some 1ࢥ data in the fit) gave more ϰϯϮ 

accurate and precise 1ࢥ amplitude and 2ࢥ ĲVሶ O2P estimates than removal of 25 s of data (i.e. ϰϯϯ 

excluding the initial portion of 2ࢥ data). Basing 2-1ࢥ identification on time-derivative or ϰϯϰ 

statistical methods resulted in skewed distributions (Fig. 4C,D), and 2-1ࢥ transition, 1ࢥ ϰϯϱ 

amplitude and 2ࢥ ĲVሶ O2P values that were furthest from true (Figs. 5C,D & 6C,D). ϰϯϲ 

 ϰϯϳ 

Optimal protocol: Having identified that removal of the first 20 s of data, followed by a ϰϯϴ 

mono-exponential fit to the isolated 2ࢥ data, was the optimal fitting method for UP-WR ϰϯϵ 

transitions, we repeated the previous analyses that were performed on the control, i.e. known ϰϰϬ 

 data (as shown in Figs. 2 and 3) using this empirical 20 s removal fitting method (Fig. 7). ϰϰϭ ,2ࢥ

Qualitatively, the results were identical, in that four averaged bouts provided no more ϰϰϮ 

accuracy and precision than 10 averaged bouts, and the interpolated averaging method gave ϰϰϯ 

the most accurate and precise 2-1ࢥ transition, 1ࢥ amplitude and 2ࢥ ĲVሶ O2P estimates, that ϰϰϰ 

were not significantly different to the control fits. Quantitatively, the mean estimate of the ϰϰϱ 

 transition was 0.06 ± 0.85 breaths from true, with 99.3% of values within ±2 breaths of ϰϰϲ 2-1ࢥ

true; the mean 1ࢥ amplitude estimate was 6.63 ± 10.61 % from true (vs. 6.65 ± 4.46 % from ϰϰϳ 

true with control data), with 32.6% of values within ±5% of true (vs. 34.2% with control fits); ϰϰϴ 

and the mean 2ࢥ ĲVሶ O2P estimate was 1.97 ± 2.08 s from true (vs. 1.68 ± 2.06 s from true with ϰϰϵ 

control data), with 46.5% of estimates within ±2 s of true (vs. 53.0% with control fits). Again, ϰϱϬ 

the binned and stacked averaging methods gave very similar (but slightly less precise and ϰϱϭ 
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accurate) 2ࢥ ĲVሶ O2P estimates to the interpolated method: 2.00 ± 2.19 s and 1.98 ± 2.16 s ϰϱϮ 

from true, respectively. Using the optimal methods, the asymptote of the exponential fit to the ϰϱϯ 

proportion of 2ࢥ ĲVሶ O2P estimates within ± 2 s across all numbers of averaged bouts (Fig. 7C) ϰϱϰ 

was 51.3%. ϰϱϱ 

 ϰϱϲ 

WR-WR simulations: The analyses performed for the UP-WR simulations (Figs. 2-7) were ϰϱϳ 

repeated for the WR-WR simulations, where “exercise” was initiated from a raised baseline ϰϱϴ 

WR between 0 and 100 W. These analyses are summarized in Fig. 8. As with UP-WR ϰϱϵ 

simulations, averaging of four bouts (Fig. 8A-C), using interpolated, binned or stacked data, ϰϲϬ 

optimized 2ࢥ ĲVሶ O2P estimation while minimizing the number of required bouts (Fig. 8D-E). ϰϲϭ 

However, for WR-WR data, removal of the first 15 s or 20 s of data gave statistically similar ϰϲϮ 

results to control fits (where the first breath in 2ࢥ is known), although quantitatively the ϰϲϯ 

removal of 15 s of data gave more precise and accurate estimates of Vሶ O2P kinetics than ϰϲϰ 

removing 20 s of data: 97.2% (with 15 s removal) vs. 93.1% (with 20 s removal) of the 2-1ࢥ ϰϲϱ 

transition estimates within ±2 breaths of true; 41.5% vs. 16.9% of 1ࢥ amplitude values within ϰϲϲ 

±5% of true; and 61.9% vs. 57.6% of 2ࢥ ĲVሶ O2P values within ±2 s of true (Fig. 8F). Phase 2 ϰϲϳ 

ĲVሶ O2P estimation was more accurate for WR-WR data than for UP-WR data: using four ϰϲϴ 

interpolated and ensemble averaged bouts with 2ࢥ isolated by removal of the first 15 s of ϰϲϵ 

data, the mean difference between estimated and known ĲVሶ O2P was 1.04 ± 2.30 s (vs. 1.97 ± ϰϳϬ 

2.08 s with the optimal UP-WR analysis; P < 0.05, t-test) and the percentage of values lying ϰϳϭ 

within ± 2 s of the true value was 61.9% (vs. 46.5% with UP-WR data). The asymptote of the ϰϳϮ 

exponential fit to these data (Fig. 8C) suggested that a maximum of 75.9% of 2ࢥ ĲVሶ O2P ϰϳϯ 

values would lie within ± 2 s of the true value (vs. 51.3% for UP-WR data). ϰϳϰ 

 ϰϳϱ 



ϮϮ 
 

Minimally important difference: The optimal collection, handling and fitting procedures for ϰϳϲ 

UP-WR and WR-WR simulations were used to determine the minimally important difference ϰϳϳ 

for significant changes in ĲVሶ O2P during moderate intensity exercise. Table 3 shows that the ϰϳϴ 

95% confidence limits of ĲVሶ O2P estimation narrows from 8.25 s to 4.08 s for UP-WR, and ϰϳϵ 

from 9.43 s to 4.51 s for WR-WR, as the number of bouts averaged is increased from 1 to 4. ϰϴϬ 

These data propose a minimal important difference of ~5 s to detect differences in ĲVሶ O2P ϰϴϭ 

among groups or within individuals for comparative or interventional studies. ϰϴϮ 

 ϰϴϯ 

Robustness of Monte Carlo simulations: To confirm the robustness of the Monte Carlo ϰϴϰ 

simulations, the entire data production procedure was repeated (i.e. a second set of 104 UP-ϰϴϱ 

WR and 104 WR-WR clean simulations was produced, and noise was added to each trace 10 ϰϴϲ 

times, to give 2 x 105 noisy traces) and these data were analyzed as described above. There ϰϴϳ 

were no differences in the key findings with this second set of simulations (data not shown). ϰϴϴ 

As with the original Monte Carlo data, the output data from this second set of Monte Carlo ϰϴϵ 

simulations (2 x 104 clean and 2 x 105 noisy traces, along with simulation input and output ϰϵϬ 

characteristics) are available from the corresponding author upon request.  ϰϵϭ 



Ϯϯ 
 

DISCUSSION ϰϵϮ 

 ϰϵϯ 

We used a validated computational model together with a Monte Carlo approach to produce 2 ϰϵϰ 

x 105 simulated Vሶ O2P datasets with similar sampling, noise and kinetic characteristics as ϰϵϱ 

experimentally-obtained Vሶ O2P data. As the true underlying Vሶ O2P kinetic parameters of these ϰϵϲ 

datasets were known from the clean simulation traces from which they were produced, we ϰϵϳ 

could assess both the accuracy and the precision of various averaging and fitting procedures ϰϵϴ 

on the estimation of ĲVሶ O2P; something that is not feasible using experimentally-obtained data ϰϵϵ 

where the true underlying ĲVሶ O2P is not known. We showed that the optimal data handling ϱϬϬ 

steps to give the most accurate and precise estimation of ĲVሶ O2P were linear interpolation with ϱϬϭ 

ensemble averaging data from four bouts of exercise, followed by removal of the first 20 s (if ϱϬϮ 

exercise was from unloaded pedaling) or 15 s (if exercise was from a raised work rate) of ϱϬϯ 

data before mono-exponential fitting of the isolated 2ࢥ data. Variations on the averaging ϱϬϰ 

method led to substantially similar results, with the exception that the confidence interval for ϱϬϱ 

kinetic estimation was significantly wider for the technique of independently fitting repeats of ϱϬϲ 

the same exercise transition (the separate method). This suggests that different data ϱϬϳ 

processing techniques currently used among different laboratories is unlikely to substantially ϱϬϴ 

influence the derived parameters. However, it is of note that even the optimal procedures that ϱϬϵ 

we identified yielded ĲVሶ O2P estimates that were within 2 s of true in just 47% of simulations ϱϭϬ 

from unloaded pedaling, rising to only 62% for protocols where exercise started from a raised ϱϭϭ 

work rate. ϱϭϮ 

 ϱϭϯ 

Data collection: The simulated data of exercise transitions either from unloaded pedaling or ϱϭϰ 

from a raised work rate spanned a wide range of variable and parameter estimates expected ϱϭϱ 

for sub-LT exercise (Table 2). Simulated 1ࢥ duration ranged from 7 s to 30 s and was 9% to ϱϭϲ 
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72% of the steady-state response in amplitude, and simulated 2ࢥ ĲVሶ O2P spanned ϱϭϳ 

approximately 7 s to 40 s, across transitions ranging from 50 W to 150 W in amplitude, ϱϭϴ 

making our findings widely generalizable to the study of moderate-intensity Vሶ O2P kinetics in ϱϭϵ 

healthy adults. We showed that averaging data from four exercise bouts optimized accuracy ϱϮϬ 

and precision of ĲVሶ O2P estimation, while minimizing experimental burden, regardless of the ϱϮϭ 

averaging or fitting methods subsequently used. Averaging more bouts did not give a ϱϮϮ 

significantly more precise or accurate estimation of ĲVሶ O2P. Some investigators may be ϱϮϯ 

willing to accept lower accuracy and precision in ĲVሶ O2P estimation in order to reduce the ϱϮϰ 

testing burden of four exercise bouts. For example, interpolating and averaging three bouts of ϱϮϱ 

UP-WR exercise, and removing 20 s of data to isolate 2ࢥ, resulted in ĲVሶ O2P estimations that ϱϮϲ 

were 2.00 ± 2.39 s from true, with 45.0% of these estimations within 2 s of true, a relatively ϱϮϳ 

small reduction in accuracy and precision compared to the same data handling method with ϱϮϴ 

four exercise bouts (1.97 ± 2.08 s and 46.5%). These differences are associated with an ϱϮϵ 

increase in the minimal detectable difference for ĲVሶ O2P, e.g. for use in comparative and ϱϯϬ 

interventional studies, from ~5 s to ~6 s. The data shown in Table 3 can be used to inform ϱϯϭ 

such decisions. ϱϯϮ 

 ϱϯϯ 

Our 4-bout data collection recommendation is only applicable to data that have similar ϱϯϰ 

breath-by-breath fluctuation characteristics as the data produced in our simulation studies (68 ϱϯϱ 

± 26 ml.min-1). Nevertheless, our simulated transitions mimicked very well typical ϱϯϲ 

observations using many standard gas exchange measurement approaches. Our findings ϱϯϳ 

indicate that in order to provide more precise estimations of ĲVሶ O2P from experimental data, ϱϯϴ 

strategies should focus not on averaging additional exercise bouts, but on increasing the ϱϯϵ 

signal-to-noise ratio in the collected data. These findings echo those of Lamarra et al. (32), ϱϰϬ 

who also used a Monte Carlo approach to show that increasing Vሶ O2P noise, expressed as a ϱϰϭ 



Ϯϱ 
 

percentage of the steady-state change in the Vሶ O2P response, increased the confidence ϱϰϮ 

intervals for the estimated fit parameters (1ࢥ duration and 2ࢥ ĲVሶ O2P). We showed that ϱϰϯ 

approaches that increase the signal-to-noise ratio have a substantial effect on precision, but ϱϰϰ 

little effect on accuracy, of kinetic estimates. These fluctuations are expected to arise from ϱϰϱ 

the interaction of a number of variables, not least the breath-by-breath variations in tidal ϱϰϲ 

volume and pulmonary blood flow, within which fluctuation and timing of stroke volume and ϱϰϳ 

thoracic pressure changes may variably sum or counteract one another to give rise to ϱϰϴ 

fluctuations in gas exchange. Therefore, algorithms for breath-by-breath gas exchange ϱϰϵ 

measurement that reduce the inherent fluctuation of the data, e.g. by accounting for changes ϱϱϬ 

in alveolar gas storage, or by re-characterizing a breath to be equal to a tidal breathing cycle ϱϱϭ 

that returns to an identical end-expiratory lung volume (6, 13), would be expected to further ϱϱϮ 

reduce the testing burden while maintaining optimal precision and accuracy of kinetic ϱϱϯ 

estimates. ϱϱϰ 

 ϱϱϱ 

Data processing: Although there are many possible methods for data averaging, the four ϱϱϲ 

techniques examined in this study (interpolation, binning, stacking, and separate fitting) ϱϱϳ 

provide a cross-section of the most commonly used methods. Although we have identified ϱϱϴ 

linear interpolation followed by ensemble averaging as the optimal method for averaging data ϱϱϵ 

[similar to the findings of Keir et al. (26)], both the breath binning and stacking methods ϱϲϬ 

produced quantitatively similar estimates of ĲVሶ O2P. As such, researchers who have ϱϲϭ 

previously used, or currently use, any of these methods should be confident that their choice ϱϲϮ 

of averaging procedure does not unduly influence their estimates of ĲVሶ O2P. While averaging ϱϲϯ 

of the exponential fit parameters from separate bouts of exercise offers the simplicity of ϱϲϰ 

avoiding potentially complicated and assumption-laden averaging procedures on large ϱϲϱ 

datasets, ĲVሶ O2P estimation using this averaging method reduced accuracy and markedly ϱϲϲ 



Ϯϲ 
 

lessened the confidence in the derived parameter estimates and should therefore be avoided. ϱϲϳ 

This likely arose because the influence on ĲVሶ O2P of breath-by-breath fluctuations is non-ϱϲϴ 

linear: large ‘noise’ in the early transient has more influence on ĲVሶ O2P than the same ‘noise’ ϱϲϵ 

in the later transient (57). Therefore, data handling approaches that first reduce breath-by-ϱϳϬ 

breath fluctuations and then characterize the fit (rather than the other way around) appear to ϱϳϭ 

result in more robust parameterization of the kinetics. ϱϳϮ 

 ϱϳϯ 

Another cautionary note is evident in our data for the interpolation method of averaging. This ϱϳϰ 

method appears to return a substantially narrowed confidence interval for ĲVሶ O2P estimation ϱϳϱ 

(Figure 3B, 7E and 8E). However, because the confidence interval is dependent on the ϱϳϲ 

number of samples (i.e. breaths), interpolation artificially increases the sampling frequency of ϱϳϳ 

the original data. The interpolation method therefore returns an artificial confidence interval ϱϳϴ 

that is more dependent on the characteristics of the interpolation than on the original ϱϳϵ 

measurements (21). The true confidence interval of parameter estimation for the interpolation ϱϴϬ 

method is likely better reflected in the binned and stacked methods (Fig 3B), which were ϱϴϭ 

substantially similar across all simulations. ϱϴϮ 

 ϱϴϯ 

Each data processing method investigated resulted in a similar degree of accuracy around the ϱϴϰ 

true value, and therefore approaches to data processing should focus on attempts to optimize ϱϴϱ 

the confidence of parameter estimation. As with data collection, valid and appropriate ϱϴϲ 

processing methods that reduce breath-by-breath fluctuations in the data will result in ϱϴϳ 

increased confidence. ϱϴϴ 

 ϱϴϵ 

Data fitting: We found that empirical time removal methods to isolate the 2ࢥ data for fitting ϱϵϬ 

resulted in significantly more accurate and precise estimations of ĲVሶ O2P than either a bi-ϱϵϭ 



Ϯϳ 
 

exponential fit, or statistical and time-derivative methods to identify the 2-1ࢥ transition ϱϵϮ 

followed by a mono-exponential fit to the isolated 2ࢥ data. The majority of published ϱϵϯ 

experimental studies that have quantified the kinetics of Vሶ O2P have used such empirical time ϱϵϰ 

removal methods (usually removing the first 20 s of data), and so researchers have ϱϵϱ 

historically used the 2ࢥ isolation method that we have now shown provides the most accurate ϱϵϲ 

and precise estimations of ĲVሶ O2P. Furthermore, this empirical time removal approach is far ϱϵϳ 

simpler to implement than the bi-exponential, statistical or time-derivative methods. Previous ϱϵϴ 

recommendations have been to remove at least 20 s of data from the beginning of the dataset ϱϵϵ 

in order to completely remove 1ࢥ data, even though some data from the start of 2ࢥ may also ϲϬϬ 

be removed (7, 57). However, our results suggest that, somewhat counter-intuitively, it is ϲϬϭ 

better to include a small amount of data from the end of 1ࢥ in the fitting procedure than ϲϬϮ 

exclude data from the start of 2ࢥ. This is seen in Figs. 5B and 6B, where 1ࢥ amplitude and 2ࢥ ϲϬϯ 

ĲVሶ O2P estimation for exercise from unloaded pedaling was more precise and accurate when ϲϬϰ 

the initial 15 s of data were removed than when the initial 25 s of data were removed (the true ϲϬϱ 

 transition for these data occurred at 19.5 ± 3.3 s). We suggest that this is because the ϲϬϲ 2-1ࢥ

inherent fluctuations in the Vሶ O2P data means that including a small amount of 1ࢥ data in the ϲϬϳ 

fit has minimal effect on the resultant 1ࢥ amplitude and 2ࢥ ĲVሶ O2P estimation. The rapidly ϲϬϴ 

changing initial portion of 2ࢥ data (which changes rapidly with respect to the breath-by-ϲϬϵ 

breath fluctuations at the end of 1ࢥ) is key to obtaining accurate and precise estimations. ϲϭϬ 

Qualitatively similar results were found for exercise that started from a raised work rate, but ϲϭϭ 

here the best ĲVሶ O2P estimation was with the removal of the first 15 s of data (Fig. 8F). This is ϲϭϮ 

likely due to the increased baseline work rate elevating cardiac output, which reduces muscle-ϲϭϯ 

to-lung blood transit times and, therefore, the cardiodynamic 1ࢥ duration. Nevertheless, the ϲϭϰ 

accuracy and precision of ĲVሶ O2P estimation was statistically similar for WR-WR transitions ϲϭϱ 

when either 15 s or 20 s of data were removed. We therefore recommend that researchers err ϲϭϲ 



Ϯϴ 
 

on the side of caution when isolating 2ࢥ Vሶ O2P data and remove no more than 20 s of data to ϲϭϳ 

optimize ĲVሶ O2P estimation.  ϲϭϴ 

 ϲϭϵ 

Implications for interpretation of 2׋ VሶO2P kinetics: There are two significant findings from ϲϮϬ 

our simulations that have implications for interpretation of 2ࢥ Vሶ O2P kinetics. Firstly, we ϲϮϭ 

found that, on average, 2ࢥ ĲVሶ O2P was overestimated in all the data collection and handling ϲϮϮ 

strategies investigated. This overestimation can be explained, at least in part, by the two-ϲϮϯ 

phase Vሶ O2P response and the non-exponentiality of 2ࢥ (25 ,8 ,5 ,3; cf. 18). Figure 9 shows ϲϮϰ 

the effects on 2ࢥ ĲVሶ O2P estimation when the mono-exponential Equation (2) is fit to clean ϲϮϱ 

simulation output data from different points throughout the Vሶ O2P response. If the mono-ϲϮϲ 

exponential fit is started during 1ࢥ (i.e. from any point before 19.4 s in this example) then the ϲϮϳ 

estimated 2ࢥ ĲVሶ O2P is larger than true, due to the inclusion of some 1ࢥ data in the fit. If the ϲϮϴ 

fit is started after the 2-1ࢥ transition, then the 2ࢥ ĲVሶ O2P estimation is also larger than true, ϲϮϵ 

becoming larger as the fit is started further from the 2-1ࢥ transition, because the underlying ϲϯϬ 

 response is not a pure mono-exponential; it initially increases more rapidly than a mono-ϲϯϭ 2ࢥ

exponential before slowing down as it reaches the steady-state (8). Only a fit that starts ϲϯϮ 

exactly at the 2-1ࢥ transition returns the true 2ࢥ ĲVሶ O2P. For these clean simulated data, ϲϯϯ 

inaccurate identification of the 2-1ࢥ transition by just 2 s can result in a 2ࢥ ĲVሶ O2P estimation ϲϯϰ 

that is 1.6 s larger than the true value; the influence of noise in experimentally-obtained data ϲϯϱ 

may exacerbate this error. Because of these effects on 2ࢥ ĲVሶ O2P estimation, when using the ϲϯϲ 

identified optimal data processing and fitting procedures we were only able to estimate 2ࢥ ϲϯϳ 

ĲVሶ O2P to within 2 s of true in 47% of the 104 UP-WR simulations, and in 62% of the 104 ϲϯϴ 

WR-WR simulations [2 s represents an effect size of ~10% for a healthy young human, ϲϯϵ 

where ĲVሶ O2P is typically ~20 s (45)]. Extrapolating this analysis further, we calculated the ϲϰϬ 

95% confidence limits of our ĲVሶ O2P estimate distributions (as shown in Figs. 7B and D, and ϲϰϭ 
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Figs. 8B, D and F); ĲVሶ O2P estimates from outside this confidence interval are statistically ϲϰϮ 

likely to come from a different distribution/population. These 95% confidence limits, for ϲϰϯ 

ĲVሶ O2P estimates using our predetermined optimal data processing and fitting procedures, are ϲϰϰ 

± 4.08 s and ± 4.51 s from the mean, for transitions from unloaded pedaling or a raised work ϲϰϱ 

rate respectively (Table 3). We therefore propose that the minimally important difference for ϲϰϲ 

a significant change in ĲVሶ O2P, e.g. during interventional and comparative studies, should be ϲϰϳ 

5.0 s. If the number of averaged bouts is reduced from the optimum of four, this minimally ϲϰϴ 

important difference should be increased in accordance with the confidence limits shown in ϲϰϵ 

Table 3. ϲϱϬ 

 ϲϱϭ 

The second implication for interpretation of ĲVሶ O2P from our data is to question whether an ϲϱϮ 

exponential fit should be used at all. We have previously shown that the dynamics and ϲϱϯ 

mixing of circulatory compartments between muscle and lung distort the approximately-ϲϱϰ 

exponential muscle Vሶ O2 kinetics into a non-exponential 2ࢥ Vሶ O2P response at the lung (8). A ϲϱϱ 

recent meta-analysis of available data measuring both muscle and lung Vሶ O2 kinetics during ϲϱϲ 

cycling and knee extension exercise demonstrates a wide variability of ĲVሶ O2 between muscle ϲϱϳ 

and lung (27). Some have proposed alternative methods to assess kinetic responses, such as ϲϱϴ 

the time to steady state (45). However, such approaches have been demonstrated to be both ϲϱϵ 

inherently more variable than relying on a method that maximizes the utility of available non-ϲϲϬ 

steady-state data (24, 47) and is conceptually flawed on the basis that the time to steady state ϲϲϭ 

of a non-exponential process is continually changing (8). Alternative approaches to kinetics ϲϲϮ 

estimation using, for example, pseudorandom binary sequence exercise testing and time-ϲϲϯ 

series analysis may allow for muscle ĲVሶ O2 to be resolved by alternative methods (24, 31). It ϲϲϰ 

remains to be determined whether such methods provide increased accuracy for non-invasive ϲϲϱ 

estimation of muscle Vሶ O2 kinetic responses compared with 2ࢥ ĲVሶ O2 estimation by repeated ϲϲϲ 



ϯϬ 
 

step transitions. Our simulations here demonstrate that a mono-exponential fit to 2ࢥ Vሶ O2P is a ϲϲϳ 

useful and concise method for accurately describing the overall kinetics of the exponential-ϲϲϴ 

like pulmonary 2ࢥ Vሶ O2 kinetic response. ϲϲϵ 

 ϲϳϬ 

Limitations: The means and SDs of the parameters used in our Monte Carlo simulations were ϲϳϭ 

representative of healthy young adults (8, 22). Quantitatively different results may be found ϲϳϮ 

for other populations with different 2ࢥ Vሶ O2P kinetic parameters, such as the elderly or heart ϲϳϯ 

failure patients who have slowed Vሶ O2P kinetics (9, 39). Nevertheless, our main qualitative ϲϳϰ 

findings will still be pertinent when collecting, processing and fitting Vሶ O2P data from these ϲϳϱ 

other populations. In particular, our main point regarding optimal data collection and ϲϳϲ 

processing methods – that methods should be employed to minimize breath-by-breath ϲϳϳ 

fluctuations and that it is essential to include all 2ࢥ Vሶ O2P data in the fit – will more than ϲϳϴ 

likely stand for these populations, as it is still expected that the (potentially slowed) initial ϲϳϵ 

portion of 2ࢥ Vሶ O2P will change rapidly with respect to the noise in the data at the end of 1ࢥ. ϲϴϬ 

 ϲϴϭ 

For populations where individuals are expected to have a reduced cardiac output and slowed ϲϴϮ 

cardiac output kinetics, and a concomitant prolongation of 1ࢥ duration compared to young ϲϴϯ 

healthy adults [such as heart failure patients (52)], the use of a bi-exponential fit, or statistical ϲϴϰ 

or derivative methods, to automatically identify the 2-1ࢥ transition is inherently attractive. ϲϴϱ 

However, our results highlight that the noise in the Vሶ O2P data limit the ability of these ϲϴϲ 

methods to correctly identify the 2-1ࢥ transition, reducing the accuracy and precision of ϲϴϳ 

subsequent ĲVሶ O2P estimation. In this study, the empirical time-removal methods (removal of ϲϴϴ 

the first 20 s of data for exercise from unloaded pedaling, or 15 s if exercise was started from ϲϴϵ 

a raised baseline) were the only methods that gave statistically similar ĲVሶ O2P estimates to ϲϵϬ 

control fits, despite 1ࢥ duration ranging from 7 s to 39 s across all simulations. It remains to ϲϵϭ 
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be determined whether removal of the first 20 s of data results in the most accurate and ϲϵϮ 

precise ĲVሶ O2P estimations for populations where 1ࢥ is prolonged, but it may be necessary to ϲϵϯ 

compensate for the prolonged 1ࢥ duration when removing 1ࢥ data from the fitting window. ϲϵϰ 

 ϲϵϱ 

Only on-transient exercise in the moderate intensity domain was simulated in this study. It is ϲϵϲ 

still to be determined whether the identified optimal fitting procedures will produce the most ϲϵϳ 

accurate and precise ĲVሶ O2P estimations for on-transient data in higher exercise intensity ϲϵϴ 

domains where fitting can be complicated by the emergence of a Vሶ O2P slow component (40, ϲϵϵ 

45). Similarly, the applicability of our identified optimal procedures for off-transient data, ϳϬϬ 

where cardiac output is expected to be initially elevated and so produce a much shorter 1ࢥ, ϳϬϭ 

potentially influencing the amount of data that should be removed before fitting, is still to be ϳϬϮ 

determined. ϳϬϯ 

 ϳϬϰ 

CONCLUSIONS ϳϬϱ 

 ϳϬϲ 

We used a validated computational model together with a Monte Carlo approach to assess the ϳϬϳ 

accuracy and the precision of various averaging and fitting procedures on the estimation of ϳϬϴ 

Vሶ O2P kinetics. Our analyses showed that four bouts of exercise was the optimal number to ϳϬϵ 

average in order to increase accuracy and precision of ĲVሶ O2P estimation. Choice of averaging ϳϭϬ 

strategy was not so critical, with interpolation, bin averaging and stacking all giving ϳϭϭ 

quantitatively similar ĲVሶ O2P estimates. The interpolation, binning and stacking methods did, ϳϭϮ 

however, allow more confident parameter estimates when compared to analyzing repeated ϳϭϯ 

bouts separately. Data collection and processing strategies should therefore focus on ϳϭϰ 

increasing the signal-to-noise ratio in the collected data. Contradictory to previous advice that ϳϭϱ 

suggests removal of at least 20 s of data to isolate 2ࢥ Vሶ O2P before fitting, our analyses show ϳϭϲ 
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that data fitting procedures should remove no more than 20 s of data, as this provided the ϳϭϳ 

most precise and accurate estimates of ĲVሶ O2P. Our analyses showed the widely used standard ϳϭϴ 

approaches for data collection, processing and fitting, while often different between ϳϭϵ 

laboratories, did not have a substantial effect on the quantitation of 2ࢥ Vሶ O2P kinetics per se. ϳϮϬ 

However, we found that even this optimal procedure yielded ĲVሶ O2P estimates that were ϳϮϭ 

within ± 2 s of true in only 47-62% of simulations. Thus, we identified the minimally ϳϮϮ 

important difference for ĲVሶ O2P for use in interventional and comparative studies to be 5 s.ϳϮϯ 
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Table 1. Distributions of model input parameters for Monte Carlo simulations. See Benson et ϴϵϴ 

al. (8) for a detailed description of the model. Gaussian distributions were calculated from the ϴϵϵ 

data of Grassi et al. (22) and Benson et al. (8). Linear distributions were set for this study. ϵϬϬ 

Parameters with Gaussian distributions: Mean SD 
Arterial O2 concentration (ml O2/100 ml blood) 20.0 1.00 

Total venous volume (l) a 3.07 0.61 

Baseline Vሶ O2P (l.min-1) 0.87 0.08 

Fraction of baseline Vሶ O2P from muscle b 0.57 0.11 

Baseline Qሶ tot (l.min-1) 8.89 0.44 

Fraction of baseline Qሶ tot to muscle b 0.57 0.08 οVሶ O2P οWΤ  (ml.min-1.W-1) 9.47 0.85 οVሶ O2m οWΤ  (ml.min-1.W-1) 11.04 1.36 οQሶ m οVሶ O2mΤ  6.03 0.53 

ĲQሶ m ĲVሶ O2mΤ  c 1.08 0.08 
Parameters with linear distributions: Minimum Maximum 

ĲVሶ O2m (s) 15.0 40.0 

Baseline WR (for WR-WR simulations only; W) d 0.0 100.0 

ǻWR (W) e 50.0 150.0 

Parameters with other dependencies: οVሶ O2b οWΤ ൌ οVሶ O2P οWΤ െ οVሶ O2m οWΤ    οQሶ b οVሶ O2bΤ ൌ οQሶ m οVሶ O2mΤ    

ĲVሶ O2b ൌ ĲVሶ O2m   

ĲQሶ b ൌ ĲQሶ m   

Qሶ  denotes blood flow (with Qሶ tot denoting cardiac output). The subscript ‘m’ denotes muscle ϵϬϭ 
compartment, the subscript ‘b’ denotes rest-of-body compartment. Baseline is unloaded ϵϬϮ 
pedaling (i.e. 0 W). aThe ratio of the muscle, body and mixed venous volumes was ϵϬϯ 
maintained as in the default model; only the total venous volume was altered. bThe remainder ϵϬϰ 
of the baseline Vሶ O2P (and Qሶ tot) comes from (and goes to) the body compartment. cTo avoid ϵϬϱ 

kinetic mismatch between muscle Qሶ  and Vሶ O2 (as occurs with slow Qሶ m but fast Vሶ O2m ϵϬϲ 
kinetics, that result in muscle O2 concentration dropping to zero), we first set the absolute ϵϬϳ 
ĲVሶ O2m value, and then constrained ĲQሶ m to be similar to ĲVሶ O2m using this ratio. dBaseline WR ϵϬϴ 
for UP-WR simulations was fixed at 0 W. eǻWR was constrained to be positive, and the final ϵϬϵ 



ϰϮ 
 

WR in the WR-WR simulations (i.e. baseline WR + ǻWR) was constrained to be no greater ϵϭϬ 
than 150 W.  ϵϭϭ 



ϰϯ 
 

Table 2. Monte Carlo simulation input WR and output Vሶ O2P characteristics ϵϭϮ 

 Mean SD Range 

UP-WR simulations (n = 104):    
Baseline WR (W) 0.0 0.0 0.0 – 0.0 

ǻWR (W) * 97.3 28.4 50.0 – 150.0

Vሶ O2P 1ࢥ duration (s) 19.8 3.4 10.8 – 31.1 

Vሶ O2P 1ࢥ amplitude (% of steady-state response) 28.2 8.3 9.4 – 71.8 

ĲVሶ 2ࢥ O2P (s) 22.4 7.2 7.3 – 38.8 

WR-WR simulations (n = 104):    
Baseline WR (W) 47.3 28.6 0.0 – 100.0 

ǻWR (W) * 75.6 22.0 50.0 – 150.0

Vሶ O2P 1ࢥ duration (s) 15.9 3.4 7.4 – 29.4 

Vሶ O2P 1ࢥ amplitude (% of steady-state response) 28.9 7.7 11.0 – 63.3 

ĲVሶ 2ࢥ O2P (s) 25.0 7.2 8.4 – 40.3 
*ǻWR was constrained to be positive and at least 50 W, with the final WR (i.e. ǻWR in the ϵϭϯ 
UP-WR simulations, and baseline WR + ǻWR in the WR-WR simulations) constrained to be ϵϭϰ 
no greater than 150 W. ϵϭϱ 
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Table 3. Phase 2 ĲVሶ O2P estimates and confidence intervals for 1-4 averaged UP-WR and WR-WR exercise bouts. Averaging was by linear ϵϭϲ 

interpolation to 1-s intervals before ensemble averaging; 2ࢥ isolation was by removal of the first 20 s or 15 s of data for UP-WR and WR-WR ϵϭϳ 

protocols, respectively. ϵϭϴ 

 Number of 
averaged bouts 

ĲVሶ 2ࢥ O2P estimation: Percentage of values 
within 2 s of true 

95% confidence limits 
(s from mean) Mean (s from true) SD (s) 

UP-WR simulations (n = 104): 1 2.21 4.21 38.27 8.25 

 2 2.03 2.90 43.32 5.68 

 3 2.00 2.39 45.00 4.68 

 4 1.97 2.08 46.50 4.08 

WR-WR simulations (n = 104): 1 1.33 4.81 41.82 9.43 

 2 1.15 3.24 51.61 6.35 

 3 1.07 2.66 57.52 5.21 

 4 1.04 2.30 61.91 4.51 
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FIGURE LEGENDS ϵϭϵ 
 ϵϮϬ 

Fig. 1. Example of data production and processing during a single Monte Carlo iteration from ϵϮϭ 

unloaded pedaling. A: for each iteration, model parameters were varied stochastically (see ϵϮϮ 

Table 1) and a clean model Vሶ O2P trace with known kinetic parameters (e.g. 1ࢥ duration and ϵϮϯ 

amplitude, and 2ࢥ ĲVሶ O2P) was produced. Note that this clean model trace varied for each of ϵϮϰ 

the 104 Monte Carlo iterations. B: the single clean trace was used to produce 10 noisy ϵϮϱ 

“experimental” Vሶ O2P traces (filled circles) with the sampling (breathing) and Vሶ O2P noise ϵϮϲ 

characteristics seen in experimental data. Here, four examples are shown. Although each of ϵϮϳ 

the 10 noisy datasets is different, they have identical underlying kinetic parameters (known ϵϮϴ 

from the clean model trace shown in panel A, and shown in these panels as dashed lines). The ϵϮϵ 

noisy Vሶ O2P datasets were processed in one of four ways: C: interpolation followed by ϵϯϬ 

ensemble averaging; D: bin averaging; E: stacking of datasets; and fitting of the separate ϵϯϭ 

traces before averaging of the resultant fit parameters (not shown). Fits to these processed ϵϯϮ 

data were compared to the true underlying kinetic parameters (known from the clean model ϵϯϯ 

trace shown in panel A, and shown in these panels as dashed lines). ϵϯϰ 

 ϵϯϱ 

Fig 2. Effects of the number of averaged bouts on the precision and accuracy of ĲVሶ O2P ϵϯϲ 

estimation, using control fits (i.e. using the known 2ࢥ data) to interpolated and ensemble ϵϯϳ 

averaged UP-WR data. A: mean ± SD difference of the estimated ĲVሶ O2P from the true value, ϵϯϴ 

for 1-10 averaged bouts. Horizontal lines show zero difference (solid) ± 2 s (dashed) from ϵϯϵ 

true.  n = 104 in each case. * = P < 0.05 vs. 10 averaged bouts (ANOVA). B: distributions of ϵϰϬ 

the difference between estimated and true ĲVሶ O2P for 1, 4 and 10 averaged bouts. Vertical ϵϰϭ 

lines show zero difference (solid) ± 2 s (dashed) from true. n = 104 in each case. C: ϵϰϮ 
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percentages of the 104 ĲVሶ O2P estimates within ± 2 s of true, for 1-10 averaged bouts. The ϵϰϯ 

solid line is an exponential fit to the data. ϵϰϰ 

 ϵϰϱ 

Fig 3. Effects of averaging method on the precision and accuracy of ĲVሶ O2P estimation, using ϵϰϲ 

control fits (i.e. using the known 2ࢥ data) to four averaged UP-WR bouts. A: distributions of ϵϰϳ 

the difference between estimated and true ĲVሶ O2P for the four different averaging methods. ϵϰϴ 

Vertical lines show zero difference (solid) ± 2 s (dashed) from true. n = 104 in each case. B: ϵϰϵ 

distributions of the confidence interval of the fitted Ĳ for the four different averaging ϵϱϬ 

methods. n = 104 in each case. ϵϱϭ 

 ϵϱϮ 

Fig 4. Effects of fitting methods on the precision and accuracy of 2-1ࢥ transition ϵϱϯ 

identification. Shown are distributions of the difference between the estimated and true 2-1ࢥ ϵϱϰ 

transition for the bi-exponential fit (A), and empirical (B), statistical (C) and derivative (D) 2ࢥ ϵϱϱ 

isolation methods. For all panels, vertical lines show zero difference (solid) ± 2 breaths ϵϱϲ 

(dashed) from true, and n = 104 in each distribution. Note the different scales on the ϵϱϳ 

abscissas. ϵϱϴ 

 ϵϱϵ 

Fig 5. Effects of fitting methods on the precision and accuracy of 1ࢥ amplitude estimation. ϵϲϬ 

Shown are distributions of the difference between the estimated and true 1ࢥ amplitude for the ϵϲϭ 

bi-exponential fit (A), and empirical (B), statistical (C) and derivative (D) 2ࢥ isolation ϵϲϮ 

methods. The control fit distribution (i.e. using the known 2ࢥ data) is shown as a dashed ϵϲϯ 

curve in each panel. For all panels, vertical lines show zero difference (solid) ± 5% (dashed) ϵϲϰ 

from true, and n = 104 in each distribution. Note the different scales on the abscissas. ϵϲϱ 

 ϵϲϲ 



ϰϳ 
 

Fig 6. Effects of fitting methods on the precision and accuracy of 2ࢥ ĲVሶ O2P estimation. ϵϲϳ 

Shown are distributions of the difference between the estimated and true 2ࢥ ĲVሶ O2P for the bi-ϵϲϴ 

exponential fit (A), and empirical (B), statistical (C) and derivative (D) 2ࢥ isolation methods. ϵϲϵ 

The control fit distribution (i.e. using the known 2ࢥ data) is shown as a dashed curve in each ϵϳϬ 

panel. For all panels, vertical lines show zero difference (solid) ± 2 s (dashed) from true, and ϵϳϭ 

n = 104 in each distribution. Note the different scales on the abscissas. ϵϳϮ 

 ϵϳϯ 

Fig 7. Precision and accuracy of ĲVሶ O2P estimation for UP-WR bouts when removal of the ϵϳϰ 

first 20 s of data is used to isolate 2ࢥ. A-C: effects of the number of averaged bouts, where ϵϳϱ 

data processing is by interpolation and ensemble averaging (see Fig. 2 for explanations). D-E: ϵϳϲ 

effects of averaging method on ĲVሶ O2P estimation and the associated confidence interval, ϵϳϳ 

using four averaged bouts (see Fig. 3 for explanations). ϵϳϴ 

 ϵϳϵ 

Fig 8. Precision and accuracy of ĲVሶ O2P estimation for WR-WR bouts. A-C: effects of the ϵϴϬ 

number of averaged bouts, where data processing is by interpolation and ensemble averaging ϵϴϭ 

and removal of the first 15 s of data is used to isolate 2ࢥ (see Fig. 2 for explanations). D-E: ϵϴϮ 

effects of averaging method on ĲVሶ O2P estimation and the associated confidence interval, ϵϴϯ 

using four bouts and where removal of the first 15 s of data is used to isolate 2ࢥ (see Fig. 3 ϵϴϰ 

for explanations). F: effects of empirical 2ࢥ isolation methods, using four interpolated and ϵϴϱ 

ensemble averaged bouts (see Fig. 4 for explanations). ϵϴϲ 

 ϵϴϳ 

Fig. 9. A: Simulated Vሶ O2P response to a 100 W UP-WR step using default model parameters ϵϴϴ 

[see (8) for details]. The 2-1ࢥ transition occurs at 19.4 s and the true 2ࢥ ĲVሶ O2P is 16.3 s. B: ϵϴϵ 

Effects on ĲVሶ O2P estimation of fitting the mono-exponential Equation (2) starting from ϵϵϬ 
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different points throughout the clean simulated Vሶ O2P response. The vertical dashed line ϵϵϭ 

shows the time of the 2-1ࢥ transition; the horizontal dashed line shows the true 2ࢥ ĲVሶ O2P. ϵϵϮ 
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