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ABSTRACT

Phase 2 pulmonary oxygen uptake kinetics (¢2 TVO,p) reflect muscle oxygen consumption
dynamics and are sensitive to changes in state of training or health. This study identified an
unbiased method for data collection, handling and fitting to optimize VO,p kinetics
estimation. A validated computational model of VO,p kinetics and a Monte Carlo approach
simulated 2 x 10° moderate intensity transitions using a distribution of metabolic and
circulatory parameters spanning normal health. Effects of averaging (interpolation, binning,
stacking or separate fitting of up to 10 transitions) and fitting procedures (bi-exponential
fitting, or ¢2 isolation by time removal, statistical or derivative methods followed by mono-
exponential fitting) on accuracy and precision of VO, kinetics estimation were assessed. The
optimal strategy to maximize accuracy and precision of TVO,p estimation was 1-s
interpolation of 4 bouts, ensemble averaged, with the first 20 s of exercise data removed.
Contradictory to previous advice, we found optimal fitting procedures removed no more than
20 s of ¢1 data. Averaging method was less critical: interpolation, binning and stacking gave
similar results, each with greater accuracy compared to analyzing repeated bouts separately.
The optimal procedure resulted in $2 TVO,p estimates for transitions from an unloaded or
loaded baseline that averaged 1.97 + 2.08 and 1.04 + 2.30 s from true, but were within 2 s of
true in only 47-62% of simulations. Optimized 95% confidence intervals for tVO,p ranged
from 4.08-4.51 s, suggesting a minimally important difference of ~5 s to determine

significant changes in TVO,p during interventional and comparative studies.

NEW & NOTEWORTHY
We identified an unbiased method to maximize accuracy and precision of oxygen uptake
kinetics (tVO,p) estimation. The optimum number of bouts to average was four;

interpolation, bin and stacking averaging methods gave similar results. Contradictory to
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previous advice, we found that optimal fitting procedures removed no more than 20 s of
phase 1 data. Our data suggest a minimally important difference of ~5 s to determine

significant changes in TVO,p during interventional and comparative studies.

KEYWORDS

Oxygen uptake kinetics; Accuracy and precision; Data handling; Computational modeling.
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INTRODUCTION

At the onset of constant power exercise below the lactate threshold (LT) in humans,
mitochondrial oxidative phosphorylation and, subsequently, muscle oxygen uptake (VO,,,) in
activated muscle increase in a manner that is an approximate first order exponential in vivo
(2, 22, 48; cf. 30). The kinetics of phase (¢) 2 of the pulmonary VO, (VO,p), characterized
by the response time constant (t) from repeated breath-by-breath gas exchange
measurements, are commonly used to infer VO,,, kinetics and provide a non-invasive tool to
investigate the control of exercise energetics (27, 41, 46). Fast ¢2 VO,p kinetics reflect
effective cardiopulmonary and neuromuscular integration, and are associated with high
endurance exercise performance (29, 38, 41), whereas ¢2 VO, kinetics are slowed in the
elderly (1) and with chronic disease (12, 23, 40, 46, 51). In addition, $2 VO,p kinetics are
sensitive to interventions that influence blood flow distribution and muscle O, delivery,
muscle metabolism, or muscle recruitment (41, 46), making them a useful prognosticator (49)
and method for evaluation of therapeutic benefit (44). Furthermore, the kinetics of ¢1 of the
VO,p response (¢1 duration and amplitude) are clinically discriminatory (50) and sensitive to
age (37). Thus, the strong link between VO,p kinetics and state of health provides the basis
for an inherently attractive, non-invasive and effort-independent method to characterize the

efficacy of the integrated physiologic systems response to exercise.

While there are general guidelines for characterizing VO,p kinetics in terms of data
collection, processing and fitting procedures (56), a range of proposals exist for each of these
steps (e.g. 10, 14, 19, 20, 26, 33, 39, 58). However, a systematic quantification of the effects

of these different procedures on the precision and accuracy of the final ¢1 duration and
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amplitude and ¢2 TVO,p characterization, as well as a standardization of these procedures, is

lacking.

This study therefore aimed to identify an unbiased (i.e. free from human error) method for
VO,p data collection, handling and fitting that allows the most accurate and precise
estimation of VO,p kinetics. We identified this optimal criterion by systematically
determining the influences of a range of common and uncommon collection, averaging and
fitting strategies on both the precision and accuracy of ¢p1 duration and amplitude and ¢2
TVO,p estimation, using a validated cardiopulmonary simulation of exercise gas exchange (8)

and a Monte Carlo approach.

THEORETICAL CONSIDERATIONS

The process linking VO,p data collection in the laboratory or clinic, to kinetics
characterization, is typically undertaken in three distinct steps: (i) data collection, (ii) data

processing, and (iii) data fitting.

Step 1 —data collection: Strategies employed in this step include identification of the optimal
algorithms for calculating breath-by-breath gas exchange to improve signal-to-noise for
kinetic fitting (6, 13, 14, 55). Strategies to improve primary VO,p data also include the
repetition of identical bouts of exercise with the intention of combining and averaging those
data in the data processing step (Fig. 1B) (10, 26, 33, 57). The breath-by-breath fluctuations
(also referred to as “noise”) inherent in any VO,p measurement are uncorrelated (33) and
have a Gaussian distribution in adults (although not in children; 42) with the standard

deviation (SD) of this distribution ranging from approximately 30 to 110 ml.min™ (33, 47),
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independent of metabolic rate (33). What is less clear, however, is how different signal-to-
noise ratios (or, analogously, the number of combined exercise bouts) affect VO,p kinetics
estimation and, therefore, whether there is an optimal number of exercise bouts required to

estimate VO,p kinetics to a given level of confidence.

Step 2 — data processing: After the removal of outlying breaths generated by swallows or
coughs or other ‘mistriggers’ of the breath identification algorithms, and unrelated to tidal
breathing [typically those breaths more than 3 or 4 SDs from the local mean (33, 57)], the
second step involves averaging of the data collected from multiple exercise bouts to obtain a
single (processed) VO,p signal with a high signal-to-noise ratio, prior to kinetic
characterization. Several averaging techniques are employed (Fig. 1C-E), the most widely-
used involving some form of interpolation and/or averaging. Linear interpolation of data prior
to averaging (commonly to 1 s intervals) is necessary to normalize gas exchange sampling
frequency, from the non-uniform breath-by-breath sampling, and therefore ensure equal
weighting of data among repeated trials (Fig. 1C) (57). Averaging may be in the form of post-
interpolation ensemble averaging (56), or by arranging un-interpolated data from all bouts in
time (10) before averaging the combined breaths into bins whose size depends on the number
of averaged bouts (38) or time (9, 26) (Fig. 1D). This “binning” approach to averaging, while
improving the signal-to-noise ratio, may help to maintain the density of the data close to that
at which it was collected (i.e. breathing frequency), and improve the validity of the estimated
confidence intervals (21, 38). Despite the general popularity and acceptance of these
approaches, several other data processing methods warrant investigation. Recent simulation
studies have suggested that simple superimposition of all data from all bouts before fitting
can give accurate ¢2 TVO,p estimates, with the added simplicity of reducing the requirement

for complex data treatments (Fig. 1£) (19). Another alternative averaging approach, and
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maybe one that is statistically more robust (16) yet is not typically used for estimating VO,p
kinetics, involves fitting the individual exercise bouts then averaging the resulting fit
parameters (32). Kier et al. (26) showed that various stacking, interpolation, and bin or
ensemble averaging procedures had essentially no effect on the precision of subsequent
tVO,p estimation. It remains unclear, though, how averaging strategies affect both the
precision and accuracy of VO,p kinetics estimation in the context of different numbers of

averaged bouts and different approaches to fitting the data.

Step 3 — data fitting: The third step involves the fitting of the processed VO,p data in order to
obtain an estimate of the kinetics of VO,p. The VO,p response to a step change in work rate
in the moderate intensity domain consists of an initial “cardiodynamic” phase (largely a result
of increased blood flow through the pulmonary circulation; 56) followed by a “fundamental”
phase, the kinetics of which closely represent those of VO,,, in young healthy adults (Fig.
14) (22, 48). This entire response has been described mathematically using a piecewise bi-
exponential equation of the form
VOu(£) = VOyppase + A1[1 — 771 + H(£)A,y[1 — e=¢-TDI/72] |

t<TD, M

0,
H(t) = {1, t > TD,

where ¢ is time, VOzP’base is baseline VO,p, 4, and A4, are the amplitudes of the first and
second phases of the response, T; and T, are time constants associated with each phase of the
response, 7D is a time delay and H(¢) is the Heaviside step function (cf. 36). Generally, the
parameter of most interest is To, i.e. $2 T™VO,p. However, ¢1 is a complex physiological
construct, influenced by several processes including changes in mixed venous gas tensions,
pulmonary perfusion and end-expiratory lung volume, which sum to generate a response that

often deviates from a mono-exponential (15, 55). In addition, there are several practical
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difficulties when using Equation (1) to fit VO,p data: Phase 1 typically contains only a few
breaths (typically 5 or 6 in our simulations; see Fig. 1B), and fitting so few data points with
the first exponential term in Equation (1) drastically reduces the confidence of the parameter
estimations in that first exponential term. The influence of this potentially unconfident ¢1 fit
continues into ¢2, affecting 1, (¢2 TVO,p) estimation, particularly if the fit to the ¢1 data does
not reach a steady-state before ¢p2 begins (i.e. at ¢ = TD). Furthermore, most nonlinear least
squares algorithms used by data fitting software (the Levenberg-Marquardt algorithm being
the standard; 43) require the calculation of derivatives and cannot handle the Heaviside step
function in Equation (1); the parameters 4; and 1, are shared over, and influenced by the data
in, the two different sub-domains (¢t < 7D or ¢1, and ¢t > TD or ¢2), and the extents of the sub-
domains themselves are determined by the parameter 7D. As such, fitting Equation (1) is
difficult without custom implementation of alternative, potentially less robust, nonlinear
fitting algorithms such as direct search methods (35). As the parameter of most interest is the
time constant of ¢2, an alternative (and the most commonly used) approach is to isolate the
¢2 data then fit these data with a mono-exponential equation of the form

VO2p(t) = VOqppase + A[1 — e~ ETDI/T] )
Such a mono-exponential equation accurately describes the ¢2 VO,p response to moderate
intensity step exercise (4, 5) and can be handled by most nonlinear least squares algorithms.
If Equation (2) is used to fit the VO,p data and obtain an estimate of $2 TVO,p, it is necessary
to omit the ¢1 data from the fit. The most widely-used methods for removing ¢1 data are
empirically-derived time-removal methods, where “at least” the first 20 s of data from the
exercise transient are removed prior to fitting (7, 39, 54, 57). The rationale behind this
strategy is that, because ¢1 is expected to last less than 20 s and the ¢$2 VO,p response is
expected to be exponential, starting the fit from any given point past the ¢1-2 transition will

yield an identical time constant that represents the underlying ¢2 kinetics; whereas starting
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the fit from any point before the ¢1-2 transition will result in a larger (incorrect) time
constant for ¢2 (39, 54, 57). However, the ¢2 VO,p response is not truly exponential, but
rather is a non-linear distortion of a mono-exponential VO,,, response (3, 5, 8, 25; cf. 18).
Thus, contrary to TVO,,,, the TVO,p is not a “true” constant throughout the transient, and
fitting an exponential equation from different points in such a non-exponential ¢2 will yield
varying values for TVO,p; progressively larger values as the fit is started from later in ¢2 (cf.
8). Such behavior is suggested in the empirical results of Murias et al. (39) where TVO,p
becomes larger as the imposed exponential fit is started from later in the exercise transient, at
least in older adults. Although TVO,p is influenced by a complex interaction of circulatory
and gas exchange responses to exercise, and ¢2 VO,p is not quite exponential, a mono-
exponential fit of moderate intensity VO,p kinetics remains a useful, concise and effort-
independent method to characterize the integrated dynamic responsiveness of
cardiopulmonary and neuromuscular health. Nevertheless, it seems crucial that all data
contained in the ¢2 response, but none of the ¢1 data, are fitted in order to obtain the most
accurate characterization of VO,p kinetics (57). As such, accurate identification of the ¢1-2

transition is paramount.

When using the mono-exponential Equation (2) to fit VO,p data, human error in selecting the
®1-2 transition can lead to an unintended bias in TVO,p estimation, and so an ideal, unbiased
method for isolating ¢2 data for such a fit would be based on either (i) identification of some
consistent time period (rather than leaving the choice to the individual researcher) at the start
of exercise during which data should be removed, or (ii) some other information in the data

itself that could algorithmically identify the ¢1-2 transition.
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Rather than employing empirical time-removal methods, the abrupt change in VO,p at the
®1-2 transition may be identifiable from the VO,p data using either the peak time-derivative
of the VO,p data (34) or statistical measures reflecting the best confidence in the fit
parameters [e.g. the smallest confidence interval of the obtained time constant; (48)].
Although theoretically sound, in that both methods can identify abrupt changes in a
continuous signal, their application to experimental VO,p data may be hindered by the low
sampling rate (relative to the duration of ¢1) and noise inherent in those data. Whether the
use of derivatives or statistical methods to identify the ¢1-2 transition results in improved
TVO,p estimates over the empirical time-removal methods currently favored remains to be

investigated.

Several studies have examined the effects of the different strategies employed in the three
steps described above on the confidence of VO,p kinetic parameter estimates using
experimental data [e.g. ¢1-2 transition and ¢p2 TVO,p; (10, 26, 39, 54)]. However, a limitation
of such studies is that the true underlying VO,p kinetic parameters are unknown: such
experimental methods can therefore give an indication of the precision of VO,p kinetics
estimation but not of its accuracy. Computational approaches using Monte Carlo methods
(17) can overcome some of these limitations. For this, a simulation is first used to produce a
clean, continuous VO,p trace with known kinetic parameters. This trace is then sampled
using simulations of breathing frequency and Gaussian noise is added (using known
characteristics) to produce a dataset with similar sampling, noise and kinetic characteristics as
experimentally-obtained VO,p data, but where the underlying VO,p kinetic parameters are
known (33). In addition, the same clean trace can be randomly resampled and new noise
added to produce further noisy datasets (but all with the same underlying kinetic parameters),
analogous to obtaining experimental VO,p data during repeated bouts of exercise from a
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single subject. Thus, these Monte Carlo methods allow both the precision and accuracy of

VO, fitting methods to be systematically assessed.

Computational approaches have been previously applied using a simple delayed mono-
exponential (19, 20) or a bi-exponential (10, 33) VO,p response generated in silico. However,
as the underlying VO, kinetics do not follow a simple mono- or bi-exponential time course
(3, 5, 8), it is necessary to use a validated simulation of VO,p kinetics that takes into account
how circulatory dynamics modulate the mono-exponential VO,,, response to produce the ¢1
and ¢2 VO,p responses (8). Such computationally-produced datasets can therefore contain
the influence of normal variation in the steady states and kinetics of, for example, cardiac
output, muscle blood flow and VO,,, to derive a distribution of VO,p characteristics
(including ¢1 duration and amplitude, and ¢2 TVO,p), analogous to collecting experimental

VO,p data from a large number of healthy human subjects.
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METHODS

We used a validated simulation of VO, and circulatory dynamic interactions during moderate
intensity cycling exercise in humans (8) that accounts for the vascular capacitances and
circulatory dynamics that cause a mono-exponential VO,,, response to manifest at the lungs
as a three-phase VO,p response, with a cardiodynamic ¢1, a near-exponential fundamental
$2, and a steady-state ¢3. The simulation VO,p outputs initially have no noise, so the
baseline VO,p steady-state, ¢1 duration and amplitude, ¢2 TVO,p, and ¢p3 VO,p steady-state
for each output are precisely known. This allows quantification of both the accuracy and the

precision of subsequent fits to the data.

Data production: The minimum required number of Monte Carlo iterations, n, was estimated

from the central limit theorem (17) using n = (Za 120/ 8)2, where z,,, is the z score
associated with significance level a, o is the estimated SD of the simulation output, and ¢ is
the acceptable margin of error for the simulation output (equal to half the required confidence
interval). We set a at 0.05 to give z,/, = 1.96, it was assumed that the SD of ¢2 TVO,p (our
parameter of interest) produced by stochastic simulations would be 4.3 s [based on the
experimental data used to parameterize the simulations (8, 22)], and the acceptable margin of
error was set at 0.1 s (the same as the simulation time resolution). This predicted a minimum
iteration number of n = 7104; we therefore performed 10* iterations during the Monte Carlo

simulations.

We examined two protocols for a step increase in work rate (WR), both constrained to be
within the moderate intensity exercise domain: the first from unloaded pedaling (UP-WR)
and the second from a raised baseline (WR-WR). For each of these two protocols, 10* clean

12
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(time resolution = 0.1 s) VO,p simulations, each with different kinetics, were produced (see
Fig. 14 for an example). The start of the step increase in WR was set to £ = 0 s. Simulation
input parameters were varied stochastically (43) using distributions taken from the data of
Grassi et al. (22) and Benson et al. (8) (Table 1). This provided simulations with normal
physiologic variation in, for example, baseline VO,p, VO,p gain (AVO,p/AW), the relative
increase in cardiac output (AQm/AVOzm), and the kinetics of cardiac output and VO,
(er/r\‘/OZm). Parameter sets that resulted in venous O, concentration dropping to zero at

any point during the simulated exercise transient were discarded, and a new parameter set

was generated.

Each of these 2 x 10* clean traces (one set of UP-WR, and one set of WR-WR simulations)
was then sampled at a variable breathing frequency. The sampling interval was based on the
relationship between breathing frequency (bf) and VO,p in data collected during moderate
intensity exercise in our laboratory, and was given by bf(t) = 8 X VO,p(t) + 8. Gaussian
noise with an SD of 0.25 X bf(t) was subsequently added to this interval (11, 28), with the
noise constrained to be no greater than 2 SDs to avoid unphysiologically-large intervals

between sampled “breaths”.

We then added Gaussian VO,p noise to each “breath”: the SD of this noise distribution was
randomly sampled for each clean trace from a Gaussian distribution with a mean of 67.96
ml.min and an SD of 25.54 ml.min"' [calculated from the individual values reported in
Lamarra et al. (33) and Rossiter et al. (47); n = 22], with the obtained value constrained to be

within 2 SD of the mean, to avoid datasets that were unphysiologically noisy.

13



287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

These procedures produced, from the clean simulation output, a trace with the sampling,
noise and kinetic characteristics observed in experimentally-collected data (see Fig. 1B for
examples). For all 2 x 10* clean simulations, this sampling and noise procedure was
performed 10 times to simulate 10 bouts of exercise repeated by a single subject (see Fig. 14-
B for examples). At the end of this Monte Carlo procedure, we therefore had 10* noisy UP-
WR datasets, i.e. 10" “subjects”, each with different physiological characteristics, who
performed moderate intensity step exercise from unloaded pedaling: each dataset contained
10 noisy traces from separate “exercise bouts”, i.e. each subject performed the same WR
protocol 10 times. A further 10* noisy WR-WR datasets, with each dataset again containing
10 traces from separate exercise bouts, were produced. Thus, a total of 2 x 10° simulated
moderate-intensity “exercise bouts” in 2 x 10* “subjects” were produced, which sampled the
normal variation of key parameters observed in healthy young humans. Note that, despite the
sampling and noise procedure used to produce the data, the true underlying kinetic
characteristics of any given noisy trace were known from the kinetics of the original clean

simulation from which it was produced.

Data processing: Outlying breaths were first removed by fitting Equation (2) to the noisy
traces and removing breaths that lay further than 3 SDs away from the local mean (i.e.
outside the 99.7% prediction bands of the fit) (33). For each dataset, we used the following
data processing techniques, covering a range of commonly-used or potentially-useful
methods, to process up to 10 bouts of noisy data (see Fig. 1 for examples): (i) Interpolation of
each bout to 1-s intervals before ensemble averaging across bouts (“interpolated”); (ii) Time
alignment of data from the bouts to be averaged, before bin averaging into bins whose size
depends on the number of bouts being averaged (“binned”); (iii) Superimposition, or

stacking, of the data from different bouts, with no further interpolation or averaging

14
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(“stacked”); (iv) Fitting of individual bouts (see below) followed by averaging of fit

parameters across bouts (“separate”).

Data fitting: For each processed VO,p trace, we fit the bi-exponential Equation (1) to the
entire ¢1 and ¢2 data, and used the following strategies for identification of the ¢1-2
transition and subsequently fit the mono-exponential Equation (2) to the isolated ¢2 data: (i)
Empirical time-removal methods, where 10, 15, 20, 25 or 30 s of data were removed from the
beginning of each processed VO,p trace. (ii) Use of VO,p time derivatives on both
unsmoothed and smoothed (with a moving 5-breath average) processed data, where the
highest derivative of VO,p with respect to time during the first 60 s of exercise was taken as
the ¢1-2 transition. (iii) Statistical methods to identify the ¢1-2 transition, where a datum was
incrementally removed from the beginning of each dataset (until 60 s into exercise) and the
remaining data were fit using the mono-exponential Equation (2); the reduced chi-squared
(x2,), adjusted coefficient of determination (R?), confidence interval for the time constant
(CI,) and the corrected Akaike information criterion (AICc) were then calculated for each fit
(42, 46); the first datum in the fit that returned the minimum statistical value (or maximum
for R?) was taken as the identified ¢1-2 transition for that statistical method; See Rossiter et
al. (48) for an example using CI; to identify the ¢1-2 transition. For each processed trace we
therefore obtained 12 fits to the data: one using the bi-exponential fit to the entire ¢1 and ¢2
data, and 11 using a mono-exponential fit to isolated ¢p2 data (five using empirical time
removal methods, two using VO,p time derivatives, and four using statistical measures). As a
control condition, for each processed trace we also fit the true isolated noisy ¢2 data with
Equation (2), i.e. the data were fit beginning at the true first “breath” in ¢2, known from the
clean simulation. Each of these 13 methods provided an estimate of the ¢1-2 transition [i.e.

TD from Equation (1) when using the bi-exponential fit, or the identified first breath in ¢2

15
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when using the mono-exponential fits] and an estimate of ¢2 TVO,p [i.e. T, from fits using
Equation (1), or t from fits using Equation (2)]. The ¢1 amplitude (as a percentage of the
steady-state response) was estimated from the value of the fit at the identified ¢1-2 transition.
Each of the ¢1-2 transition, ¢p1 amplitude and ¢2 TVO,p estimates were then compared to the
known true underlying values obtained from the clean simulated VO,p trace. These true

values represent the most accurate estimates possible of ¢1 and ¢2 VO,p kinetics.

Numerical methods and statistical analyses: Details of the model used to produce the clean
VO,p data, along with numerical methods, are given in Benson et al. (8). Because of its
unique piecewise nature, Equation (1) was fit using a custom direct search method (35),
although this precluded calculation of parameter confidence intervals. Equation (2) was fit
using the Levenberg-Marquardt algorithm (43). Values are presented as mean + SD unless
otherwise stated. Significant differences between data were tested for using two-sample #-
tests, or one-way repeated measures analysis of variance (ANOVA) with Tukey’s post hoc

tests, as appropriate. Significance level was set at P < 0.05.
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RESULTS

Simulation outputs: Simulation input WR and output VO,p characteristics are summarized in
Table 2. Time of the ¢1-2 transition was significantly different between UP-WR and WR-
WR simulations (19.8 = 3.4 s vs. 15.9 + 3.4 s, respectively; P < 0.05, t-test), as was ¢1
amplitude (reported as percentage of the steady-state response: 28.2 £ 8.3 % vs. 28.9 = 7.7 %,
respectively; P < 0.05, t-test) and ¢p2 tVO,p (22.4 + 7.2 s vs. 25.0 = 7.2 s, respectively; P <
0.05, t-test). These different VO,p characteristics from UP-WR and WR-WR protocols can be
explained by the increased baseline cardiac output associated with starting an exercise
transition from a raised WR: muscle-to-lung transit time is shortened, reducing ¢1 duration
(3), and the altered blood flow during the exercise transient modifies the association between
muscle and pulmonary VO, kinetics (8). The Monte Carlo simulation output data (104 clean
UP-WR traces and 10* clean WR-WR traces, along with the corresponding 2 x 10° noisy
traces, and details of the input and output characteristics for each simulation) are available

from the corresponding author upon request.

The results below present in detail the findings for UP-WR simulations. The key differences
between UP-WR and WR-WR simulations are then presented. For the sake of brevity, we

present only data pertinent to our significant findings.

Number of averaged exercise bouts: Figure 2 shows the effects of averaging exercise bouts
on the precision and accuracy of ¢2 tVO,p estimation (generally the parameter of most
interest) during UP-WR simulations. For this example, data from different bouts were
interpolated to 1-s intervals then ensemble averaged (see “Averaging methods” below), and

fitting was made beginning at the known first breath in ¢2 (i.e. control fits). Qualitatively
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similar results were found for the other averaging and fitting methods. The mean and SD of
the estimated ¢2 TVO,p are shown in Fig. 24, and example distributions of the estimated $2
TVO,p for 1, 4 and 10 exercise bouts are shown in Fig. 2B. The ¢2 tVO,p estimates obtained
by averaging 1, 2 or 3 bouts were significantly greater than using 10 bouts (P < 0.05,
ANOVA; there was no difference when averaging 4-9 bouts; Fig. 24). This indicates that
precision and accuracy of $2 TVO,p estimation is not statistically improved by averaging data

from more than four bouts of exercise.

Figs. 24 and 2B demonstrate that TVO,p tends to be overestimated on average by ~2 s,
irrespective of the number of bouts averaged: mean difference between estimated and true
TVO,p was 1.92 + 4.24 s with 1 bout, 1.68 + 2.06 s with 4 bouts and 1.62 + 1.37 s with 10
bouts. Figure 2C shows the percentage of estimated 2 TVO,p values that lay within £ 2 s of
true. Using data from a single exercise bout, the estimated $2 TVO,p was within 2 s of the
true value in only 41.3% of cases. When 4 bouts were averaged, the percentage of estimated
values within 2 s of the true value increased to 53.0%, even when the first breath in ¢2 is
known precisely (see also “Data fitting and kinetic characterization” below). The asymptote
of this relationship is 62.0% (Fig. 2C), indicating that the maximum probability of returning a
$2 TVO,p estimate within 2 s of true is 62%, even when the first breath in ¢2 is known and no

matter how many bouts are averaged.

Averaging methods: Figure 34 shows the effects on ¢p2 TVO,p estimation of the different
averaging methods during UP-WR simulations. For the example shown, data from four
exercise bouts were averaged and fitting was from the known first breath in ¢2 (i.e. control
fits). Qualitatively similar results were found for other numbers of averaged bouts and for the

other fitting methods. Each averaging method returned significantly different ¢2 TVO,p
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estimates (P < 0.05, ANOVA), although the mean ¢2 tVO,p values obtained using the
interpolated, binned and stacked averaging methods were quantitatively very similar, being
within 0.1 s of each other (i.e. within the acceptable margin of error set for our Monte Carlo
simulations). Mean ¢2 tVO,p estimation with the interpolation method was 1.68 £ 2.06 s
from true (53.0% of values within + 2 s of true), compared to 1.76 = 2.17 s (50.7%) for
binned, 1.72 + 2.13 s (51.4%) for stacked and 2.04 + 2.34 s (46.9%) for separate. The
distribution of the confidence intervals of the estimated ¢2 TVO,p are shown in Fig. 3B. Each
averaging method returned a significantly different confidence interval distribution (P < 0.05,
ANOVA), although the confidence interval distributions for the binned and stacked averaging
methods were quantitatively similar (the difference between the means of these two

distributions was 0.14 s).

Data fitting and kinetic characterization: Figures 4 to 6 compare the different methods for
estimating the ¢1-2 transition (Fig. 4), and the subsequent estimation of ¢1 amplitude (Fig. 5)
and ¢2 ©VO,p (Fig. 6), during UP-WR simulations. In Figs. 5 and 6, the distributions of ¢1
amplitude and ¢2 TVO,p estimates obtained from control fits (i.e. fits from the known first ¢2
breath) are shown as dashed curves. The examples shown use data from four bouts averaged
using the interpolation method, although qualitatively similar results were found for other
numbers of averaged bouts and for the other averaging methods. Only removal of the first 20
s of data (Panel B in Figs. 4-6) resulted in the accurate identification of the first breath in ¢2,
and ¢1 amplitude and ¢2 TVO,p values that were not significantly different from the control
fits; all other methods were significantly different from true (P < 0.05, ANOVA). Using this
empirical 20 s removal method, the identified ¢p1-2 transition was within £2 breaths of true in
99.3% of cases, estimated ¢1 amplitude was within £5% of true in 32.6% of cases (vs. 34.2%

with control fits), and estimated ¢2 TVO,p was within £2 s of true in 46.5% of cases (vs.
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53.0% with control fits). Although the bi-exponential fitting method (Panel 4 in Figs. 4-6)
returned the second best estimates of the ¢1-2 transition (93.8% of estimates within +2
breaths of true), the over-parameterization of the model resulted in less accurate and precise
$2 TVO,p estimates (only 32.0% of estimates within £2 s of true) than both the empirical 15 s
and 25 s removal methods (37.9% and 37.6%, respectively) (Panel B in Figs. 4-6).
Interestingly, removal of 15 s of data (i.e. including some ¢1 data in the fit) gave more
accurate and precise ¢1 amplitude and ¢2 TVO,p estimates than removal of 25 s of data (i.e.
excluding the initial portion of ¢2 data). Basing ¢1-2 identification on time-derivative or
statistical methods resulted in skewed distributions (Fig. 4C.D), and ¢1-2 transition, ¢1

amplitude and ¢2 TVO,p values that were furthest from true (Figs. 5C,D & 6C,D).

Optimal protocol: Having identified that removal of the first 20 s of data, followed by a
mono-exponential fit to the isolated ¢2 data, was the optimal fitting method for UP-WR
transitions, we repeated the previous analyses that were performed on the control, i.e. known
¢2, data (as shown in Figs. 2 and 3) using this empirical 20 s removal fitting method (Fig. 7).
Qualitatively, the results were identical, in that four averaged bouts provided no more
accuracy and precision than 10 averaged bouts, and the interpolated averaging method gave
the most accurate and precise ¢1-2 transition, ¢1 amplitude and ¢p2 tVO,p estimates, that
were not significantly different to the control fits. Quantitatively, the mean estimate of the
¢1-2 transition was 0.06 £ 0.85 breaths from true, with 99.3% of values within 2 breaths of
true; the mean ¢1 amplitude estimate was 6.63 = 10.61 % from true (vs. 6.65 £ 4.46 % from
true with control data), with 32.6% of values within 5% of true (vs. 34.2% with control fits);
and the mean ¢2 ©VO,p estimate was 1.97 +2.08 s from true (vs. 1.68 £ 2.06 s from true with
control data), with 46.5% of estimates within £2 s of true (vs. 53.0% with control fits). Again,

the binned and stacked averaging methods gave very similar (but slightly less precise and
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accurate) 2 TVO,p estimates to the interpolated method: 2.00 = 2.19 s and 1.98 + 2.16 s
from true, respectively. Using the optimal methods, the asymptote of the exponential fit to the

proportion of $2 TVO,p estimates within = 2 s across all numbers of averaged bouts (Fig. 7C)

was 51.3%.

WR-WR simulations: The analyses performed for the UP-WR simulations (Figs. 2-7) were
repeated for the WR-WR simulations, where “exercise” was initiated from a raised baseline
WR between 0 and 100 W. These analyses are summarized in Fig. 8. As with UP-WR
simulations, averaging of four bouts (Fig. 84-C), using interpolated, binned or stacked data,
optimized ¢2 TVO,p estimation while minimizing the number of required bouts (Fig. 8D-E).
However, for WR-WR data, removal of the first 15 s or 20 s of data gave statistically similar
results to control fits (where the first breath in ¢2 is known), although quantitatively the
removal of 15 s of data gave more precise and accurate estimates of VO,p kinetics than
removing 20 s of data: 97.2% (with 15 s removal) vs. 93.1% (with 20 s removal) of the ¢p1-2
transition estimates within +2 breaths of true; 41.5% vs. 16.9% of ¢1 amplitude values within
+5% of true; and 61.9% vs. 57.6% of ¢p2 TVO,p values within £2 s of true (Fig. 8F). Phase 2
TVO,p estimation was more accurate for WR-WR data than for UP-WR data: using four
interpolated and ensemble averaged bouts with ¢2 isolated by removal of the first 15 s of
data, the mean difference between estimated and known tVO,p was 1.04 + 2.30 s (vs. 1.97 +
2.08 s with the optimal UP-WR analysis; P < 0.05, #-test) and the percentage of values lying
within + 2 s of the true value was 61.9% (vs. 46.5% with UP-WR data). The asymptote of the
exponential fit to these data (Fig. 8C) suggested that a maximum of 75.9% of ¢2 TVO,p

values would lie within + 2 s of the true value (vs. 51.3% for UP-WR data).
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Minimally important difference: The optimal collection, handling and fitting procedures for
UP-WR and WR-WR simulations were used to determine the minimally important difference
for significant changes in TVO,p during moderate intensity exercise. Table 3 shows that the
95% confidence limits of TVO,p estimation narrows from 8.25 s to 4.08 s for UP-WR, and
from 9.43 s to 4.51 s for WR-WR, as the number of bouts averaged is increased from 1 to 4.
These data propose a minimal important difference of ~5 s to detect differences in TVO,p

among groups or within individuals for comparative or interventional studies.

Robustness of Monte Carlo simulations: To confirm the robustness of the Monte Carlo
simulations, the entire data production procedure was repeated (i.e. a second set of 10* UP-
WR and 10* WR-WR clean simulations was produced, and noise was added to each trace 10
times, to give 2 x 10° noisy traces) and these data were analyzed as described above. There
were no differences in the key findings with this second set of simulations (data not shown).
As with the original Monte Carlo data, the output data from this second set of Monte Carlo
simulations (2 x 10* clean and 2 x 10’ noisy traces, along with simulation input and output

characteristics) are available from the corresponding author upon request.
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DISCUSSION

We used a validated computational model together with a Monte Carlo approach to produce 2
x 10° simulated VO,p datasets with similar sampling, noise and kinetic characteristics as
experimentally-obtained VO,p data. As the true underlying VO,p kinetic parameters of these
datasets were known from the clean simulation traces from which they were produced, we
could assess both the accuracy and the precision of various averaging and fitting procedures
on the estimation of TVO,p; something that is not feasible using experimentally-obtained data
where the true underlying tVO,p is not known. We showed that the optimal data handling
steps to give the most accurate and precise estimation of TVO,p were linear interpolation with
ensemble averaging data from four bouts of exercise, followed by removal of the first 20 s (if
exercise was from unloaded pedaling) or 15 s (if exercise was from a raised work rate) of
data before mono-exponential fitting of the isolated ¢2 data. Variations on the averaging
method led to substantially similar results, with the exception that the confidence interval for
kinetic estimation was significantly wider for the technique of independently fitting repeats of
the same exercise transition (the separate method). This suggests that different data
processing techniques currently used among different laboratories is unlikely to substantially
influence the derived parameters. However, it is of note that even the optimal procedures that
we identified yielded TVO,p estimates that were within 2 s of true in just 47% of simulations
from unloaded pedaling, rising to only 62% for protocols where exercise started from a raised

work rate.

Data collection: The simulated data of exercise transitions either from unloaded pedaling or
from a raised work rate spanned a wide range of variable and parameter estimates expected

for sub-LT exercise (Table 2). Simulated ¢1 duration ranged from 7 s to 30 s and was 9% to
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72% of the steady-state response in amplitude, and simulated ¢2 TVO,p spanned
approximately 7 s to 40 s, across transitions ranging from 50 W to 150 W in amplitude,
making our findings widely generalizable to the study of moderate-intensity VO,p kinetics in
healthy adults. We showed that averaging data from four exercise bouts optimized accuracy
and precision of TVO,p estimation, while minimizing experimental burden, regardless of the
averaging or fitting methods subsequently used. Averaging more bouts did not give a
significantly more precise or accurate estimation of TVO,p. Some investigators may be
willing to accept lower accuracy and precision in TVO,p estimation in order to reduce the
testing burden of four exercise bouts. For example, interpolating and averaging three bouts of
UP-WR exercise, and removing 20 s of data to isolate ¢2, resulted in TVO,p estimations that
were 2.00 £ 2.39 s from true, with 45.0% of these estimations within 2 s of true, a relatively
small reduction in accuracy and precision compared to the same data handling method with
four exercise bouts (1.97 + 2.08 s and 46.5%). These differences are associated with an
increase in the minimal detectable difference for TVO,p, e.g. for use in comparative and
interventional studies, from ~5 s to ~6 s. The data shown in Table 3 can be used to inform

such decisions.

Our 4-bout data collection recommendation is only applicable to data that have similar
breath-by-breath fluctuation characteristics as the data produced in our simulation studies (68
+ 26 mlmin'). Nevertheless, our simulated transitions mimicked very well typical
observations using many standard gas exchange measurement approaches. Our findings
indicate that in order to provide more precise estimations of TVO,p from experimental data,
strategies should focus not on averaging additional exercise bouts, but on increasing the
signal-to-noise ratio in the collected data. These findings echo those of Lamarra et al. (32),

who also used a Monte Carlo approach to show that increasing VO,p noise, expressed as a
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percentage of the steady-state change in the VO,p response, increased the confidence
intervals for the estimated fit parameters (¢1 duration and ¢2 TVO,p). We showed that
approaches that increase the signal-to-noise ratio have a substantial effect on precision, but
little effect on accuracy, of kinetic estimates. These fluctuations are expected to arise from
the interaction of a number of variables, not least the breath-by-breath variations in tidal
volume and pulmonary blood flow, within which fluctuation and timing of stroke volume and
thoracic pressure changes may variably sum or counteract one another to give rise to
fluctuations in gas exchange. Therefore, algorithms for breath-by-breath gas exchange
measurement that reduce the inherent fluctuation of the data, e.g. by accounting for changes
in alveolar gas storage, or by re-characterizing a breath to be equal to a tidal breathing cycle
that returns to an identical end-expiratory lung volume (6, 13), would be expected to further
reduce the testing burden while maintaining optimal precision and accuracy of kinetic

estimates.

Data processing: Although there are many possible methods for data averaging, the four
techniques examined in this study (interpolation, binning, stacking, and separate fitting)
provide a cross-section of the most commonly used methods. Although we have identified
linear interpolation followed by ensemble averaging as the optimal method for averaging data
[similar to the findings of Keir et al. (26)], both the breath binning and stacking methods
produced quantitatively similar estimates of t™VO,p. As such, researchers who have
previously used, or currently use, any of these methods should be confident that their choice
of averaging procedure does not unduly influence their estimates of TVO,p. While averaging
of the exponential fit parameters from separate bouts of exercise offers the simplicity of
avoiding potentially complicated and assumption-laden averaging procedures on large

datasets, TVO,p estimation using this averaging method reduced accuracy and markedly
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lessened the confidence in the derived parameter estimates and should therefore be avoided.
This likely arose because the influence on TVO,p of breath-by-breath fluctuations is non-
linear: large ‘noise’ in the early transient has more influence on tVO,p than the same ‘noise’
in the later transient (57). Therefore, data handling approaches that first reduce breath-by-
breath fluctuations and then characterize the fit (rather than the other way around) appear to

result in more robust parameterization of the kinetics.

Another cautionary note is evident in our data for the interpolation method of averaging. This
method appears to return a substantially narrowed confidence interval for tVO,p estimation
(Figure 3B, 7E and 8F). However, because the confidence interval is dependent on the
number of samples (i.e. breaths), interpolation artificially increases the sampling frequency of
the original data. The interpolation method therefore returns an artificial confidence interval
that is more dependent on the characteristics of the interpolation than on the original
measurements (21). The true confidence interval of parameter estimation for the interpolation
method is likely better reflected in the binned and stacked methods (Fig 3B), which were

substantially similar across all simulations.

Each data processing method investigated resulted in a similar degree of accuracy around the
true value, and therefore approaches to data processing should focus on attempts to optimize
the confidence of parameter estimation. As with data collection, valid and appropriate
processing methods that reduce breath-by-breath fluctuations in the data will result in

increased confidence.

Data fitting: We found that empirical time removal methods to isolate the ¢p2 data for fitting

resulted in significantly more accurate and precise estimations of TVO,p than either a bi-
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exponential fit, or statistical and time-derivative methods to identify the ¢1-2 transition
followed by a mono-exponential fit to the isolated ¢2 data. The majority of published
experimental studies that have quantified the kinetics of VO,p have used such empirical time
removal methods (usually removing the first 20 s of data), and so researchers have
historically used the ¢2 isolation method that we have now shown provides the most accurate
and precise estimations of TVO,p. Furthermore, this empirical time removal approach is far
simpler to implement than the bi-exponential, statistical or time-derivative methods. Previous
recommendations have been to remove at least 20 s of data from the beginning of the dataset
in order to completely remove ¢1 data, even though some data from the start of $2 may also
be removed (7, 57). However, our results suggest that, somewhat counter-intuitively, it is
better to include a small amount of data from the end of ¢1 in the fitting procedure than
exclude data from the start of $2. This is seen in Figs. 58 and 6B, where ¢1 amplitude and ¢2
TVO,p estimation for exercise from unloaded pedaling was more precise and accurate when
the initial 15 s of data were removed than when the initial 25 s of data were removed (the true
¢1-2 transition for these data occurred at 19.5 = 3.3 s). We suggest that this is because the
inherent fluctuations in the VO,p data means that including a small amount of ¢1 data in the
fit has minimal effect on the resultant ¢1 amplitude and ¢2 TVO,p estimation. The rapidly
changing initial portion of ¢2 data (which changes rapidly with respect to the breath-by-
breath fluctuations at the end of ¢1) is key to obtaining accurate and precise estimations.
Qualitatively similar results were found for exercise that started from a raised work rate, but
here the best TVO,p estimation was with the removal of the first 15 s of data (Fig. 8F). This is
likely due to the increased baseline work rate elevating cardiac output, which reduces muscle-
to-lung blood transit times and, therefore, the cardiodynamic ¢1 duration. Nevertheless, the
accuracy and precision of TVO,p estimation was statistically similar for WR-WR transitions

when either 15 s or 20 s of data were removed. We therefore recommend that researchers err
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on the side of caution when isolating ¢2 VO,p data and remove no more than 20 s of data to

optimize TVO,p estimation.

Implications for interpretation of $2 VO,p kinetics: There are two significant findings from
our simulations that have implications for interpretation of ¢2 VO,p kinetics. Firstly, we
found that, on average, $2 TVO,p was overestimated in all the data collection and handling
strategies investigated. This overestimation can be explained, at least in part, by the two-
phase VO,p response and the non-exponentiality of ¢2 (3, 5, 8, 25; cf. 18). Figure 9 shows
the effects on ¢2 TVO,p estimation when the mono-exponential Equation (2) is fit to clean
simulation output data from different points throughout the VO,p response. If the mono-
exponential fit is started during ¢1 (i.e. from any point before 19.4 s in this example) then the
estimated ¢2 TVO,p is larger than true, due to the inclusion of some ¢1 data in the fit. If the
fit is started after the ¢1-2 transition, then the ¢2 TVO,p estimation is also larger than true,
becoming larger as the fit is started further from the ¢1-2 transition, because the underlying
¢2 response is not a pure mono-exponential; it initially increases more rapidly than a mono-
exponential before slowing down as it reaches the steady-state (8). Only a fit that starts
exactly at the ¢1-2 transition returns the true ¢p2 tVO,p. For these clean simulated data,
inaccurate identification of the ¢1-2 transition by just 2 s can result in a $2 TVO,p estimation
that is 1.6 s larger than the true value; the influence of noise in experimentally-obtained data
may exacerbate this error. Because of these effects on ¢2 TVO,p estimation, when using the
identified optimal data processing and fitting procedures we were only able to estimate ¢2
T™VO,p to within 2 s of true in 47% of the 10* UP-WR simulations, and in 62% of the 10*
WR-WR simulations [2 s represents an effect size of ~10% for a healthy young human,
where TVO,p is typically ~20 s (45)]. Extrapolating this analysis further, we calculated the

95% confidence limits of our TVO,p estimate distributions (as shown in Figs. 7B and D, and
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Figs. 8B, D and F); tVO,p estimates from outside this confidence interval are statistically
likely to come from a different distribution/population. These 95% confidence limits, for
TVO,p estimates using our predetermined optimal data processing and fitting procedures, are
+4.08 s and + 4.51 s from the mean, for transitions from unloaded pedaling or a raised work
rate respectively (Table 3). We therefore propose that the minimally important difference for
a significant change in TVO,p, e.g. during interventional and comparative studies, should be
5.0 s. If the number of averaged bouts is reduced from the optimum of four, this minimally
important difference should be increased in accordance with the confidence limits shown in

Table 3.

The second implication for interpretation of TVO,p from our data is to question whether an
exponential fit should be used at all. We have previously shown that the dynamics and
mixing of circulatory compartments between muscle and lung distort the approximately-
exponential muscle VO, kinetics into a non-exponential $2 VO,p response at the lung (8). A
recent meta-analysis of available data measuring both muscle and lung VO, kinetics during
cycling and knee extension exercise demonstrates a wide variability of TVO, between muscle
and lung (27). Some have proposed alternative methods to assess kinetic responses, such as
the time to steady state (45). However, such approaches have been demonstrated to be both
inherently more variable than relying on a method that maximizes the utility of available non-
steady-state data (24, 47) and is conceptually flawed on the basis that the time to steady state
of a non-exponential process is continually changing (8). Alternative approaches to kinetics
estimation using, for example, pseudorandom binary sequence exercise testing and time-
series analysis may allow for muscle TVO, to be resolved by alternative methods (24, 31). It
remains to be determined whether such methods provide increased accuracy for non-invasive

estimation of muscle VO, kinetic responses compared with ¢$2 VO, estimation by repeated
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step transitions. Our simulations here demonstrate that a mono-exponential fit to $2 VO,p is a
useful and concise method for accurately describing the overall kinetics of the exponential-

like pulmonary ¢2 VO, kinetic response.

Limitations: The means and SDs of the parameters used in our Monte Carlo simulations were
representative of healthy young adults (8, 22). Quantitatively different results may be found
for other populations with different $2 VO,p kinetic parameters, such as the elderly or heart
failure patients who have slowed VO,p kinetics (9, 39). Nevertheless, our main qualitative
findings will still be pertinent when collecting, processing and fitting VO,p data from these
other populations. In particular, our main point regarding optimal data collection and
processing methods — that methods should be employed to minimize breath-by-breath
fluctuations and that it is essential to include all $2 VO,p data in the fit — will more than
likely stand for these populations, as it is still expected that the (potentially slowed) initial

portion of 2 VO,p will change rapidly with respect to the noise in the data at the end of ¢1.

For populations where individuals are expected to have a reduced cardiac output and slowed
cardiac output kinetics, and a concomitant prolongation of ¢1 duration compared to young
healthy adults [such as heart failure patients (52)], the use of a bi-exponential fit, or statistical
or derivative methods, to automatically identify the ¢1-2 transition is inherently attractive.
However, our results highlight that the noise in the VO,p data limit the ability of these
methods to correctly identify the ¢1-2 transition, reducing the accuracy and precision of
subsequent TVO,p estimation. In this study, the empirical time-removal methods (removal of
the first 20 s of data for exercise from unloaded pedaling, or 15 s if exercise was started from
a raised baseline) were the only methods that gave statistically similar TVO,p estimates to

control fits, despite ¢1 duration ranging from 7 s to 39 s across all simulations. It remains to
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be determined whether removal of the first 20 s of data results in the most accurate and
precise TVO,p estimations for populations where ¢1 is prolonged, but it may be necessary to

compensate for the prolonged ¢1 duration when removing ¢1 data from the fitting window.

Only on-transient exercise in the moderate intensity domain was simulated in this study. It is
still to be determined whether the identified optimal fitting procedures will produce the most
accurate and precise TVO,p estimations for on-transient data in higher exercise intensity
domains where fitting can be complicated by the emergence of a VO,p slow component (40,
45). Similarly, the applicability of our identified optimal procedures for off-transient data,
where cardiac output is expected to be initially elevated and so produce a much shorter ¢1,
potentially influencing the amount of data that should be removed before fitting, is still to be

determined.

CONCLUSIONS

We used a validated computational model together with a Monte Carlo approach to assess the
accuracy and the precision of various averaging and fitting procedures on the estimation of
VO, kinetics. Our analyses showed that four bouts of exercise was the optimal number to
average in order to increase accuracy and precision of tVO,p estimation. Choice of averaging
strategy was not so critical, with interpolation, bin averaging and stacking all giving
quantitatively similar tVO,p estimates. The interpolation, binning and stacking methods did,
however, allow more confident parameter estimates when compared to analyzing repeated
bouts separately. Data collection and processing strategies should therefore focus on
increasing the signal-to-noise ratio in the collected data. Contradictory to previous advice that

suggests removal of at least 20 s of data to isolate $2 VO,p before fitting, our analyses show
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723

that data fitting procedures should remove no more than 20 s of data, as this provided the
most precise and accurate estimates of tVO,p. Our analyses showed the widely used standard
approaches for data collection, processing and fitting, while often different between
laboratories, did not have a substantial effect on the quantitation of $2 VO,p kinetics per se.
However, we found that even this optimal procedure yielded TVO,p estimates that were
within + 2 s of true in only 47-62% of simulations. Thus, we identified the minimally

important difference for tVO,p for use in interventional and comparative studies to be 5 s.
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Table 1. Distributions of model input parameters for Monte Carlo simulations. See Benson et
al. (8) for a detailed description of the model. Gaussian distributions were calculated from the

data of Grassi et al. (22) and Benson et al. (8). Linear distributions were set for this study.

Parameters with Gaussian distributions: Mean SD
Arterial O, concentration (ml O,/100 ml blood) 20.0 1.00
Total venous volume (1) * 3.07 0.61
Baseline VO,p (I.min™) 0.87 0.08
Fraction of baseline VO,p from muscle ° 0.57 0.11
Baseline th (Lmin™) 8.89 0.44
Fraction of baseline Qtot to muscle ° 0.57 0.08
AVO,p/AW (ml.min" W) 9.47 0.85
AVO,,,/AW (ml.min" W™ 11.04 1.36
AQ, /AVO,, 6.03 0.53
1Q, /tV0,, © 1.08 0.08
Parameters with linear distributions: Minimum  Maximum
VO, (3) 15.0 40.0
Baseline WR (for WR-WR simulations only; W) d 0.0 100.0
AWR (W) © 50.0 150.0

Parameters with other dependencies:
AVO,,/AW = AVO,p/AW — AVO,,./AW
AQ,/AVOy, = AQ,,/AVO,,

VO,, = tVO,,,

Q, =1Q_

Q denotes blood flow (with th denoting cardiac output). The subscript ‘m’ denotes muscle

compartment, the subscript ‘b’ denotes rest-of-body compartment. Baseline is unloaded
pedaling (i.e. 0 W). "The ratio of the muscle, body and mixed venous volumes was
maintained as in the default model; only the total venous volume was altered. °The remainder
of the baseline VO,p (and Qtot) comes from (and goes to) the body compartment. “To avoid
kinetic mismatch between muscle Q and VO, (as occurs with slow Qm but fast VO,
kinetics, that result in muscle O, concentration dropping to zero), we first set the absolute
tVO,,, value, and then constrained er to be similar to TVO,,, using this ratio. Baseline WR

for UP-WR simulations was fixed at 0 W. “AWR was constrained to be positive, and the final
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910 WR in the WR-WR simulations (i.e. baseline WR + AWR) was constrained to be no greater
911  than 150 W.
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912  Table 2. Monte Carlo simulation input WR and output VO,p characteristics

Mean SD Range
UP-WR simulations (n = 10%):
Baseline WR (W) 0.0 0.0 0.0-0.0
AWR (W)~ 97.3 28.4 50.0 —150.0
VO,p ¢1 duration (s) 19.8 34 10.8 - 31.1
VO,p ¢1 amplitude (% of steady-state response)  28.2 8.3 94-71.8
$»2 TVO,p () 22.4 7.2 7.3-38.8
WR-WR simulations (z = 10%):
Baseline WR (W) 473 28.6 0.0 —100.0
AWR (W) ° 75.6 22.0 50.0 - 150.0
VO,p ¢1 duration (s) 15.9 3.4 7.4-29.4
VO,p &1 amplitude (% of steady-state response)  28.9 7.7 11.0-63.3
$2 TVO,p (5) 25.0 7.2 8.4-40.3

913 "AWR was constrained to be positive and at least 50 W, with the final WR (i.e. AWR in the
914  UP-WR simulations, and baseline WR + AWR in the WR-WR simulations) constrained to be
915  no greater than 150 W.
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916  Table 3. Phase 2 TVO,p estimates and confidence intervals for 1-4 averaged UP-WR and WR-WR exercise bouts. Averaging was by linear
917  interpolation to 1-s intervals before ensemble averaging; ¢2 isolation was by removal of the first 20 s or 15 s of data for UP-WR and WR-WR

918  protocols, respectively.

Number of $2 TVO,p estimation: Percentage of values  95% confidence limits
averaged bouts Mean (s from true) SD (s) within 2 s of true (s from mean)
UP-WR simulations (z = 10%): 1 2.21 4.21 38.27 8.25
2 2.03 2.90 43.32 5.68
3 2.00 2.39 45.00 4.68
4 1.97 2.08 46.50 4.08
WR-WR simulations (n = 10%): 1 1.33 4.81 41.82 9.43
2 1.15 3.24 51.61 6.35
3 1.07 2.66 57.52 5.21
4 1.04 2.30 61.91 4.51
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FIGURE LEGENDS

Fig. 1. Example of data production and processing during a single Monte Carlo iteration from
unloaded pedaling. 4: for each iteration, model parameters were varied stochastically (see
Table 1) and a clean model VO,p trace with known kinetic parameters (e.g. ¢1 duration and
amplitude, and ¢2 TVO,p) was produced. Note that this clean model trace varied for each of
the 10* Monte Carlo iterations. B: the single clean trace was used to produce 10 noisy
“experimental” VO,p traces (filled circles) with the sampling (breathing) and VO,p noise
characteristics seen in experimental data. Here, four examples are shown. Although each of
the 10 noisy datasets is different, they have identical underlying kinetic parameters (known
from the clean model trace shown in panel 4, and shown in these panels as dashed lines). The
noisy VO,p datasets were processed in one of four ways: C: interpolation followed by
ensemble averaging; D: bin averaging; E: stacking of datasets; and fitting of the separate
traces before averaging of the resultant fit parameters (not shown). Fits to these processed
data were compared to the true underlying kinetic parameters (known from the clean model

trace shown in panel 4, and shown in these panels as dashed lines).

Fig 2. Effects of the number of averaged bouts on the precision and accuracy of tVO,p
estimation, using control fits (i.e. using the known ¢2 data) to interpolated and ensemble
averaged UP-WR data. 4: mean = SD difference of the estimated tVO,p from the true value,
for 1-10 averaged bouts. Horizontal lines show zero difference (solid) £ 2 s (dashed) from
true. n = 10" in each case. * = P < 0.05 vs. 10 averaged bouts (ANOVA). B: distributions of
the difference between estimated and true T™VO,p for 1, 4 and 10 averaged bouts. Vertical

lines show zero difference (solid) + 2 s (dashed) from true. n = 10* in each case. C:
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percentages of the 10* tVO,p estimates within + 2 s of true, for 1-10 averaged bouts. The

solid line is an exponential fit to the data.

Fig 3. Effects of averaging method on the precision and accuracy of tVO,p estimation, using
control fits (i.e. using the known ¢2 data) to four averaged UP-WR bouts. 4: distributions of
the difference between estimated and true tVO,p for the four different averaging methods.
Vertical lines show zero difference (solid) + 2 s (dashed) from true. n = 10* in each case. B:
distributions of the confidence interval of the fitted t for the four different averaging

methods. 7 = 10* in each case.

Fig 4. Effects of fitting methods on the precision and accuracy of ¢1-2 transition
identification. Shown are distributions of the difference between the estimated and true ¢1-2
transition for the bi-exponential fit (4), and empirical (B), statistical (C) and derivative (D) ¢2
isolation methods. For all panels, vertical lines show zero difference (solid) + 2 breaths
(dashed) from true, and n = 10" in each distribution. Note the different scales on the

abscissas.

Fig 5. Effects of fitting methods on the precision and accuracy of ¢1 amplitude estimation.
Shown are distributions of the difference between the estimated and true ¢1 amplitude for the
bi-exponential fit (4), and empirical (B), statistical (C) and derivative (D) ¢2 isolation
methods. The control fit distribution (i.e. using the known ¢2 data) is shown as a dashed
curve in each panel. For all panels, vertical lines show zero difference (solid) £ 5% (dashed)

from true, and = 10" in each distribution. Note the different scales on the abscissas.
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Fig 6. Effects of fitting methods on the precision and accuracy of ¢2 TVO,p estimation.
Shown are distributions of the difference between the estimated and true 2 tVO,p for the bi-
exponential fit (4), and empirical (B), statistical (C) and derivative (D) ¢2 isolation methods.
The control fit distribution (i.e. using the known ¢2 data) is shown as a dashed curve in each
panel. For all panels, vertical lines show zero difference (solid) & 2 s (dashed) from true, and

n = 10% in each distribution. Note the different scales on the abscissas.

Fig 7. Precision and accuracy of tVO,p estimation for UP-WR bouts when removal of the
first 20 s of data is used to isolate ¢$2. A-C: effects of the number of averaged bouts, where
data processing is by interpolation and ensemble averaging (see Fig. 2 for explanations). D-E:
effects of averaging method on tVO,p estimation and the associated confidence interval,

using four averaged bouts (see Fig. 3 for explanations).

Fig 8. Precision and accuracy of TVO,p estimation for WR-WR bouts. 4-C: effects of the
number of averaged bouts, where data processing is by interpolation and ensemble averaging
and removal of the first 15 s of data is used to isolate ¢2 (see Fig. 2 for explanations). D-E:
effects of averaging method on tVO,p estimation and the associated confidence interval,
using four bouts and where removal of the first 15 s of data is used to isolate ¢2 (see Fig. 3
for explanations). F: effects of empirical ¢2 isolation methods, using four interpolated and

ensemble averaged bouts (see Fig. 4 for explanations).

Fig. 9. 4: Simulated VO, response to a 100 W UP-WR step using default model parameters

[see (8) for details]. The ¢1-2 transition occurs at 19.4 s and the true 2 TVO,p is 16.3 s. B:

Effects on tVO,p estimation of fitting the mono-exponential Equation (2) starting from
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991  different points throughout the clean simulated VO,p response. The vertical dashed line

992  shows the time of the ¢1-2 transition; the horizontal dashed line shows the true 2 TVO,p.
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