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Abstract—In this paper a new Bayesian model for sparse linear
regression with a spatio-temporal structure is proposed. It incorporates
the structural assumptions based on a hierarchical Gaussian process prior
for spike and slab coefficients. We design an inference algorithm based
on Expectation Propagation and evaluate the model over the real data.

I. INTRODUCTION

Sparse regression problems arise often in various applications, e.g.,
model selection, compressive sensing, EEG source localisation and
gene modelling [1], [2]. One of the Bayesian approaches to force the
coefficients being zeros is the spike and slab prior [3]: each component
is modelled as a mixture of spike, that is the delta-function in zero,
and slab, that is some vague distribution. Following the Bayesian
approach, latent variables that are indicators of spikes are added to
the model [4] and the relevant distribution is placed over them [5].

In this model each component is modelled to be spike or slab
independently. However, in many applications non-zero elements tend
to appear in groups forming an unknown structure: wavelet coefficients
of images are usually organised in trees [6], chromosomes have a
spatial structure along the genome [2].

We propose an extension of the spike and slab model by imposing a
hierarchical Gaussian process (GP) prior on the latent variables. Such
hierarchical prior allows to model spatial structural dependencies for
coefficients that can evolve in time. The new model is flexible as
spatial and temporal dependencies are decoupled by different levels
of the hierarchical GP prior.

II. PROPOSED MODEL

The observations yt ∈ RK are collected with the design matrix
X ∈ RK×N from the unknown coefficients βt ∈ RN at every time
moment t ∈ [1, . . . , T ], with independent noise:

yt ∼ N (yt|Xβt, σ
2I). (1)

We consider the case when K < N , therefore the problem of recovery
of βt from yt is ill-posed and regularisation is required.

a) Sparsity: The vectors βt are assumed to be sparse, that is
implemented in the model using the spike and slab approach:

βit ∼ ωitδ0(βit) + (1− ωit)N (βit|0, σ2
β), (2)

where ωit are the latent indicators of spike and slab.
b) Spatial clustering: Non-zero elements in βt are assumed to be

clustered in groups at every timestamp. Therefore spatial dependencies
for the positions of spikes in βit are modelled with the GP:

ωit ∼ Ber(ωit|Φ(γit)), Φ(·) is the standard Gaussian cdf (3)

γt ∼ N (γt|µt,Σ0), Σ0(i, j) = αΣ exp

(
− (i− j)2

2l2Σ

)
. (4)
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GPs specify prior over an unknown structure. This is particularly
useful as it allows to avoid a specification of any structural patterns —
structural modelling is governed only by the GP covariance function.

c) Temporal evolution: Clusters of spikes in βt are assumed to
evolve in time. This evolution is addressed with the hierarchical GP
dynamic system model [7]. The mean for the spatial GP changes over
time according to the top-level temporal GP:

µt ∼ N (µt|µt−1,W), W(i, j) = αW exp

(
− (i− j)2

2l2W

)
. (5)

This allows to implicitly specify the prior over the transition function
of the structure. The rate of the evolution is controlled with the
top-level GP covariance function.

The exact posterior of the parameters is intractable, therefore
approximate inference methods are required. Inference is based on
Expectation Propagation [8] in this paper.

The structural assumptions in sparse models are studied in the
literature. The group lasso [9] provides sparse solutions for predefined
groups of coefficients. Group constraints for sparse models include
smooth relevance vector machines [10], Boltzmann machine prior [11];
spatio-temporal coupling of the parameters [12], [13]. In [14] a spatio-
temporal structure is modelled with a one-level GP prior. In contrast to
that model the new one introduces an additional level of a GP prior for
temporal dependencies, therefore the temporal and spatial structures
are decoupled, adding flexibility to the model. The high-level GP
controls the change of spike groups in time while the low-level GP
allows the local changes within each group.

III. NUMERICAL EXPERIMENTS

The performance of the proposed hierarchical GP algorithm is
compared with the one-level GP prior introduced in [14]. We apply
both algorithms to the problem of object detection in video sequences.
The Convoy dataset [15] is used where the frame difference is applied
for moving object detection. The sparse observations are obtained as
yt = Xβt, where X is the matrix with i.i.d. Gaussian elements,
the number of observations is ≈ 40% of the dimension of the
hidden signal βt. This procedure corresponds to compressive sensing
observations [16].

The reconstruction results on the sample frames are presented in
Figure 1. The obtained performance measures values can be found
in Table I. The F-measure compares binary masks computed by
thresholding the true vectors β and the posterior estimates β̂. NMSE
represents normalised mean squared error between β and β̂. The
proposed algorithm shows better results in terms of both measures.

IV. CONCLUSION

In this work we propose a new approach for spatial structure
modelling in sparse models that allows to capture complex temporal
evolution of data patterns. We also develop an efficient inference
method based on EP. The numerical experiments show superiority of
the proposed model over the current state-of-the-art.
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(a) Original frame (b) Frame with subtracted background (c) Hierarchical GP reconstruction (d) One-level GP reconstruction

Fig. 1. Sample frame with reconstruction results from sparse measurements. (a): the original non-compressed frame; (b): object detection results based on
non-compressed frame difference (static background frame is subtracted from the original frame); (c): reconstruction of compressed object detection results
based on the proposed hierarchical GPs method; (d): reconstruction of the compressed object detection results based on the one-level GP method. (b) represents
the true βt, while (c) and (d) are posterior estimates β̂t obtained by the reconstruction algorithms.

TABLE I
PERFORMANCE OF SIGNAL RECONSTRUCTION FOR BACKGROUND

SUBTRACTION IN VIDEO

Measure Hierarchical GP One-level GP

NMSE 0.0153 0.0392
F-measure 0.9870 0.9403
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