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Itch (pruritus) is an unpleasant sensory experience that triggers a desire to scratch. It is induced by

activation of a subset of cutaneous C fibers in response to environmental irritants and some endogenous

mediators (such as histamine). As a somatic sensation itch is closely related to pain. Indeed, itch-

mediated afferents are mostly classed as nociceptors, moreover, high concentrations of pruritogenic

substances (e.g. histamine) produce pain, while some pain-inducing agents (e.g. capsaicin) can produce

itch when applied topically to the skin (reviewed in (Lee et al., 2016)). As with the pain, acute

physiological itch is a healthy reaction as it informs the organism of harmful conditions and helps to

eliminate them (e.g. by removing parasites or potentially damaging agents from the skin). Yet, chronic

itch developing in some pathologies (e.g. atopic dermatitis) can be an excruciating disease.

Recent years saw swift progress in understanding of itch circuits and deciphering molecular

mechanisms of itch signaling. Thus, histaminergic and non-histaminergic itch have been identified as

distinct phenomena and the receptors of several non-histaminergic pruritogens have been discovered.

Particularly, members of Mas-related G protein-coupled receptors (Mrgprs): MrgprA3, MrgprC11 and

MrgprD were identified as itch-mediating receptors for chloroquine (Liu et al., 2009), pruritic peptide

BAM8-22 (Liu et al., 2009) and -alanine (Shinohara et al., 2004), respectively. The Mrgpr-expressing

primary afferents were, thus, identified as ‘itch’ afferents (Liu et al., 2009; Liu & Dong, 2015).

Intense current research is focused on the elucidation of how G protein coupled receptors (GPCR)

of itch generate receptor potential in the peripheral endings of itch afferents. The major emphasis thus
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far was on the members of transient receptor potential (TRP) channel family, TRPV1 and TRPA1 (see

excellent review by Kittaka & Tominaga (2017)). Histamine receptors expressed in sensory neurons (H1

and H4) and some Mrgprs couple to Gq/11 signalling cascade involving activation of phospholipase C

(PLC) and hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) into diacylglycerol (DAG) and

inositol trisphosphate (IP3). DAG-mediated branch of this signalling cascade may involve activation of

protein kinase C and phospholipase A2, while IP3 branch results in release of Ca
2+ from the IP3-sensitive

intracellular stores and modulation of plenitude of downstream Ca2+-sensitive targets (Gamper &Rohacs,

2012). Number of these pathways were implicated in pruritogen-induced activation of TRPV1 and

TRPA1 with the assumption that these, in turn, produce depolarization of itch nerve endings sufficient

to trigger action potentials (Kittaka & Tominaga, 2017). However, due to inherent difficulties with

directly assessing and controlling the excitability of nerve endings, the majority of these studies used

indirect approaches, such as electrophysiological and imaging experiments with the dissociated sensory

neurons in culture in combination with genetic models and behavioural tests.

In the new study published in the current issue of the Journal of Physiology, Ru and colleagues

developed an improved skin-nerve preparation in which electrophysiological recordings from intact itch

afferents is combined with fast, reliable and repeatable subcutaneous application of drugs (Ru et al.,

2017). In this preparation dorsal side of the mouse skin is dissected out along with the blood vessels

(subscapsular artery and its branches) and the nerves (with their associated T7-T10 dorsal root ganglia).

The presence of the subscapsular artery allowed to overcome slow diffusion of the externally applied

drugs through the skin using intra-arterial injections. The accuracy of the intra-arterial drug delivery has

been carefully verified with dye injections.

Using this preparation it became possible to directly test the effect of genetic deletion or

pharmacological inhibition of TRPV1, TRPA1 and other candidate ion channels on the excitation of itch

afferent’s peripheral endings in in response to pruritogen application to the skin. This powerful approach

delivered a number of clear-cut but rather unexpected results. Thus, the authors showed that histamine

and non-histaminergic agonists (chloroquine, BAM8-22 and ovalbumin) excite largely the same

subpopulation of TRPA1- and TRPV1-expressing C-fibers (~25% of total cutaneous C fibers). This is at

odds with previous observation that selective silencing of trigeminal histaminergic fibers does not

significantly affect non-histaminergic itch and vice versa (Roberson et al., 2013). This discrepancy may

reflect differences between spinal and trigeminal systems and requires further investigation.

But a real surprise came when the responses of itch C fibers from trpa1-/- or trpa1-/-/trpv1-/- double-

knockout mice were investigated. Astoundingly, deletion of TRPA1, or TRPA1 together with TRPV1,
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had no effect on the itch afferent excitation by chloroquine, histamine or ovalbumin. Moreover, regarding

the excitation of itch afferents by chloroquine, the following conditions were also without an effect: i)

the double deletion of TRPC3 and TRPC6; ii) the pharmacological inhibition of TRPA1 on the trpc3-/-

/trpc6-/- background; iii) the pharmacological inhibition of TRPC3/TRPC6 on the trpa1-/-/trpv1-/-

background. Even a broad-spectrum TRP channel blocker ruthenium red, which inhibits most of the

sensory TRP channels, was without an effect. In these experiments the absence of the TRPA1 and/or

TRPV1 channel activity in the fiber has been confirmed with allyl isothiocyanate (AITC) and capsaicin,

respectively. Evidence presented herein argues strongly against the important role of TRP channels in

the itch signal initiation at the level of free nerve endings of the cutaneous itch fibers, which is in stark

contrast to the body of previous literature on the role of TRP channels in itch (see (Kittaka & Tominaga,

2017) for review).

The authors suggested that TRPA1/TRPV1 channels expressed somewhere else within the itch

circuitry (but not at the itch nerve endings) might be important for the scratch reflex. This could account

for the reduced scratching seen in some studies on TRPV1 and TRPA1 KO animals (Shim et al., 2007;

Wilson et al., 2011). Additionally, it is possible that some degree of TRP channel

inhibition/desensitization could have been produced by the surgical procedure (e.g. due to excessive

activation of mechanosensitive fibres or due to the tissue damage-induced release of some excitatory

compounds). In this case the TRP channel contribution to the pruritogen-induced itch fibre excitation

could have been underestimated. It has to be noted though that some measures to prevent desensitisation

have been taken by Ru and colleagues (e.g. a cyclooxygenase inhibitor has been included in the media

throughout). In addition, most recorded itch afferents responded robustly to AITC and capsaicin,

indicating that active TRPA1 and TRPV1 channels were present.

Notably, in contrast to the previous study (Wilson et al., 2011), Ru and colleagues found no

reduction in behavioural itch response to chloroquine in trpa1-/- mice. Moreover, chloroquine-induced

inward current and excitability in the DRG neuron somata were also unaffected by TRPA1 deletion

(again, cf. (Wilson et al., 2011)). Thus, the discrepancywith earlier studies cannot at present be explained

solely by the ‘upstream’ effects of TRPA1/TRPV1 in CNS or by some easily tractable technical issues.

Clearly, further research will be required to resolve this controversy.

If not TRP, what is the mechanism for the pruritogen-induced activation of itch fiber endings? A

somewhat similar uncertainty about the role of TRPV1 channels surrounded the mechanisms of

nociceptive fiber excitation by the inflammatory mediator bradykinin (reviewed by Petho & Reeh,

(2012)). Search for additional players resulted in the identification of a TRPV1-independent signalling
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cascade whereby bradykinin B2 receptors, acting via the Gq/11-PLC pathway, produced simultaneous

activation of depolarizing Ca2+-activated Cl- channel TMEM16A and inhibition of hyperpolarizing M-

type K+ (KCNQ) channels (Liu et al., 2010). Ru and colleagues tested if a similar mechanism could be

at play in the GPCR-induced activation of itch fibers. Consistent with the involvement of the Gq/11-PLC

pathway, chloroquine-induced C fiber excitation was almost abolished in the PLC3 knock-out mice.

Furthermore, pharmacological inhibition of TMEM16A with the selective inhibitor MONNA reduced

both, the chloroquine-induced action potential discharge from the itch fibers in vitro and the chloroquine-

induced scratching behaviour in vivo.

Although these pharmacological experiments do not offer the same level of conclusiveness as the

data obtained in knock-out mice (a limitation acknowledged by the authors), they indeed suggest that at

least some chloroquine-induced itch can be attributed to the GPCR-induced activation of Ca2+-activated

Cl- channels in the itch fiber endings. Interestingly, M channel inhibition with the selective blocker

XE991 did not induce itch fiber activity in vitro, however, the in vivo effect of XE991 has not been tested.

The excitatory action of the Cl- channel TMEM16A in sensory afferents, suggested in this (Ru et

al., 2017) and previous (Liu et al., 2010; Cho et al., 2012; Jin et al., 2013; Takayama et al., 2015) studies

is at odds with known inhibitory action of another Cl- channel abundantly expressed in sensory afferents,

the GABAA channel (see e.g. (Takkala et al., 2016; Du, 2017). The reasons for this apparent discrepancy

are currently unknown but could involve distinct densities and localization (e.g. peripheral endings vs.

more proximal parts of the fiber) of these channels.

Addressing the conundrums highlighted by the interesting study of Ru and colleagues will require

a concerted effort of researchers studying somatosensory system and is likely to bring an important next

step to our understanding of peripheral mechanisms of itch and pain.
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