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Objective. Biologic drug therapies represent a huge
advance in the treatment of rheumatoid arthritis (RA).
However, very good disease control is achieved in only 30%
of patients, making identification of biomarkers of response
a research priority. We undertook this study to test our
hypothesis that differential DNA methylation patterns may
provide biomarkers predictive of response to tumor necro-
sis factor inhibitor (TNFi) therapy in patients with RA.

Methods. An epigenome-wide association study
was performed on pretreatment whole blood DNA from
patients with RA. Patients who displayed good response
(n 5 36) or no response (n 5 36) to etanercept therapy at
3 months were selected. Differentially methylated posi-
tions were identified using linear regression. Variance of
methylation at differentially methylated positions was
assessed for correlation with cis-acting single-nucleotide
polymorphisms (SNPs). A replication experiment for pri-
oritized SNPs was performed in an independent cohort of
1,204 RA patients.

Results. Five positions that were differentially
methylated between responder groups were identified, with
a false discovery rate of <5%. The top 2 differentially meth-
ylated positions mapped to exon 7 of the LRPAP1 gene
on chromosome 4 (cg04857395, P 5 1.39 3 1028 and
cg26401028, P 5 1.69 3 1028). The A allele of the SNP
rs3468 was correlated with higher levels of methylation for
both of the top 2 differentially methylated positions
(P 5 2.63 3 1027 and P 5 1.05 3 1026, respectively). Fur-
thermore, the A allele of rs3468 was correlated with Euro-
pean League Against Rheumatism nonresponse in the
discovery cohort (P 5 0.03; n 5 56) and in the independent
replication cohort (P 5 0.003; n 5 1,204).

Conclusion. We identify DNA methylation as a
potential biomarker of response to TNFi therapy, and we
report the association between response and the LRPAP1
gene, which encodes a chaperone of low-density lipoprotein
receptor–related protein 1. Additional replication experi-
ments in independent sample collections are now needed.

Rheumatoid arthritis (RA) is a common auto-
immune disorder affecting up to 1% of individuals in West-
ern populations. The treatment of RA traditionally
consisted of corticosteroids and antiinflammatory drugs to
treat symptoms in combination with disease-modifying anti-
rheumatic drugs (DMARDs) to slow disease progression
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(1). In 1998 the introduction of biologic drug therapies
provided a new form of treatment. While these therapies
have proved effective for many patients, very good dis-
ease control or remission is achieved in only up to 30%
of patients (2). In the time taken to find which therapy is
effective for a given patient, progression of disease and
accumulation of disability can have a negative impact on
the quality of life. This makes the identification of bio-
markers predictive of response a research priority. Such
biomarkers would allow implementation of stratified
medicine to better target available therapies to those
patients most likely to respond to them.

Response to biologic agents is complex and is influ-
enced by sex, concurrent use of DMARDs, and level of
disease activity and severity (3–7). Two recent investiga-
tions have identified genetic markers that are robustly
associated with response to tumor necrosis factor inhibitor
(TNFi) therapy. First, a genome-wide association study
(GWAS) meta-analysis including 2,706 RA patients identi-
fied a single-nucleotide polymorphism (SNP) (rs6427528)
in the CD84 gene as a predictor of response to etanercept
in European patients (P 5 8 3 1028; n 5 733) (8). This
was shortly followed by the identification of a SNP
(rs3794271) mapping to the PDE3A-SLC01C1 locus that
reached genome-wide significance following meta-analysis
of data from Spanish and Danish RA cohorts (P 5 3.3 3

10210) (9). However, even when all known predictive fac-
tors are combined, the proportion of variance in treatment
response accounted for remains modest (10).

Epigenetics is a broad term that describes heritable
features which alter gene expression without altering the
underlying DNA sequence (11). DNA methylation is one
form of epigenetic modification and is an attractive candi-
date for investigation as a biomarker of treatment response
as it is relatively stable compared to messenger RNA and
most proteins, is altered by drug therapy, and is amenable
to high-throughput whole-genome typing.

We hypothesized that differential DNA methyla-
tion might provide a useful biomarker predictive of
response to TNFi therapy in RA. Therefore, we per-
formed an epigenome-wide association study to identify
differential methylation between good responders and
nonresponders among patients with RA being treated
with etanercept. We elected to test whole-genome blood
samples, as a biomarker identified in that type of sample
would be most readily translated to clinical benefit.

PATIENTS AND METHODS

Patient selection and sample preparation. Patients were
recruited to the Biologics in Rheumatoid Arthritis Genetics and
Genomics Study Syndicate (BRAGGSS) from 57 UK centers

(12). All patients were Caucasian, age $18 years, and clinically
classified at inclusion as having RA according to the 1987 revised
criteria of the American College of Rheumatology (13). Clinical
and biologic samples were collected prior to treatment with bio-
logic drugs, and patients were then followed up prospectively with
data and sample collection at 3, 6, and 12 months after initiation
of therapy. We selected patients for the current study who had
been treated with etanercept and who had had an extreme
response phenotype at 3 months—either a good response, defined
as a Disease Activity Score in 28 joints (DAS28) (14) of ,2.6, or
nonresponse, defined as an improvement in the DAS28 of ,0.6
or as an end point DAS28 of .5.1 (15). DNA was extracted from
pretreatment whole blood samples and stored at 2808C.

Epigenome-wide association study. For each pretreat-
ment DNA sample, 500 ng DNA was bisulfite converted using EZ
DNA methylation kits according to the amended protocol of the
manufacturer (Zymo Research) for use with an Infinium Methyla-
tion Assay (Illumina). Epigenome-wide methylation was assessed
with the Infinium HD Methylation Assay according to the protocol
recommended by the manufacturer, using HumanMethylation450
BeadChips. The DNA was denatured and neutralized, then iso-
thermally amplified overnight. The amplified product was enzymat-
ically fragmented, then precipitated using isopropanol. After
resuspension, the fragmented DNA sample was transferred to the
BeadChips and incubated overnight in a hybridization oven.
Twelve samples were hybridized to each BeadChip, which is for-
matted as a 6 3 2 matrix. DNA from responders and nonrespond-
ers was aliquoted onto alternate rows and columns of the
BeadChips to reduce any bias that might result from the position
on the BeadChip. After washing nonhybridized DNA from the
BeadChip, capillary flow-through chambers were used to perform
single base extension and staining of the DNA. The BeadChips
were then imaged using an Illumina iScan System.

Data analysis of methylation arrays. All data analysis
was performed in R 3.2.0 (www.r-project.org) (16). Data quality
for each sample was assessed by visual inspection of control probe
summary data in GenomeStudio (Illumina), by visual inspection
of kernel density plots of methylation beta values, and by compar-
ing median log2 intensities recorded in both the methylated and
unmethylated channels. If both the methylated and unmethylated
channels recorded background signal levels at the detection
threshold of P . 0.01, then the data for that probe were excluded
from further analysis (17). In addition, probes containing SNPs in
the CpG interrogation site or single-nucleotide extension site
were excluded along with cross-reactive probes (i.e., those that
cohybridize to alternate genomic sequences). Raw beta values
were logit transformed to M values (18) following subset-quantile
within array normalization (SWAN) (19), and principal compo-
nents analysis (PCA) was used to assess potential batch effects,
including position on BeadChip. Batch effect correction was per-
formed using published empirical Bayes methods (20), and distri-
bution of cell types within the whole blood sample was inferred
for each patient using published methods (21). Linear regression
models were used to test for association between CpG methyla-
tion and treatment response (22). Baseline disease activity, sex,
age, concurrent use of DMARDs, and cell type composition were
included in the model as covariates. Power to detect differential
DNA methylation between responder groups was estimated
using calculations presented in ref. 23.

Technical validation of array data using pyrosequen-
cing. A custom pyrosequencing assay was designed to target
the top differentially methylated position from the BeadChip
data. The assay was designed using PyroMark Assay Design
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software 2.0 (Qiagen). Ten nanograms of template bisulfite-
converted DNA was added to 13 PyroMark PCR Master Mix
(Qiagen), 13 CoralLoad Concentrate (Qiagen), and 0.2 mM
PCR primer set (Qiagen). The solution was made up to 25
ml with RNase-free water (Qiagen) and was amplified in a
thermocycler (DNA Engine Dyad; MJ Research) using poly-
merase chain reaction (PCR) conditions recommended by the
manufacturer (Qiagen).

The remaining PCR product (10–20 ml) was agitated at
1,400 revolutions per minute for 10 minutes with 2 ml streptavidin–
Sepharose High Performance Beads (GE Healthcare) and 40
ml PyroMark Binding Buffer (Qiagen) made up to 80 ml with
Milli-Q water. The samples were applied to the vacuum handset of
the PyroMark Q24 workstation and washed with 70% ethanol,
PyroMark denaturation solution, and PyroMark wash buffer
(Qiagen) before being added to 0.3 mM sequencing primer diluted
to 25 ml in annealing buffer (Qiagen). To allow the biotin-labeled
DNA strand to anneal to the primers, the solution was heated to
808C for 2 minutes, then allowed to cool to room temperature for
5 minutes. Pyrosequencing reactions were performed using a Pyro-
Mark Q24 and PyroMark Gold Q24 Reagents (Qiagen).

Correlating DNA methylation level with genetic mark-
ers. Fifty-six of the 72 patient samples analyzed for DNA methyl-
ation had previously been genotyped on the OmniExpress
genotyping array (Illumina). The array targets .700,000 SNPs
with genome-wide coverage. Array data were processed for quali-
ty in Plink (24) using previously described methods (25). Briefly,
closely related individuals, individuals with a poor call rate (.2%
missing data), and ethnic outliers were removed, as were SNPs
with .2% missing data, minor allele frequency (MAF) ,1%, or
departing from Hardy-Weinberg equilibrium with a P value less
than 5 3 1027. SNPs passing quality assessment were imputed
using the 1,000 Genomes reference panel (https://mathgen.stats.
ox.ac.uk/impute/data_download_1000G_phase1_integrated.html)
and IMPUTE2 software (26). Following imputation, SNPs with
an imputation “info” score ,0.9, .2% missing data, MAF ,1%,
or a Hardy-Weinberg equilibrium P value less than 5 3 1027 were
removed. Only those SNPs mapping to within 1 million bases of
the most compelling differentially methylated CpG sites were test-
ed for cis-acting methylation quantitative trait locus (QTL) analy-
sis (27).

In addition, independent of the 56 patients described
above, 1,204 patients treated with TNFi (36 with certolizumab,
372 with adalimumab, 414 with etanercept, and 382 with inflixi-
mab) had both genome-wide SNP and European League
Against Rheumatism (EULAR) response (28) data available
for replication analysis. The vast majority of these DNA samples
were collected after treatment, making them suitable for SNP
analysis but not for methylation analysis. Genetic data for the
replication experiments were generated across multiple arrays
(Affymetrix 5.0 [n 5 552], Affymetrix 6.0 [n 5 243], OmniEx-
press [n 5 409]), and each array was processed for quality con-
trol using the methods described above. SNP data for variants
showing evidence of association in the discovery cohort (n 5 56)
were extracted and tested for association in the replication sam-
ples to avoid the issue of multiple testing.

RESULTS

Cohort characteristics. Patient samples were
selected from the BRAGGSS, a prospective longitudinal

study of response to biologic therapies in patients with
RA. At the beginning of the current study, 890 patients
had a pretreatment DNA sample available, and 583 of
those patients had reached 3 months of follow-up and
were eligible for treatment response studies. Two hundred
nine of those patients were treated with etanercept, and
89 of the 209 patients either responded well (n 5 39) or
failed to respond (n 5 50) to therapy at 3 months, based
on established EULAR response criteria. From those 89

Table 1. Baseline characteristics of the patients selected for the
epigenome-wide association study of response to etanercept in
patients with rheumatoid arthritis*

Characteristic
Good responders

(n 5 36)
Nonresponders

(n 5 36)

Age, mean 6 SD years 54.6 6 11.4 59.9 6 12.2
Women, no. (%) 28 (78) 29 (81)
DAS28 at baseline, mean 6 SD 5.9 6 1.2 5.8 6 0.76
Concurrent DMARD

therapy, no. (%)
31 (86) 32 (88)

Receiving methotrexate
as DMARD, no. (%)†

21 (78) 25 (78)

HAQ score at baseline,
median (IQR)

1.5 (1.25–2) 2.0 (1.6–2.6)

Disease duration at baseline,
median (IQR) months

11.3 (5.1–21.8) 7.2 (2.8–11.5)

* No statistically significant differences were observed between the treat-
ment response groups. DAS28 5 Disease Activity Score in 28 joints;
HAQ 5 Health Assessment Questionnaire; IQR 5 interquartile range.
† Data on specific disease-modifying antirheumatic drugs (DMARDs)
were available for 27 responders and 32 nonresponders.

Figure 1. Volcano plot of 2log10 P value versus mean difference in
methylation. CpG positions that are more methylated in nonres-
ponders compared to good responders are plotted to the right.
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patients, pretreatment DNA samples were selected for 36
very good responders (i.e., with clinical remission of their
disease) and 36 nonresponders. Baseline characteristics of
the 2 groups are summarized in Table 1. No statistically
significant differences were observed between treatment
response groups when comparing age, DAS28, concurrent
DMARD therapy, disease severity, or disease duration.
However, good responders tended to be younger and to
have less disability and longer disease duration. This study

had 80% power to detect a mean methylation difference
of 7% between good responders and nonresponders at
the 5% significance threshold.

Epigenome-wide association study findings. Fol-
lowing visual assessment of kernel density plots of meth-
ylation beta values and plots of log median (M) and (U)
intensities, 1 sample with an aberrant methylation pro-
file was identified and removed from subsequent analy-
ses. In the remaining samples, cross-reactive probes
along with probes that failed detection or contained
SNPs in the probe sequence were removed. A total of
422,638 probes were available for further analyses in 71
patients (35 nonresponders and 36 good responders).
Methylation data were further processed using SWAN
and logit transformed prior to PCA. PCA revealed a
relationship between position on the BeadChip and the
first principal component (P 5 9.5 3 1029). Since posi-
tion on the BeadChip was anticipated as a potential
batch effect, biologic samples were distributed on the
chip in such a way as to reduce any bias this might cause

Table 2. Positions differentially methylated between responders
and nonresponders to etanercept, identified using HumanMethyla-
tion450 BeadChips

Probe ID

Good
responders, mean

% methylation

Nonresponders,
mean

% methylation P

P,
adjusted

cg04857395 72 81 1.39 3 1028 0.004
cg26401028 82 88 1.69 3 1028 0.004
cg16426293 48 54 9.41 3 1028 0.01
cg03277049 30 37 1.21 3 1027 0.01
cg12226028 30 40 3.81 3 1027 0.03

Figure 2. Plot of CpG methylation values for the top 5 differentially methylated positions in both good responders and poor responders (i.e., nonrespond-
ers). Color figure can be viewed in the online issue, which is available at http://onlinelibrary.wiley.com/journal/doi/10.1002/art.39590/abstract.
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(see Patients and Methods), and the methylation data
were adjusted for position effects using an empirical
Bayes method. The largest mean difference in methyla-
tion observed between responder groups was ;15%,
with more methylation observed on average in nonres-
ponders compared to good responders for probes with
smaller P values (Figure 1).

Five differentially methylated positions were cor-
related with treatment response, with a false discovery
rate (FDR) of ,5%. The 5 differentially methylated
positions showed more methylation in nonresponders

Figure 3. Locus view of the LRPAP1 region on chromosome 4. Top, Plot of 2log10 P value (y-axis) versus position (x-axis). The red line indi-
cates the value of 5 3 1028 (genome-wide significance threshold). Middle, Schematic drawing of gene and position of CpG islands. Bottom, Cor-
relation structure of DNA methylation at the CpG sites in the genomic region.

Table 3. Methylation quantitative trait locus analyses in 56 patient
samples*

SNP CpG locus P

P,
FDR-adjusted Beta†

rs3468 cg04857395 2.63 3 1027 0.002 0.64
rs3468 cg26401028 1.05 3 1026 0.006 0.65
rs6850908 cg04857395 8.35 3 1026 0.03 0.66
rs1049574 cg04857395 8.35 3 1026 0.03 0.66

* FDR 5 false discovery rate.
† Change in methylation M values due to allele dose at the single-
nucleotide polymorphism (SNP) loci tested.
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than in good responders (Table 2 and Figure 2). No
difference in composition of cell type was observed
between responder groups. Furthermore, adjustment
for differential cell counts did not have a strong impact
on the results when compared to the unadjusted analysis
(additional information is available upon request from
the corresponding author).

Two of the top 5 CpG and 4 of the top 15 CpG
(ranked 1st, 2nd, 10th, and 14th) were located within
exon 7 of the LRPAP1 gene on chromosome 4 (Figure 3)
(further information available upon request from the
corresponding author). All 4 CpG positions were more
methylated in the nonresponder group than in the good
responder group.

Validation and replication of epigenome-wide asso-
ciation study findings using pyrosequencing. For 38
patient samples, a sufficient quantity of bisulfite-converted
DNA to permit technical validation of the BeadChip
data remained available following the BeadChip experi-
ment. For the most differentially methylated position,
cg04857395, the Spearman’s rank correlation coefficient
was 0.87, demonstrating a high degree of correlation be-
tween the 2 platforms (additional information available
upon request from the corresponding author).

Methylation QTL/genetic analysis. The LRPAP1
locus was prioritized for methylation QTL analysis as this
locus revealed the most compelling evidence for differen-
tial methylation between the TNFi responder groups.
Three SNPs, rs3468, rs6850908, and rs1049574, were corre-
lated with methylation levels at positions cg04857395 and
cg26401028 with an FDR of ,5%. SNPs rs6850908 and
rs1049574 were highly correlated with one another (R2 5

0.85) but were less strongly correlated with rs3468
(R2 ,0.45). All 3 SNPs were genotyped on the array (i.e.,
not imputed). The A allele of rs3468 was correlated with
higher methylation levels for both probe positions with an
FDR-adjusted P value of ,0.007 (Table 3) (additional
information available upon request from the corresponding
author). The A allele of rs3468 was also correlated with
EULAR nonresponse in the 56 samples (32 good re-
sponders, 24 nonresponders) analyzed for DNA methyla-
tion, with an odds ratio of 2.9 (95% confidence interval
[95% CI] 1.11–7.37) (P 5 0.03). SNP rs3468 was further
analyzed in an independent sample of 1,204 TNFi-treated
patients (additional information available upon request
from the corresponding author). Here, the ordered logistic
regression model revealed that a 1-unit increase in the
rs3468 genotype (i.e., GG to GA or GA to AA) resulted in
a 1.28-fold increase (95% CI 1.08–1.49) in the odds of being
in a lower (i.e., worse) EULAR response category (P 5

0.003) following adjustment for sex and clinical variables
(i.e., baseline DAS28, concurrent DMARD use, and base-

line Health Assessment Questionnaire score [29]) (further
information is available upon request from the correspond-
ing author).

DISCUSSION

In this epigenome-wide investigation of DNA
methylation as a biomarker of response to TNFi treat-
ments in RA, we have identified 5 differentially methylated
sites associated with response to etanercept with test statis-
tics exceeding the 5% FDR threshold. Technical validation
using an alternative independent methylation analysis plat-
form (pyrosequencing) indicated that the findings were
unlikely to have arisen due to experimental artifact.

The most compelling evidence for differential meth-
ylation was observed within exon 7 of the LRPAP1 gene
located on chromosome 4. LRPAP1 is highly expressed in
mononuclear blood cells (30) and encodes a chaperone of
low-density lipoprotein receptor–related protein 1, which is
known to influence transforming growth factor b activity
(31). In the current study, 4 CpG within exon 7 of LRPAP1
were observed to be more methylated in nonresponders
than in good responders. Exon 7 of LRPAP1 is in a DNase I
hypersensitivity region. Furthermore, cg04857395 overlaps
with an H3K36me3 histone mark important in regulation
of alternative splicing (32) and with a binding site for
CCCTC-binding factor, a methylation-sensitive transcrip-
tion suppressor involved in alternative splicing (33). The
level of methylation for the top 2 differentially methylated
positions correlated with the rs3468 genotype (position
3,505,698 on chromosome 4), with the A allele correlated
with more methylation. Importantly, SNP rs3468 was corre-
lated with EULAR response in a large independent repli-
cation experiment (P 5 0.003), greatly adding to the validity
of these findings. SNP rs3468 maps to within a 1,032-bp
noncoding RNA (lnc-LRPAP1-1:1) overlapping exon 8 of
LRPAP1 (positions 3,505,324–3,506,184 on chromosome
4) and is predicted to affect binding of the microRNA hsa-
miR-342-3p (34). It is therefore plausible that the results
observed at LRPAP1 may have a functional consequence;
however, this has not been tested. Future experiments
including targeted RNA sequencing in relevant cell types
within whole blood are needed.

One strength of the current study is the homogen-
eity of the patient group selected for the discovery investi-
gation. All of these patients were treated with etanercept
and all had either an extremely good response or no
response to the drug at 3 months of follow-up despite hav-
ing similar baseline clinical characteristics. The importance
of selecting a group of patients treated with the same bio-
logic drug was illustrated in a recent GWAS in which there
was little overlap between the most associated genetic var-
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iants predicting response to etanercept, infliximab, and
adalimumab (8). Response to each drug may be controlled
by different genetic variants; therefore, it is important to
consider that epigenetic mechanisms underlying response
may also differ between different types of biologic agents.

A further strength of this study is the large sample
size of patients with extreme phenotypes of response to eta-
nercept. By using extremes of response, the power to detect
differences in baseline methylation in subsequent re-
sponders and nonresponders was enhanced. Using calcula-
tions presented in ref. 23, we had 80% power to detect a
difference in methylation of 7%, which was in accordance
with our own estimates (additional information available
upon request from the corresponding author) and the
observed difference in methylation for the top differentially
methylated positions. However, it may be argued that the
study was underpowered to identify the small effect sizes
seen for genetic associations with response to therapies
(35).

We chose to investigate whole blood in the first
instance as this would provide the simplest test in the clini-
cal setting; however, differences in DNA methylation pat-
terns between blood cell types have been reported (36), so
it is important to consider the impact of differences in
blood composition on our results. Using cell composition
estimation based on the distribution of methylation in the
results from the BeadChips, no significant differences were
observed between good responders and nonresponders,
and adjustment for cell composition did not change our
results. However, as stated above, cell-specific experiments
may allow finer exploration of the mechanism by which epi-
genetic changes affect treatment response.

DNA methylation has been implicated in auto-
immune disorders in several studies in recent years, but dif-
ferentiating cause and effect in cross-sectional studies is
difficult. The longitudinal nature of this treatment response
study reduces that bias. There is an increasing interest in
DNA methylation as a source of biomarkers of response to
drug therapies in many diseases, including cancer (37,38).
To our knowledge, ours is the first study to investigate the
influence of epigenetic variation on response to biologic
therapies. Given the substantial cost and long-term nature
of treatment with these drugs, selecting the right therapy as
the first-choice biologic agent for patients with RA is
increasingly important, particularly as biologic therapies
targeting other pathways are now available.

In conclusion, it is apparent that treatment response
is multifactorial and that a predictive algorithm incorporat-
ing assessments of a panel of biomarkers, which could
include epigenetic, genetic, and transcriptomic factors and
serology, will be necessary to allow prediction of response.
Although validation in a larger independent cohort is need-

ed before transfer to clinical practice would be possible,
these results indicate that DNA methylation profiling may
provide a new biomarker of response to etanercept in
patients with RA.
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