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Overview of MUFINS 
 
MUFINS is a Multi-Formalism Interaction Network Simulator. It contains a suite of 24 tools that 
allow a wide variety of analysis methodologies to be undertaken, and is bundled with JyMet, a 
Graphical User Interface (GUI) to allow MUFINS to be used by the specialist and no specialist 
alike. The tools within MUFINS can be roughly divided into the following categories: 
 
Flux Balance Analysis: FBA, phenotypic phase plane (PhPP), dynamic FBA (dBA), flux variability 
analysis (FVA), differential producibility analysis (DPA), Fermentation equation (FBA precursor) 
 
Gene/Reaction Perturbation: Gene deletion analysis, Gene-Nutrient interactions 
 
~omics constraints: Gene inactivity moderated by metabolism and expression (GIMME), 
Shlomi_NBT_08 (iMAT), Fast iMAT 
 
Regulation: Regulatory FBA (rFBA), linear inhibitor and activator constraints, integrated dynamic 
FBA (idFBA), integrated FBA (iFBA), quasi steady-state Petri nets (QSSPN) 
 
MUFINS incorporates three important innovations, providing simulation possibilities beyond those 
available in other software suites. These are: (i) linear inhibitor and activator constraints, allowing 
the integration of regulatory networks, including both activation and inhibition reactions into a CBM. 
(ii) Fast iMAT to allow the use of ~omic data to provide additional constraints for CBM. Fast iMAT 
is an optimised algorithm that is highly computationally efficient and allows the interrogation of 
large-scale ~omic datasets. (iii) Quasi steady-state Petri nets (QSSPN) allow the integration of 
gene and signalling regulatory networks with genome-scale metabolic networks, facilitating the 
simulation of dynamic biological responses to stimuli. 
 
A full description of these tools, plus the comparison of MUFINS with other software suites is 
available in the primary publication for MUFINS. 
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Constraint Based Modelling 
The following exercises are designed to provide a quick introduction to Constraint Based Modelling 
with MUFINS. All the necessary files for the simulations are bundled with the MUFINS distribution, 
and can be found in the ‘MUFINS_Examples’ folder. Full instructions on how to install MUFINS can 
be found in both the ‘Readme.txt’ in the root folder and ‘Installation’ help file. 
 
Exercise 1. Calculation of growth rate on different media 
A common requirement in constraint based modelling is to predict the growth rate for a cell 
population (1). For cell division to occur, the cell must first produce all the components required to 
duplicate itself (e.g. nucleotides, amino acids etc.), which is a process of metabolism. Predicting 
the rate at which these components can be made provides a maximal rate at which the cell could 
divide, and hence a measure of the rate of biomass production. This is a key feature of prokaryotic 
cells, where the aim is to continually divide and expand the cell number, but also of mammalian 
disease such as cancer. Even for human cells, which tend to be tightly regulated with regard to cell 
division, there is still a need for biomass production to allow the renewal of the cellular pool, 
replacing those cells that have reached the end of their lives.      
 
Genome Scale Metabolic Reaction Network of Escherichia coli.  
In this exercise, we use the Genome Scale Metabolic Network of Escherichia coli developed by the 
group of Berhard Palsson (2): 
 
The folder ‘MUFINSèExamplesèEc_iAF1260’ contains a single file Ec_iAF1260_flux1.xml. This 
file was downloaded from the supplementary material of original publication and is in Systems 
Biology Markup Language (SBML, http://sbml.org/Main_Page) format. The bounds of transport 
reactions are set to represent minimal medium with glucose as a carbon source. The model is 
called iAF1260 in an attempt to create naming convention of ‘in silico’ microbial strains. The ‘i’ 
stands for ‘in silico’, AF are the initials of the first author, while 1260 is the number of genes 
covered by the model. 
 
Import SBML file into JyMet. 
JyMet is the graphical user interface (GUI) for MUFINS. To open JyMet, enter the ‘MUFINS’ 
directory and double click JyMet.jar. After a few seconds, the JyMet interface will open (Figure 1). 

Figure 1: The JyMet Graphical User Interface for MUFINS 
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The Systems Biology Markup Language (SBML) is the widely used standard language for model 
reconstruction. MUFINS is able to load genome scale metabolic networks presented in SBML. 
These can then be either simulated directly, or converted into the MUFINS-specific sfba format.  
 
To import the SBML file for E.coli model to be used in this exercise, select ‘FileèImport SBML’, 
navigate to the ‘MUFINSèExamplesèEc_iAF1260’ folder, and select Ec_iAF1260_flux1.xml. 
Once the model loads, you will see several tabs that describe the model in detail. These are: 
genes, enzyme, reactions and metabolites. The number in each tab shows the number of entries in 
each of the tabs.  
 
For example, in figure 2, the reaction tab for the Ec_iAF1260 model can be seen. This tab contains 
2382 reactions, one per line. For each reaction, up to 6 columns of information are presented   
 
ID: Unique ID for the reaction 
Equation: An algebraic description of the reaction. ‘M_*’ refers to a metabolite (further defined in 
the metabolites tab), while ‘+’ and ‘=’ define the relationship between metabolites for this reaction. 
By convention, reactions are read left to right. 
LB: Sets the maximal flux rate in the reverse direction (i.e. right to left). In this example, values 
range from 0.0 or -999999.0 
UB: Sets the maximal flux rate in the forward direction (i.e. left to right). In this example, values 
range from from 0.0 or 999999.0 
Rule: Defines the linkage between genes and reactions 
Comment: Contains any free text description of the reaction. Comments can be used to tag 
reactions of interest, so they can be quickly found in simulation results tables through the search 
function ‘EditèSearch’. 

Figure 2: Import of Ec_iAF1260 SBML file, with reactions tab shown 

 
Saving models as a MUFINS reaction table, and editing with an external text editor. 
Models within JyMet can be saved as a tab-separated text file using the ‘FileèSave table’ 
command.  This can be used to save a reconstruction in the MUFINS native format (sfba), or to 
save individual tabs, which can be useful to save reaction, problem and results tables for later 
examination.  
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To save the imported SBML file of the E.coli model in sfba format, make sure that reaction tab is 
active and use ‘FileèSave table’ to create the file Ec_iAF1260_flux1.sfba file. Note that the tag 
has been changed from *.xml to *.sfba to denote that this is now a file used in the MUFINS.  
 
As this file is saved as a tab-separated file, it can be opened with spread sheet programs such as 
Excel, or with a text editor. If this file is opened in Excel the you will see a warning stating that ‘The 
file you are trying to open is not a valid Excel XML Spreadsheet’ and asking if you wish to ‘Open as 
Text’, which you should accept. This is because the tag is *.sbml and not the expected *.xlsx or 
*.txt. Opening the file in Excel or a text editor means that this FBA model representation can be 
easily edited outside of JyMet, if desired. As long as the file is saved as a tab-separated text file 
then it can be loaded back into JyMet.  
 
Note: Mac users may experience a problem when working with reaction tables saved from Excel. 
This is because Excel uses the Windows rather than Mac end of line format. To correct this 
problem, simply open and save the text file with another editor (e.g. TextEdit). 
Technical Note: For information, the sfba and qsspn command line tools use this table as their 
native representation of the GSMN. 
 
Open a MUFINS sfba model in JyMet. 
To confirm the successful saving of the file, we will now load the Ec_iAF1260 model in the 
MUFINS sfba format. In JyMet, use ‘FileèOpen model’ to open the Ec_iAF1260_flux1.sfba file. A 
dialogue box will appear, warning that external metabolites are not defined. Click OK to 
acknowledge this message (it’s importance will be seen later on).  

Figure 3: Import of the Ec_iAF1260 model in sfba format 

 
As seen in figure 3, the imported sfba model looks very similar to the original sbml model import. 
However, clicking on the ‘enzymes’ tab will now show it has zero entries. As the sfba reaction table 
uses the gene-reaction association rules defined in the rule column, the enzymes tab is irrelevant 
and is discarded. We recommend users import/export models in SBML, allowing gene-enzyme-
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reaction associations to be defined, and using the universal markup language. However, model 
development and simulation the sfba format is sufficient and faster. 
 
Closing a model  
JyMet allows users to work with multiple models at one time. Each model is represented as a 
separate tab at the top of the JyMet interface. For example, in figure 3, both the Ec_iAF1260 and 
Ec_iAF1260_flux1.sfba models are open. Clicking on either tab will select this model. To close a 
model, simply press the ‘x’ next to its name. Close the model Ec_iAF1260, leaving open the model 
in sfba format.  
 
Note: JyMet does not ask you if you want to save any changes – once it is closed, any unsaved 
changes are lost. This is because in most instances you do not want to save changes to a model 
as they will be simulation-specific. However, please bear this in mind if you do not want to lose 
your hard work. 
 
Define the external metabolites for the GSMN 
External metabolites represent sources and sinks of metabolic flux. Without external metabolites 
the only value for fluxes within the network will be 0, because there will be no source of metabolic 
flux. Before we undertake any analysis, it is necessary to tell the software which metabolites are 
external, which is indicated by a tag at the end of their names. For example, models originating 
from Palsson’s group usually use the ‘_b’ tag indicate an external metabolite. To define external 
metabolites click ‘SolveèExternality tag’ in JyMet menu and type ‘_b’ in the dialogue box (figure 
4). If you are unsure whether the externality tag has been defined, this can be quickly checked by 
using ‘SolveèExternality tag’ – any previously set externality tag will be shown in the dialogue box. 

Figure 4: Setting the external metabolite tag in JyMet 

The Biomass reaction and it’s relationship to growth rate. 
As discussed in the introduction to this exercise, a common question in constraint based modelling 
is to predict the maximal growth rate possible, commonly referred to as biomass. In many 
metabolic networks, there is a reaction termed ‘biomass’ (or similar) that defines the biosynthethic 
and energy demand required for the synthesis of cell components. Therefore, the flux through this 
‘biomass’ reaction represents the growth rate of the population of cells. 
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The biomass reaction in iAF1260 model has a long name that is difficult to remember. Therefore, it 
is easier to use the Search function of JyMet to find it using the ‘biomass’ substring. With the 
reaction tab visible, select ‘EditèSearch’ and enter ‘biomass’ as a query. The table will show any 
reaction that contains the substring ‘biomass’ anywhere in the reaction row. In this case, only one 
row will be returned (figure 5). 
 
Note: If you do not find the biomass reaction by searching, this usually means that a single row 
was selected, and JyMet searched only this row. To avoid this issue (i) make sure that all reactions 
are shown (and can be searched) by using ‘ViewèShowèAll’. (ii) Select all the rows (ctrl-A or 
cmd-A), ensuring they will all be searched.  

Figure 5: The biomass equation. 

Clicking in the ‘Equation’ field allows you to scroll through the biomass definition. You will see that 
it contains metabolites that are considered to be required for biomass (e.g. nucleotides, amino 
acids etc.). Each metabolite is prefixed by a number, which represents the coefficients of these 
substances that reflect the experimentally determined biomass composition of the E. coli cells 
under specified medium conditions. Finally, to return to the all reactions view, select 
‘ViewèShowèAll’. 
 
Calculate the maximal growth rate 
To run simulations with JyMet you must complete three tasks: (i) define the objective 
function, (ii) choose the analysis method, and (iii) write the problem file. Writing of the 
problem file makes execution of simple task a bit more complicated than necessary, but 
gives a lot of flexibility for definition of complex analysis protocols and media conditions. 
 
Define the objective function: The objective function is a requirement for a number of 
different CBM approaches. At the simplest level, it defines what we wish to examine in the 
analysis. In this case, we are looking to see what is the maximal possible flux through the 
biomass reaction, analogous to the growth rate. The simplest way to set the objective 
function is to enter it into the ‘Objective:’ field at the top of the JyMet interface. You can 
also select here whether you wish to maximize or minimise the objective function, using 
the ‘Direction:’ drop down menu (Figure 6).  
 
 

Figure 6: Setting the objective function 
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Choose the analysis method: The ‘Analyze’ menu contains a selection of approaches 
useful in CBM. For now, we will look at on of the simplest analysis, where just the value of 
the objective function is returned. To choose this analysis mode, select 
‘AnalyzeèObjective value’. This is the default opion in MUFINS, but it is good practice to 
always check that you are using the desired analysis method.  
 
Write the problem file:  The problem file records what parameters are being used for the 
current simulation. To create the problem file, select ‘SolveèWrite problem’. JyMet will 
switch to the ‘Problem’ tab, showing the currently defined problem (Figure 7). The 
expression in problem file window instructs the software to calculate maximal theoretical 
flux through reaction R_Ec_biomass_iAF1260_core_59p81M. The ‘;’ on the second line is 
to set the end of the problem. You can have several objective functions in one problem 
file, each separated by a line containing ‘;’, and MUFINS will solve each in turn. In addition, 
as we will see later, it is possible to add in many more instructions into a problem, further 
refining the simulation to be undertaken. 

Figure 7: Defining the objective function 

 
Once we have set up the parameters for the simulation, we can instruct MUFINS to solve 
the problem by selecting ‘SolveèSolve’ 
 
As can be seen from figure 8, the maximal growth rate chemically feasible under the 
medium conditions of this experiment is 0.736701 h-1. The units of the flux in the original 
model are mmol. h-1.gDW-1 (milimole per hour per gram dry weight). As the coefficients in 
the biomass reaction are expressed in units of mmol.gDW-1, these are summed to produce 
the mole fraction of each precursor necessary to produce 1 g dry weight of cells. 
Therefore, biomass flux is calculated in units of h-1, and represents the growth rate of E. 
coli culture in the log phase. 

Figure 8: Results of an Objective Value simulation 
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Simulate the effect of different media conditions on growth rate 
It is often interesting to examine the impact of different external metabolites on growth rate. In the 
Ec_iAF1260 model, the carbon source available in the external environment is glucose. The 
reaction representing glucose exchange with the external environment is R_EX_glc_e_. 

Figure 9: Glucose exchange reactions in Ec_iAF1260 

As shown in figure 9, reaction R_EX_glc_e_ describes the transport of glucose between the 
extracellular space (M_glc_D_e) and the external environment (M_glc_D_b). The LB and UB are 
both open, showing that this reaction is bidirectional. However, while the UB (secretion into the 
external environment) is fully open, the LB representing glucose uptake from the external 
environment is limited. The LB maximal flux is set to -8.0, meaning the reaction will be capable of 
transporting 8 mM of extracellular glucose (M_glc_D_b) into the cell (becoming M_glc_D_e) in one 
hour per 1 g of cellular dry weight. 
 
Two other reactions are shown in figure 9, R_GLCtex and R_GLCtexi. These two reactions 
represent the transport between the extracellular space and periplasm of the bacterial cell. 
R_GLCtex is a bidirectional reaction, with LB and UB allowing flux, while R_GLCtexi is a 
unidirectional transporter into the periplasm. 
 
Altering uptake of glucose from the external environment: To examine the impact of altered 
glucose availability, we need to open or close some of the exchange reactions by changing their 
flux bounds. This can be done by directly altering the LB and UB in the model. However, this is not 
best practice, as it is easy to forget what changes you have made. It is better to set new reaction 
bounds in problem file. To edit the the problem file, click on its tab to make it visible. Next, use 
‘EditèInsert rows’ to add a row to the problem file table. To create a rule, setting the new bounds, 
enter ‘R_Ex_glc_e_’ in the expression column, and then LB and UB values of 0.0 and 999999.0, 
respectively. This will set the R_EX_glc_e_ to secrete only, preventing the cell taking up glucose 
from the external environment. Make sure to place a ‘;’ in the last row, showing that this is the end 
of the problem definition (figure 10).  

Figure 10: Altering reaction bounds using the problem file. 

 
Any reaction bounds specified in a problem file will automatically overwrite the settings in the 
reaction table. To show the effect of preventing the bacteria using glucose on the growth rate, 
calculate the maximal growth rate again (SolveèSolve). Since uptake of the sole carbon source is 
closed, the maximal growth rate should be 0. Set the R_EX_glc_e_ reaction bounds back to 
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original settings, and confirm that the maximal growth rate reverts back to 0.736701 h-1. This will 
show that you can now control reaction bounds using settings in the problem file. 
 
Addition of a second carbon source - lactose transport: As E.coli can utilise several different 
carbon sources, it may be of interest to predict the impact on growth rate. Lactose exchange is 
defined by the reaction R_EX_lcts_e_. To enable control of the available carbon source between 
glucose and lactose, add  a row to problem file table (EditèInsert rows) and add the lactose 
exchange reaction (Figure 11) 

Figure 11: Addition of the lactose exchange reaction to the problem file 

Now you can control which carbon source is available by changing the LB of these two reactions. 
With a LB of -8.0 for glucose uptake only, you should see a growth rate of 0.736701 h-1. If you 
switch to lactose (LB -8.0) as the carbon source, the growth rate increase to 1.082 h-1. Finally, if 
both carbon sources are available, the growth rate increases again to 1.31467 h-1. 
 
 
 
Exercise 2. Essential reactions. 
An important application of computational modelling is the identification of metabolic chokepoints, 
critical reactions that are essential for meeting the objective function. MUFINS allows you to search 
for these essential reactions by sequentially constraining the flux through each reaction to 0 and 
calculating the maximal value of the objective function. If inactivation of a reaction results in an 
objective value equal to 0, then this reaction is reported as essential. In other words, the software 
reports any reactions that have to be active to make certain metabolic objectives (e.g. growth) 
chemically feasible. 
 
In this example, we will search for essential reactions for growth of E.coli on a minimal medium 
that contains only glucose as a carbon source. If you are continuing straight on from Exercise 1, 
you need to reset the problem file. This would be a good time to practice the skills you learnt in 
Exercise 1, and open the files from scratch.  
 
In JyMet, use ‘FileèOpen model’ to open Ec_iAF1260_flux1.sfba file. When the dialogue box 
appears, warning that external metabolites are not defined, click OK. Next, set the externality tag 
using ‘SolveèExternality tag’ from the JyMet menu and type ‘_b’ in the dialogue box. Finally, set 
define the objective function: Enter the biomass equation ID  into the ‘Objective:’ box 
(R_Ec_biomass_iAF1260_core_59p81M). The write the problem file using ‘SolveèWrite problem’. 
 
Once we have set up the problem file, we can begin the analysis. First, set the analysis method to 
essential reactions using ‘AnalysisèEssential reactions’. Next, start the analysis by selecting 
‘SolveèSolve’. Depending on the computer hardware you are using, the analysis should take 
between two and ten minutes. Once the analysis is complete, you will see the screenshot shown in 
figure 12.  
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Figure 12: Output from a Essential Reaction Analysis 

 
The first row of the results table tells you that 281 reactions (out of 2382) are essential. The rest of 
the results table is divided into two columns. The first column provides the reaction ID. The second 
column shows the comment section for each reaction, which describes the reaction mechanism. 
As before, the results table can be saved using ‘FileèSave table’: we recommend the ‘.txt’ tag, 
allowing the file to be opened in both text editors and spread sheet programs such as Excel. 
 
 
 
 
 
 
Exercise 3. Using the visualisation tools within JyMet 
JyMet, the graphical front end for MUFINS contains a visualisation tool to provide a rapid, intuitive 
tool for interrogation of simulation results and help optimise the model development pipeline. In this 
exercise, we will use a model of cell signalling, gene regulation and whole-cell metabolism in the 
RAW264.7 macrophage. This model is described as Use Case 1 in the original MUFINS 
publication, with a full description as Supplementary Information. The RAW264.7 mouse 
macrophage genome-scale metabolic network was first published by Bordbar et al (3). 
 
Open the model and prepare it for simulation. 
The folder ‘MUFINSèExamplesèRAW_264_7_r’ contains two files: an sfba file describing the 
model, and a pfile defining the problem. Open the sfba file in JyMet using ‘FileèOpen model’. 
When the dialogue box appears, warning that external metabolites are not defined, click OK. Next, 
set the externality tag using ‘SolveèExternality tag’ from the JyMet menu and type ‘_xt’ in the 
dialogue box. 
 
As can be seen in Figure 13, once the model opens it contains and usual reaction command: ~. 
This represents the linear inhibition constraint, a unique feature in MUFINS that sets an inhibitory 
command. For example, reaction r3 has the equation ‘~akt1 = gsk3b’; this is read that akt1 inhibits 
gsk3b. The command ‘&’ can be similarly used to indicate a stimulatory interaction.  
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Figure 13: A regulatory network in MUFINS using linear inhibitory constraints 

 
All the reactions in regulatory part of the model are ‘tagged’ with ‘@regnet’ in comments section. 
As ‘#’ symbol separates comment part of the line, the ‘hashtag’ cannot be used. Here we use 
@regnet as it is a unique tag for ‘EditèSearch’ function. Combination of multiple tags can also be 
used to enhance the granularity of model description. 
 
Open the problem file 
Use ‘FileèOpen problem’ to load RAW264_7_r/simulate.pfile. This file defines a series of 
problems, with each simulation separated by a row containing ‘;’. These in silico experiments 
investigate the influence of LPS and a Mek1 inhibitor on the maximal rate nitric oxide production. A 
section of the problem file can be seen in figure 14.  

Figure 14: Example problem file with multiple simulations 
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For each problem, the objective function is set maximize production of nitric oxide in the external 
environment (!max: M_no_e_xt). The following lines are used to set the parameters for each 
simulation. These include the required growth rate (R_biomass), the levels of the MEK1 inhibitor 
(mek_inhibitor) and LPS (lps_input), plus the maximal flux rate for three reactions in the regulatory 
network (r145, r102 and r208). 
 
Looking at the bound values for mek_inhibitor (Figure 14), you can see that the difference between 
the first and second simulation is the absence and presence, respectively, of the MEK1 inhibitor. 
 
Run Flux Balance Analysis 
Having set up the model and defined the problem, we can now undertake the analysis. First, select 
Flux Balance Analysis as our simulation mode (‘AnalyzeèFBA’). Next, we can run the simulation 
using ‘SolveèSolve’. Once the simulation has completed, the results are presented as a table 
(Figure 15), with each simulation in the problem file presented as a separate tab (Record1-3). In 
addition, the ‘INFO’ tag contains the simulation log, including the command lines used to run the 
simulation tool. These command lines can be used as examples to run stand-alone simulations or 
scripts in the command line, if desired. The results table for Record1 contains the maximal 
objective function value (0.0777853 h-1), and an example flux distribution.  

Figure 15: Results table from a Flux Balance Analysis 

Preparing the results table for visualisation 
While it is theoretically possible to visualise the entire network, this would just produce a ‘hairball’ 
that would be too complex to be of much use. Therefore, before a visualisation is produced, it is 
usual to reduce the number of reactions that will be viewed to a manageable number. This can 
easily be achieved through two steps: (i) selection of the sub-network of interest, and (ii) selection 
of only reaction with non-zero flux values. 
 
Selection of the sub-network of interest: In this exercise, we wish to visualize the signalling 
network. A good practice during model reconstruction is to add comments that allow easy 
identification of key sections of the final reconstruction. In this case, all regulatory reactions are 
tagged with the string ‘@regnet’, allowing their quick identification. To find all reaction associated 
with regulation in the results table, use ‘EditèSearch’ to filter all reactions tagged ‘@regnet’.  
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Selection of reactions with non-zero flux values: As we are interesting in what is happening in the 
network, we can effectively ignore reactions where the flux is zero. In common with many spread 
sheet-style outputs, the results table can be sorted by clicking on the column headings. By clicking 
on the column header ‘Transition rate’ reactions will be sorted in order of flux value (highest to 
lowest). It is then simple to select all regulatory network reactions with non-zero flux in this 
particular example solution. 
 
The resultant, sorted results table is shown in Figure 16 

Figure 16: Results table with only non-zero flux regulatory reactions selected 

 
Generating a visualisation in JyMet 
Once the results table has been prepared, selecting only those reactions that you wish to 
include in the visualisation, it is possible to generate the layout. To create an automatic 
layout, the options within ‘ViewèLayout’ are used. There are several different layout 
options available, but for the purpose of this exercise select  ‘ViewèLayoutèHierarchical’: 
the resultant visualisation is shown in Figure 17. The network is visualised in Petri Net 
(bipartite graph) notation with rectangles representing transitions and circles representing 
places. Flux values are written within each reaction rectangle, with the flux values for each 
component of a reaction indicated next to the reaction arrow. Line thickness is also used 
to visualise fluxes.  
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Figure 17: Visualisation of an example FBA solution 

It is possible to scroll around the visualisation, and right-clicking brings up a menu to allow 
zooming in and out. The layout is fully manually adjustable by clicking on any component 
to select it. Visualisations can be saved for later use with the ‘FileèSave graph’ function. 
This saved graph can then be reopened at a later time in JyMet, by clicking 
‘ViewèLayoutèCustom’. 
 
We note that the visualisations generated in JyMet are not intended to produce 
publication-quality images. Rather, they provide a tool for quick, iterative examination of 
simulation results, helping to streamline model reconstruction and interrogation. To 
generate publication-quality images we recommend using the JyMet-generated 
visualisation as a design template, creating the final image in dedicated desktp publishing 
software such as MS PowerPoint or Adobe Illustrator. Figure 18 demonstrates this 
process.  
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Figure 18: Use of a JyMet-generated visualisation as a template for publication-
quality images 
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Quasi Steady State Petri Net (QSSPN)  
The QSSPN algorithm integrates Petri nets and flux balance analysis to perform qualitative 
dynamic simulation of molecular interaction networks involving gene regulation, signaling and 
whole cell metabolism (4). Simulation is performed by a hybrid simulation algorithm based on the 
maximal timestep method (5), making it numerically stable and facilitating interrogation of modular 
models reconstructed at varying levels of detail. As shown in figure 19, the Petri net is used to 
describe the regulatory aspects of the model, such as ligand activation of a receptor, or gene 
expression. Changes in expression levels/activation status of metabolic proteins are transferred to 
the GSMN by setting the LB and UB for mapped reactions. Importantly, reaction flux values can be 
extracted from the FBA solution for a given objective function, and used to feedback into the 
regulatory network, meaning that a fully dynamic simulation can be achieved. The Petri net is also 
used to set further constraints on the simulation, for example setting a biomass flux value 
constraint to represent cell turnover. 

 Figure 19: Overview of QSSPN approach 

 
This tutorial introduces QSSPN model building in the Snoopy Petri Net editor (6) and subsequent 
simulation in MUFINS. We will use a kinetic model of cortisol signaling integrated with a dFBA 
simulation of human Genome Scale Metabolic Network (GSMN). The cortisol signaling model is a 
simplified version of the model presented by Kolodkin et al. (7), while the GSMN is the community 
based reconstruction Recon2 (8).  
 
This model involves all the new features of QSSPN available in MUFINS. Specifically, the Petri net 
now represents a fully parameterized Ordinary Differential Equation (ODE) model of cortisol 
signaling and external metabolite concentrations in physiological compartments. To learn how to 
use QSSPN for non-parametric simulation with Monte Carlo sampling of qualitative dynamic 
trajectories, please see the original QSSPN publication (4). All features of original QSSPN method 
are retained in new version. 
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Exercise 1: QSSPN simulation of cortisol signaling in the liver 
File Structure for a QSSPN simulation 
QSSPN is probably the most complex simulation undertaken with MUFINS, and it is worth taking 
some time to explore all the files required. Examples of the ‘user’ files required for a simulation are 
contained within the folder ‘MUFINS_ExamplesèR_Recon2’. The simulation-specific files are 
contained withinin the subfolder ‘MUFINS_ExamplesèR_Recon2èbin’.  
 
User-specific files to run a QSSPN simulation 
NR_Recon2.v3.1.spept – This is a Snoopy output file. Containing the model of cortisol 

signaling integrated with a dFBA simulation of the human Genome Scale Metabolic 
Network (GSMN). This Snoopy file is used to build Dynamic Transition (DT) part of the 
model. The constraint and objective places that connecting the DT and QSSF parts of the 
model are also defined within the Snoopy file. 
Note:  The latest version of Snoopy saves in the format *.xpn rather than *.spept. However, 
MUFINS will read both versions. 

 
recon2_xt.PIPES.CORE.v1.sfba – The MUFINS reaction table file describing the human 

GSMN Recon 2 [3]. This file is used to build the Quasi Steady State Fluxes (QSSF) part of 
the model. The Recon2 reconstruction has been further paramaterised to constrain the 
solution spave further. Specifically. only exchange reactions (those that link the GSMN with 
the external environment) present in the HepatpNet1 PIPES are set to allow uptake from 
the external medium. PIPES represents those metabolites present under normal 
physiological conditions (9). In addition, the maximal uptake flux values are also 
constrained based upon experimental metabolite consumption and production data (10), 
further constraining the solution space.  

 
NR_Recon2.v3.1.ctrl – This is the control file that sets the parameters for the QSSPN 

simulation. The control file can contain the following commands, with an example control 
fils shown in figure 20: 
MODEL: this defines the model to be simulated. As this is placed in the same folder as the 

control file, it’s location is designated by ./name.sfba 
NUMBER_OF_SAMPLES: Sets the number of times that a simulation is run (Default=1) 
SEED: Sets the seed for the random number generator used during stochastic transitions 
TIME_MAX: simulation time 
MAXIMAL_TIMESTEP: Sets the timestep for the simulation 
MAX_CHANGE: Allows an adaptive timestep to be introduced if necessary. A value or 0.01 

indicating a 1% change in token status of a palace  
OUTPUT: Specifies the file that stimulation results are written to. Usually an Excel file 

within the current directory (e.g. ./name.xls) 
LOG: Specifies the file for any log entries to be written to. Usually a txt file within the current 

directory (e.g. ./name.txt) 
MONITOR: Sets the number of iterations between writing of data to the output file. This 

parameter can be altered to achieve sufficient granularity in the simulation output 
INITIAL STATE: Sets the token state for places within the Petri net 
PROPENSITY_FUNCTION: Allows algebraic formulae to be used to define the transition 

propensity. Must finish with END  
RESET_FUNCTION: Sets the value of the post-place based upon the pre-place (e.g. to be 

exactly the pre-place value, or 1/20 etc.). Must finish with END. 
PETRI_NET_MONITORS: sets which places have their token status written to the output 

file 
/* … */: Used to enclose comments 

 
NOTE: values in the control file will overwrite any values entered into places or transitions within 
the Snoopy file. For best practice, we recommend that simple (i.e. mass action kinetics) rates be 
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placed within the Snoopy file, while complex (e.g. Michaelis-Menten kinetics) rates be placed 
within the control file. All initial values that are not default (i.e. 1 or 0) are best placed within the 

control file. 
Figure 20: Example control fi le for QSSPN simulation 

 
In addition to these three obligatory files, the top directory contains two additional files. These files 
are not required to run a simulation, and merely automate the task for ease. 
 
RUN_Mac – script that runs a QSSPN simulation of this example on MacOSX using binaries in bin/ 
CLEAN_Mac – scripts that clears simulation results on MacOSX. 
 
 
MUFINS-specific files to run a QSSPN simulation 
/bin/qsspn – qsspn solver for Mac copied here to create stand alone example distribution. The 

solver can be run in command line mode or started from JyMet interface or other scripts. 
 
/bin/qsspn.exe  - windows binary of qsspn solver 
 
/bin/qsspn-linux  – linux binary of qsspn solver.  
 Note: If this binary does not work on your version of Unix go to 

MUFINS**_Source/QSSPN/ and run compile.sh, install.sh to create a new binary in 
MUFINS**_Source/QSSPN/bin. 

 
/bin/spept2qsspn – python script converting Snoopy *.spept or *.xpn files to a QSSPN model 

file. This script provides the ‘semantics’ for a Petri net model build in Snoopy. It interprets 
the graphical symbols and annotations in the comments section to construct the Petri net 
part of the QSSPN model to be executed with the qsspn solver. 
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Use of Snoopy to create Petri net representations of signaling networks 
To create a regulatory network in Petri net formalism, we recommend the use of Snoopy, a 
graphical editor for Petri nets (6). QSSPN models can also be edited using the spreadsheet 
interface of JyMet, or through spreadsheet programs such as Excel, or a text editor. However, we 
recommend editing models in Snoopy to take full advantage of Petri Net graphical notation.  
 
Software distributions of Snoopy for multiple platforms are available at:  
http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Snoopy#downloads 
 
The graphical user interface of Snoopy makes model building intuitive. Figure 21 shows the 
Snoopy model to be used in this exercise, with additional annotation to aid understanding. To see 
the naïve model (without annotation), open ‘NR_Recon2.v3.1.spept’ by either double-clicking the 
file, or using ‘FileèOpen’ from the Snoopy menu. Once opened, the model can be viewed by 
scrolling around the main window, or by using ‘ViewèZoom’ to change the Zoom level. 
Depending on the version of Snoopy you are using, you may see a warning that you are opening a 
model built in an older version of Snoopy. If this happens, just click ‘Ok’ to acknowledge and open 
the model. 
 
 

 
Figure 21: Snoopy model fi le with additional annotation 

In figure 21, the color and symbol size has been manually adjusted to match SBGN molecule types 
and transition types specific to QSSPN. This is not necessary for simulation, but does aid 
interpretation of the network topology. Petri Net places (circles and ovals) represent molecular 
species, and are connected through transitions (rectangles) that represent reactions: the place 
before a transition is referred to as the pre-place and inputs into the reaction, while post-places 
occur after the transition and receive outputs from the transition. Places and transitions may be 
linked through directed arcs, read arcs or inhibitory arcs, which have distinct functions. Directed 
arcs transfer tokens from the pre-place to the post-place. In comparison, read and inhibitory arcs 
do not lose tokens from the pre-place to the post-place. Rather, they act as activators or inhibitors, 
with tokens in the pre-place required/absent for a reaction to occur (respectively), but are not 
consumed by the reaction. 
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The model is constructed of several functional units, indicated by the grey-hatched boxes.  
Gene expression is represented as both transcription and translation reactions, with associated 
degradation of the mRNA and protein products. Read arcs (line with filled circle) are used as both 
transcription and translation do not consume their substrates (i.e. gene and mRNA).  
Ligand activation of receptors represents the interaction of cortisol with the glucocorticoid receptor 
(GR) and pregnane X-receptor (PXR). Here, directed arcs (line with arrow head) are used to 
represent movement of species during reactions. In addition, the presence of a second ligand for 
PXR (ligand2) is simulated, allowing the examination of drug-drug interactions.  
A cortisol infusion can be simulated through a timer; for clarity this timer is hidden within a coarse 
transition (double squared box), with the timer shown as an inset to the main diagram.  
Liver turnover is used to set a constraint on the biomass reaction, representing the minimum level 
of resources (e.g. amino acids, ATP, nucleotides etc.) required for the hepatocyte to be able to 
replenish itself.  
Objective functions set the reactions or metabolites that will be maximized during FBA. In this 
case, the external metabolites for glucose and estradiol are used. From each FBA solution we 
extract fluxes that can be used to monitor the behaviour of the system.  
A dFBA for glucose-lactate homeostasis is included. This adds an additional constraint whereby 
the GEM must maintain glucose and lactate levels in the blood at 4mM and 1.5mM, respectively.   
Recon2 GSMN is a transition that represents the QSSF part of the simulation 
 
Markup required within the Snoopy file of a QSSPN simulation 
All items within a Snoopy representation of a Petri net (i.e. places, transitions and arcs) can have 
comments attached to them. Double-clicking on the item will open the ‘Edit Properties’ box so that 
these comments can be accessed. The comments are read by qsspn and used to set the 
parameters for the simulation. The roles of these comments will be described in the following 
section. Furthermore, to couple the dynamic transition part (Snoopy file) with the quasi steady-
state flux part (GSMN) of a QSSPN simulation, a number of special transitions are used within the 
Snoopy file. These allow qsspn to read the interconnections between the two parts and perform 
the dynamic simulation, and special comments are required for these. 
 
NOTE: values in the control file will overwrite any values entered into the comments section of 
places or transitions within the Snoopy file. For best practice, we recommend that simple (i.e. mass 
action kinetics) rates be placed within the Snoopy file, while complex (e.g. Michaelis-Menten 
kinetics) rates be placed within the control file. All initial values that are not default (i.e. 1 or 0) are 
best placed within the control file. 
NOTE: you can also use the comments section to enter text comments. If the qsspn parser does 
not recognize a specific command, it will treat it as a text comment and ignore it. Text comments 
can be useful to add supporting evidence for reactions, such as PubMed IDs for relevant papers, 
or details on a species, such as Entrez Gene IDs. 
 
Comments within arcs: Setting transition type 
Open the ‘Edit Properties’ box for arc between the place ‘lactate’ 
and the transition ‘F3’. Inside the comments section you will see 
one entry (Figure 22). The comment section of an edge specifies 
the activity of the pre-place, in this case Lactate. The ‘ACTIVITY 
0’ followed by ‘END’ denotes mass action activity i.e. the marking 
of the pre-place is used. If in doubt, it is better to enter this 
comment for any arc connecting a pre-place with a transition in a 
Petri net. The only exceptions to this are the arcs connecting the 
objective function to any fluxes that you wish to extract from the 
FBA example solution – these should be left empty.  

 

Figure 22: Arc comments 
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Comments within a transition: Setting rates 
Open the ‘Edit Properties’ box for transition ‘F3’. Inside the 
comments section you will see two entries (Figure 23). The tag 
‘FAST’ is used to specify that this is continuous transition. The tag 
‘RATE’ is subsequently used to set the flux rate of the transition, in 
this case to -0.01666667 1/min. If no ‘RATE’ tag is used, then a 
rate of 1 is set by default. Alternatively, a rate can be taken from 
the control file. 

 
 
 
 
 

Figure 23: Setting the flux  
value for a transition 

 

Comments within a transition: Defining the GSMN 
Within Snoopy, the Recon2 GSMN is represented as a transition 
named ‘Recon_2’. Within the comments section of this transition, 
two command lines are added: first ‘MODEL Recon2_PIPES’ set 
the transition type as a link to a model; second, ‘EXT_TAG _xt’ 
specifies the external tag used within the GSMN (Figure 24). 
 

 

 

 
 

Figure 24: Comments section  
for the Recon2 transition 

 
Comments within places: Setting activity for mapped reactions 
Connection between the continuous PN representing the kinetic 
model of cortisol signaling and the GSMN occurs through the 
QSSPN constraint place representing the CYP3A4 protein, as 
denoted by the read arc between the CYP3A4 protein place and 
the Recon2 transition. To provide a conversion between the 
expression level of CYP3A4 protein in the continuous Petri net and 
bounds for all reactions catalysed by CYP3A4 within Recon2 a 
lookup table is added to the comment section of the CYP3A4 
protein place (Figure 25). As shown in the figure, this lookup table 
is composed of two parts: a list of all reactions that the protein 
catalyses within Recon2, and a set of activity values. Where only a 
single reaction is mapped to a protein, then this can be entered 
directly next to ‘ENZYME’, but where multiple reactions are 
effected a list is used (as shown here). The number next to each 
reaction (e.g. 1.0) sets the relative impact of the activity list on 
each reaction, allowing differential control of reactions by a protein. 

Figure 25: Mapping protein  
  levels to reaction activity  

 
 



 

 23 

The activity list sets the bounds for these reactions at any given token status for the protein place. 
In this case, the flux bounds of all nine reactions are closed (0, 0) for CYP3A4 concentrations 
smaller than 1500 nM and fully open (0, 1000) at higher concentration. This threshold is sufficient 
parameterisation for the conclusions presented in this use case, but we note that lookup tables 
with more levels could be constructed to interpolate rate equation of CYP3A4 enzyme and 
quantitative parameters.   
To link token status within a Petri net representation of a gene or signaling regulatory network with reaction 
bounds within a GSMN, comments are added to the QSSPN constraint place (e.g. place representing a 
metabolic enzyme). The comments specify, (i) which reactions are linked to the constraint place, and (ii) the 
activity of these reactions for any given token status of the constraint place.  
 
 
Comments within places: Defining the objective function and extracting fluxes of interest 
To demonstrate the use of comments within places, we have used MUFINS to integrate a simple 
PBPK constraint with a metabolic reconstruction. This produces a dynamic FBA model that 
quantitatively constrains the Recon2 GSMN through an ODE model of lactate and glucose 
concentration in blood. A major physiological function of the liver is to achieve homeostasis for a 
range of chemicals within the body, including glucose and lactate. Erythrocytes (red blood cells; 
RBCs) produce lactate during normal cellular respiration, which is then excreted into the blood. As 
elevated lactate levels may be toxic, lactate is taken up by the liver and converted to glucose. 
Secretion of glucose by the liver into the blood is important to maintain blood glucose 
concentrations for use throughout the body.   
 
The graphical, Petri net representation of the model is shown in Figure 21: glucose and lactate in 
the blood were modelled as Petri net places, with continuous marking representing their 
concentration in mM. Lactate is formed from glucose in the blood: to scale lactate production to a 
physiological level, an additional Petri net place was connected to this transition via a read arc, 
representing the total number of RBCs in the blood (Figure 21). The produced lactate 
concentration in the blood was modelled as QSSPN constraint place, representing the availability 
of lactate for the lactate exchange reaction in the Recon2 GSMN. As shown in the right panel of 
figure 26, if lactate concentration is below 0.001 mM, the exchange reaction is constrained to (0, 
1000), preventing uptake of lactate. Otherwise, the lactate exchange reaction flux is set to (-
0.0565, 1000) representing a saturating lactate uptake rate of 0.0565 mmol/gDW/h, consistent with 
experimental observations.  
 
The metabolic utilization of lactate to form glucose in the liver has been represented by setting the 
FBA objective function as maximization of external glucose. This objective function has been 
represented by the QSSPN objective place glucose (Figure 21). Commands placed within the 
comments section of this place specify the metabolite to optimize (external glucose), plus an 
activity table to prevent the use of this objective if it is infeasible (Figure 26, middle panel).  
 
Finally, flux values are extracted from the FBA solution using QSSPN flux transitions (figure 26, 
right panel). These are connected to the objective function via a read arc, and access values of the 
FBA solution for the specified flux fluxes. A directed arc transfers this flux value to a place, where it 
can be read (Figure 21). The token values for these flux places are then used as inputs for rate 
equations within transitions representing glucose production and lactate consumption by the 
hepatocyte. To scale the simulated flux values to a physiological level, these transitions are 
modified by a Petri net place representing the total number hepatocytes, connected via a read arc 
(Figure 21).  
 
To represent the net contribution of the rest of the body to glucose blood levels, a glucose source 
transition is added. This transition adds glucose to the blood at the rate required to achieve the 
known steady-state glucose blood concentration (-2.76 mmol/L/min). 
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Figure 26: Generation of physiological compartment dynamics for QSSPN simulation 

Properties are shown for: QSSPN constraint place for lactate consumption (right), QSSPN objective place to 
set the objective function for FBA as maximization of production of external glucose (middle), and QSSPN 
flux transition to extract flux value for glucose exchange from the FBA solution in the pre-place. 
 
Introduction of a perturbation using Snoopy 
A key part of dynamic simulations is the requirement to cause perturbations to the system and then 
observe the results. We have designed Petri net representations of a simple timer, allowing such 
perturbations to occur at a specified time, or at a specified frequency. In this exercise, we use a 
time to start an infusion of cortisol after 500 minutes of simulation. We also use this example to 
show how coarse transitions can be used to encapsulate technical network into coarse places or 
transitions, clarifying the biological network diagrams. 
 
To view the sub-network, first ensure the Hierarchy window is visible (Figure 27). If this is not 
visible use ‘ViewèToggle Hierarchy browser’ to make it appear. Double clicking on the item 
‘cortisol_burst’ will open a new window containing the sub-network (Figure 27) 
 

Figure 27: The sub-network ‘cortisol_burst’ 
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The perturbation timer consists of several components. 
Place ‘clock’: This place contains a single token and acts as a pre-place for the transition F1 
Transition ‘T1’: This transition connects the pre-place ‘clock’ with the post-place ‘timer’. It has a 

RATE of 1, and is connected to the pre-place by a read edge. This means that every 1 unit of 
simulation time, a token is added to ‘timer’, but without removing a token from ‘clock’ 

Place ‘timer’: This place collects tokens from ‘clock’ acting to keep time in the simulation 
Transition ‘perturbation’: This transition accepts tokens from the pre-place ‘timer’ and adds them to 

the post-place ‘cortisol_blood’, which connects to the main network. This place uses a 
RESET command in the comments section, meaning that the value of ‘cortisol_blood’ is set 
directly by the number of tokens in the pre-place, rather than receiving them at a specific 
rate. In this case, the following lines appear in the control file, setting the number of tokens to 
be transferred to 50 

 RESET_FUNCTION perturbation 
               50 
               END 

 
Arc connecting ‘timer’ to ‘perturbation’: This arc has a look up table that means it is only active 

when the pre-place reaches 500 tokens (Figure 28). This means that the perturbation will 
begin after 500 units or simulation time.  

 Note: An alternate method is to set the multiplicity to ‘500’. This would change the 
perturbation from an infusion (i.e. always on after 500 time units) to a burst (i.e. timer resets 
after delivering a burst at 500 time units, and begins to accumulate again 

Arc connecting ‘perturbation’ to ‘timer’: this arc uses the comment STOCHIOMETRY to set how 
many of the tokens proceed along this arc. In this case, the value is set to 0, meaning no 
tokens move along this arc. The reason for including this arc is that when the previous arc is 
set to produce a burst (i.e. using the multiplicity value) then this is necessary to reset the 
token status of the ‘timer’ place to zero and reset the timer. 

 
Running a QSSPN simulation 
As with all functions in MUFINS, QSSPN simulations can be undertaken either through JyMet or 
the command line. For the exercises described under constraint-based modelling, the simulation 
times are fast and JyMet is the obvious interface to use. However, QSSPN simulation can be 
longer, depending on the complexity of the model, and hence executing both through JyMet and 
the command line (especially via a remote server) is more common. Therefore, both ways to 
exectute a QSSPN simulation will be described below. 
 
Running a QSSPN simulation through JyMet:  
The implementation of a JyMet interface for QSSPN simulations is major new feature of MUFINS. 
Upon starting JyMet from, three files must be imported. The first is the GSMN model, designated 
as recon2_xt.PIPES.CORE.v1.sfba, and can be opened via (FileèOpen Model). Successful import 
will produce the screen shown in figure 28. 
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Figure 28: Import of recon2_xt.PIPES.CORE.v1.sfba in JyMet 

 
Second, the Snoopy file must be imported (QSSPNèImport SPEPT). During this process, the 
program prompts for to ‘Set default maximal number of tokens’. As commented above, this is best 
left at 2 for qualitative simulations and 1e9 for quantitative simulations (a value unlikely to be 
exceeded by any species within the network). Once this import has completed you will see the 
screen shown in Figure 29. The tabs ‘PN nodes’, ‘Interactions’, provide interface to Petri Net 
places and Transitions. The ‘Metabolites’ and ‘Enzymes’ tabs contain lookup tables linking Petri 
Net model to GSMN. All parameters are defined in SurreyFBA**_Docs_qsspn.pdf. 

Figure 29: Import of NR_Recon2.v3.1.spept Snoopy file into JyMet 
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Finally, the control file is loaded (QSSPNèLoad Control). Figure 30 shows the control file 
simulation parameters. The ‘InitialStates’ tab sets initial marking of places (i.e. molecular species), 
while the ‘Functions’ tab allows editing of algebraic formulae for transition propensity functions. 
The ‘Flux Map’ tab describes reactions where flux values are extracted from the FBA solution. 

Figure 30: Import of NR_Recon2.v3.1.ctrl into JyMet 

Once all the necessary files have been imported, simulation can be undertaken (QSSPNèRun). 
Once the simulation has finished, the ‘Output’ tab will appear, containing data from all Petri net 
places specified in the control file. These can be visualized by selected them and then using 
(QSSPNèPlot Trajectory). An example trajectory plot is shown in figure 31. 

Figure 31: Example output trajectory for cortisol 
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A results file is automatically written in the simulation folder, with the name specified under 
‘OUTPUT’ in the control file. This can be opened in spreadsheet programs such as Excel for 
further examination.   
 
Running a QSSPN simulation through the Command line:  
QSSPN simulations can be run in the command line under all major OS. Instructions for running 
QSSPN in Mac, Windows and Linux are given below.  
 
Under a Mac OS, start terminal, and navigate to the folder containing the simulation files and enter 
the following commands 

./bin/spept2qsspn name.spept x > name.qsspn 
this converts the named *.spept or *.xpn file to a qsspn input format. x specifies the largest 
possible number used in the simulation. For qualitative simulation, this can usually be set as 2, but 
for quantitative simulation we recommend 1e9 (a value unlikely to be exceeded by any species 
within the network). 

./bin/qsspn name.qsspn name.ctrl.txt 
this executes the simulation. After a brief pause, simulation progress will be seen in the terminal 
window, with each number representing the simulation time for each MONITOR step. 
Note: In the example folder for this software distribution the script RUN_Mac will automatically 
execute the above two commands, while CLEAN_Mac will delete the output files 
   
For Windows OS, the above commands can be used in the Windows Command Line, using 
Windows syntax. A python interpreter is required to run spept2qsspn. In general, we recommend 
running simulations using JyMet under Windows OS 
  
For Linux OS, the user should execute two command lines using either binaries available in /bin or 
go to MUFINS**_Source/QSSPN/ and run compile.sh, install.sh to create new binary in 
MUFINS**_Source/QSSPN/bin. Both qsspn and spept2qsspn do not require any libraries or 
environmental variables and can be moved to any convenient location on the system, such as 
/usr/local/bin. 
 
QSSPN Semantics Guide 
This section provides a detailed guide to the semantics used in creating a QSSPN simulation. It is 
not designed to be used on its own, but acts as a reference beyond the details provided in the 
Exercise.  
 
QSSPN file format 
The QSSPN file specifies the Dynamic Transition part of the model as well as constraint and 
objective places connecting the Dynamic Transitions to Quasi Steady State Fluxes.  
The list of Petri net places is defined in the following format: 
 
SUBSTANCES 
  Name init max type 
  … 
END 
 
Each line between SUBSTANCES and END specifies one Petri net place. The fields have the 
following meaning: 
 
Name – node name. 
init – initial number of tokens associated with the node. 
max – the maximal number of tokens. 
type – place type, 1 – common place, 2 – objective place, 3 – constraint place. 
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Subsequently, the text between tags REACTIONS and END specifies Petri net transitions. Each 
transition is specified by the text between INTERACTION and END tags: 
 
INTERACTION 
   SUBSTRATE Name rate type delay  
      ACTIVITY n 
          t1 a1 
          … 
          tn an 
      END 
   END 
   PRODUCT Name 
   CONSUMED Name 
END 
 
Each SUBSTRATE and PRODUCT tag specifies a Petri net pre-place or post-place, respectively. The 
CONSUMED tag specifies which of the pre-places change state upon firing of the transition. When 
transition fires it removes tokens from pre-places specified as CONSUMED and adds tokens to post-
places. Thus, activators and inhibitors feature as transition pre-places, but are not specified as 
CONSUMED. The ACTIVITY section is associated with a particular pre-place and provides a lookup 
table for the contribution of the pre-place to the transition propensity function (defined later).  
The ACTIVITY table with 0 rows: 
 
ACTIVITY 0 
END 
 
indicates that a particular pre-place has mass-action activity function in the transition. This is 
implemented to support integration of quantitative models. 
 
The variables have the following meaning: 
 
Name – the name of Petri net place. 
rate – transition rate. 
type – transition type, SLOW (stochastic), INSTANT (immediate), FAST (continuous), FLUX (flux, 
new feature), RESET (reset, new feature). 
delay – Applies to SLOW (stochastic) transitions only. If delay is greater than 0 transition is 
treated as delayed with delay time set by this parameter. 
t, a – Threshold and propensity function contribution. If the state of the pre-place node is greater 
or equal to t in particular row of the table and smaller than t in next row than the pre-place 
contribution to propensity function is set to a. 
 
The text between GSMN and END describes connectivity between Dynamic Transitions (regulation) 
and Quasi Steady State Fluxes (metabolism). MODEL tag can be used to specify the path to 
MUFINS reaction table file with the QSSF model. Settings of MODEL tag are overridden by the 
value of MODEL tag in the control file. The EXT_TAG specifies externality tag in MUFINS file. This 
is the string at the end of metabolite name, which indicates external (unbalanced) metabolites in 
FBA model.  
 
The mapping of flux transition to a particular QSSF flux is defined as: 
 
FLUX transition flux 
 
Where, transition is a transition name in the INTERACTION section of the qsspn file, and flux is the 
reaction name in the MUFINS reaction table. In this case, the transition type must be set as FLUX 
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in the INTERACTION section. The flux transition must have an objective place as the only pre-
place and must be connected to only one post-place. 
 
The objective place is specified by the METABOLITE tag: 
 
METABOLITE Name Objective 
      ACTIVITY k 
          t1 n1 
          … 
          tn nk 
      END 
END 
 
Where, Name is the name of Petri net objective place and Objective is the name of flux or 
metabolite in the QSSF. The activity table maps real values of linear programming optimization of 
QSSF objective to integer number of tokens. 
 
The constraint node is specified by ENZYME tag: 
 
ENZYME Name Flux 
      ACTIVITY k 
         n1  lb1 ub1 
     … 
         nk  lbk ubk 
      END 
END 
 
Where, Name is the name of constraint node and Flux is the flux in the QSSF that is constrained. 
The activity table maps an integer number of tokens n into lower (lb) and upper (ub) flux in QSSF.  
 
Alternatively, the activity table can be applied to a list of fluxes rather than a single flux. This 
enables modelling of enzymes that catalyze multiple reactions. The flux name is replaced by ‘list’. 
The list of m fluxes is then provided between LIST and END tags. Each flux name is associated 
with a weight w, further increasing the flexibility of expressing enzyme-reaction relationships.  
 
ENZYME Name list 
      ACTIVITY k 
         n1  lb1 ub1 
     … 
         nk  lbk ubk 
      END 
 LIST m 
         Flux1 w1 
         … 
         Fluxm wm 
      END 
 END 
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QSSPN control file format 
The HepatocyteQSSPN.ctrl.txt file can be edited with text editor. It specifies parameters of the 
simulation. The file has the following format: 
 
MODEL path 
NUMBER_OF_SAMPLES N  
SEED seed  
TIME_MAX tmax  
MAXIMAL_TIMESTEP timestep 
MAX_CHANGE change  
 
OUTPUT out 
LOG log 
MONITOR m  
PROGRESS progress 
 
TARGET name t 
 
INITIAL_STATE  
name value 
… 
END 
 
PROPENSITY_FUNCTION name 
formula 
END 
 
RESET_FUNCTION name 
formula 
END 
 
PETRI_NET_MONITORS 
name 
… 
END 
 
SIMULATION 
 
The path specifies the file containing the metabolic network in a MUFINS reaction table format. 
On some Linux distributions, the full path to the file may be required. The parameter N indicates 
the number of independent trajectories starting from the same initial conditions. The seed is the 
seed of random number generator. The tmax is the maximum simulation time. Simulation of a 
trajectory stops after the maximal time is reached. The maximal timestep parameter of the QSSPN 
algorithm is set to timestep. It is a maximal change of place marking in an adaptive timestep 
Euler algorithm used in the fireContinuousTransitions function. The default value of 0.01 indicates 
1% change of place marking.   
 
The INITIAL_STATE and END tags enclose initial marking of PN places. The name is the place 
name and value is its marking at the start of simulation. This feature has been introduced to allow 
specification of continuous place marking by real numbers rather than integers, as the Snoopy 
editor interface supports only integer marking. 
 
The major new feature of QSSPN is use of algebraic formulas to define transition propensity 
functions and reset functions. The PROPENSITY_FUNCTION name, END lines enclose algebraic 
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formula used to calculate a propensity function of transition ‘name’. The formula uses pre-place 
names as variables. Parameters must be introduced as values. Alternatively, parameters may be 
introduced as pre-places connected to the transition with read edges. The parameter values may 
be then specified via the INITIAL_STATE section. The pre-place names can be linked with ‘+’, ‘-’, 
‘*’, ‘/’ and ‘^’ (power) operators, and brackets can be used. In the current implementation we do not 
use functions. The RESET_FUNCTION, END tags enclose formula that use the RESET transition to 
calculate the value to which marking of post-places will be set.   
 
The state of the system is recorded after each m iterations of the QSSPN algorithm. Output from 
for each trajectory is written in a tab separated text format to the file specified by out path. The 
names of Petri net places to be monitored in the trajectory file need to be listed between 
PETRI_NET_MONITORS and END tags. Each name should be written in a separate line. The log 
file reports completion of each trajectory and can be used to monitor progress of the simulation. 
The log file also contains statistics of trajectory sampling. If the PROGRESS tag is specified, the 
trajectory number and simulation time are printed to standard output after each progress 
iterations. 
 
The QSSPN trajectory samples are analyzed to calculate the number of trajectories that exhibit a 
certain behavior. If the behavior of interest can be expressed as a reachability problem (certain 
place reaching a certain state) the TARGET tag can be used to facilitate calculations. In the log file 
the QSSPN software reports the number of trajectories where the target node specified reaches 
the threshold t. The trajectory is stopped after these conditions have been met. If the user wishes 
to calculate the sample of trajectories that are not stopped before tmax and analyze them later, a 
dummy target that can never be reached needs to be specified (any Petri net plac with a threshold 
larger than its maximal number of tokens).  
 
The SIMULATION indicates the function implementing QSSPN algorithm. Currently only this 
function is available, but in future versions we may implement functions performing more complex 
simulation protocols (e.g. place inactivation scans). 
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Use of MUFINS to analyze ~omics data in the context of genome-
scale metabolic networks 
 
Overview 
The integration of ~omics data with genome-scale metabolic networks has two distinct advantages: 
(i) the generation of context-specific genome-scale metabolic networks to allow examination of the 
emergent behavior of these metabolic landscapes during, for example, disease progression 
(REFS) 
(ii) the additional constraints placed that emerge through integration of ~omic datasets and 
genome-scale metabolic landscapes has been shown to improve the robustness of predictions 
made from thse ~omic datasets. 
 
MUFINS contains a number of different analysis methodologies to interpret ~omics data in the 
context of a GSMN, namely: Gene inactivity moderated by metabolism and expression (GIMME), 
iMAT and Fast iMAT. (REFS) 
 
This section will detail how to undertake these methods in MUFINS. Analysis can be undertaken 
through JyMet, but due to the time involved in most of these procedures it is more likely that jobs 
will be run on a remote server. Therefore, command line options are presented. 
 
Usage of iMAT method and alternatives. 
 
Synopsis 
 
./sfba  -i model_file  -X external_tag  -j gexp_file  -p problem_type  -b problem_file   
[-o array] [-s solver] [-c] [-f output_file] 

 
where,  
 
-i model_file  :  input model file in MUFINS reaction table format. 
-j gexp_file  : input gene expression data file 
 
For iMAT and Fast iMAT methods (-p imat, -p fimat), gene expression data should be pre-
processed and discretized as 3 levels: highly (1), lowly (-1) and moderately expressed (0).  For  
example: 
 
Gene  Tissue1 Tissue2 
g1   1   1 
g2   1  -1 
g3  -1   1 
… 
 

Where, the first column consists of gene names, and each of the following columns is associated 
with a gene expression profile for particular condition. Since this method was initially formulated to 
generate ‘tissue-specific models’, the columns are labelled as ‘Tissue*’ in the JyMet interface. 
Columns are tab-delimited, with ‘NA’ denoting an empty value.  The expression data can also be 
enzyme expression level (protein abundances) which is used in the same way as the gene 
expressions. For the GIMME methods (-p gimme and –p gimmefva), the expressions are pre-
processed absolute expression levels (positive numbers).  
 
-p problem_type :  analysis method 
The following methods are implemented:  

imat[,thr] : iMAT method where thr is positive threshold for active flux, used to establish 
whether reaction is active or not. If not set, the default value is 1. 
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fimat: Fast iMAT approach (see MUFINS manuscript). 
gimme[,thr]: the objective function of GIMME method is to minimize the fluxes of lowly 
expressed reactions weighted by the deviations of reaction expression state from predefined 
threshold thr (default 12) for low expression. The output is similar as FBA. 
gimmefva[,thr]: the objective function is the same as gimme, but the output is in FVA format. 
 

-b problem_file  :  input problem file 
Problem file follows the format of FBA described in MUFINS manual (see sfba.pdf). The following 
parameters are specific to ~omics data analysis:  

![expression name]   - In ~omics data analysis approaches objective function represents 
congruency between data and flux distribution, rather than reaction flux. Thus we use the 
name of ~omics data sample (Tissue) in place as objective function. For gimme and 
gimmefva, the problem should define reaction bounds which define Required Metabolic 
Functionalities (RMF) that the cell is assumed to achieve, such as for example growth rate 
where the biomass reaction should be fixed at specific value. 
?[reaction name and gene name]  - perform analysis only for specific reactions and genes. If 
no reaction or gene designated, all reactions and genes will be investigated. Names are single 
space-delimited.    

 
-o array :  expression array 
Without the problem file you can directly specify which expression array column in expression table 
you would like to analyze.  
 
-s solver : solver and algorithms 
Both a GNU Linear Programming kit (GLPK) and Gurobi can be used as the solver. For the GLPK 
solver you can choose simplex, exact or milp[,mip_gap] with mip_gap indicating the tolerance of 
the mixed integer linear programming (MILP: default mip_gap = 1e-6).   
To use the Gurobi solver, set options as -s grb[,tol[,foc]] where 2 parameters can be set. 
Parameter tol is used to set Dual&Primal feasibility tolerance for the Gurobi solver, tightening this 
tolerance can produce smaller constraint violations (default: 1e-6, Min: 1e-9, Max: 1e-2). 
Parameter foc is used to set MILP solution strategy, 4 integer values can be chosen which are  1: 
focus on finding feasible solutions quickly; 2: focus on proving optimality; 3: focus on moving 
objective bound; 0 (default): balancing between finding new feasible solutions and proving that the 
current solution is optimal. If MILP solver is very slow for a problem then try foc=3.  Because 
Gurobi’s MILP is much efficient than GLPK’s MILP, it is better choose Gurobi for problems which 
need MILP solver (such as imat and fimat) on big models. 
The default solver is GLPK simplex. 
 
Example 
Run the following commands: 
./sfba -i model.sfba -X _xt -j gexp -p imat -o Tissue1 –s grb -c -f out_imat 
./sfba -i model.sfba -X _xt -j gexp -p fimat -o Tissue1 –s grb -c -f out_fimat 
./sfba -i model2.sfba -X _xt -j gexp_level -p gimme,12 -b problem_gimme -c -f 
out_gimme_gni 
./sfba -i model2.sfba -X _xt -j gexp_level -p gimmefva,12 -b problem_gimme -c -f 
out_gimmefva_gni 
 

Output for iMAT (imat): 
Flux-activity analysis results for expression profile of Tissue1 

       

Flux-activity state for reactions:     
Reac(direc) Active Inactive ACT_LEV State Comment  
R1 (+) 4: OPTIMAL 2: OPTIMAL 2 1 Reaction  1 
R1 (-) 0: UNDEFINED 5: OPTIMAL -5 1 Reaction  1 
R2 (+) 4: OPTIMAL 2: OPTIMAL 2 1 Reaction  2 
R3 (+) 4: OPTIMAL 1: OPTIMAL 3 -1 Reaction  3 
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R4 (+) 4: OPTIMAL 4: OPTIMAL 0 1 Reaction  4 
R5 (+) 4: OPTIMAL 4: OPTIMAL 0 1 Reaction  5 
R5 (-) 0: UNDEFINED 5: OPTIMAL -5 1 Reaction  5 
///       
Flux-activity state for genes:     
Number of genes: 5      
Gene Active Inactive ACT_LEV EXP_LEV Postregulation 
g1 4: OPTIMAL 2: OPTIMAL 2 1 no  
g2 4: OPTIMAL 2: OPTIMAL 2 1 no  
g3 4: OPTIMAL 1: OPTIMAL 3 -1 up  
g4 4: OPTIMAL 4: OPTIMAL 0 1 no  
g5 4: OPTIMAL 4: OPTIMAL 0 1 no  

;       

 
Symbol (+) indicates the forward direction of reaction, that is, from left side to right side of the 
reaction formula in the model, whereas (-) indicates the reverse direction. Active denotes the 
maximum similarity when reaction forced to be active.   Inactive denotes the maximum similarity 
when reaction forced to be inactive.  ACT_LEV denotes the activity state of reactions, that is, 
Active - Inactive.  If ACT_LEV >0, reaction is predicted to be active; if ACT_LEV <0 reaction is 
predicted to be inactive; if ACT_LEV =0, reaction is predicted to be undetermined. For reversible 
reactions, the directionality can be judged by comparing the ACT_LEV of both directions, for 
example, ACT_LEV of R1 (+) is 2 against -5 of R1 (-), so reaction R1 prefers the forward direction. 
State column denotes reaction state determined by genes expressions and rules, where 1 means 
highly activated; -1 means lowly activated; 0 means moderately activated. 
 
Flux-activity state for genes can be used to test if the genes have post-translational regulations. 
For example, the expression level of g3 is -1 (lowly expressed), while its ACT_LEV value is 3 
(active), so the corresponding gene could be post-up-regulated. The state of reactions can also 
give post-regulation information, for example R3 has STATE of -1 (lowly expressed) and its 
ACT_LEV is 4, so the reaction must be post-up-regulated through its regulation genes or enzyme. 
 
 
Output for Fast iMAT (fimat): 
 
#666666: OPTIMAL (R1 + R1__r + R2 + -1 R3 + R4 + R5 + R5__r) 
Reac(direc) Minimum  Maximum    Activity State Comment 
R1  500000: OPTIMAL 500000: OPTIMAL 1  1 #Reaction 1 
R1__r  0: OPTIMAL  0: OPTIMAL      -1  1 #R1:Reverse 
R2  500000: OPTIMAL 500000: OPTIMAL 1  1 #Reaction 2 
R3  999999: OPTIMAL 999999: OPTIMAL 1  -1 #Reaction 3 
R4  333333: OPTIMAL 333333: OPTIMAL 1  1 #Reaction 4 
R5  333333: OPTIMAL 333333: OPTIMAL 1  1 #Reaction 5 
R5__r  0: OPTIMAL  0: OPTIMAL  -1  1 #R5:Reverse 
; 

 
The first row shows the maximized optimal flux 666666 and its state OPTIMAL on the objective 
function max(R1 + R1__r + R2 + -1 R3 + R4 + R5 + R5__r). Column  State denotes reaction state 
determined by genes expressions and rules and the coefficients are determined by these states. 
After fixing the nonzero-state reactions' fluxes, the normal FVA then be applied to each zero-state 
reaction. Let predicted flux range be [Fmin, Fmax], if Fmin >0 or Fmax<0 then reaction is predicted 
to be active (1); if Fmin = Fmax = 0 then reaction is predicted to be inactive (-1); otherwise reaction 
is predicted undetermined (0). By this reaction R1, R2, R3, R4 and R5 are active, and reverse 
reactions R1__r and R5__r are inactive which is consistent with the results of imat. Reactions with 
suffix ‘__r’ are split reverse reactions for nonzero state reversible reactions. 
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Output for Gene inactivity moderated by metabolism and expression (gimme): 
 
#75: OPTIMAL (3 R6 + 3 R6__r) 
BIOMASS 50 0 #Biomass 
GROWTH  50 0 #Growth 
NR1  0 0 #Nutrient M1 
NR2  100 0 #Nutrient M2 
NR3  25 0 #Nutrient M3 
NR4  0 0 #Nutrient M4 
R1  50 100 #Reaction 1 
R2  25 100 #Reaction 2 
R2__r  0 100 #R2:Reverse 
R3  0 100 #Reaction 3 
R3__r  0 100 #R3:Reverse 
R4  0 0 #Reaction 4 
R5  25 200 #Reaction 5 
R5__r  0 200 #R5:Reverse 
R6  25 9 #Reaction 6 
R6__r  0 9 #R6:Reverse 
; 

 
The first row shows the minimized optimal flux 75 and its state OPTIMAL on the objective function 
minimize (3 R6 + 3 R6__r) under maximal growth (biomass fixed at 50). The value 75 is 
inconsistency score indicating the degree of disagreement between the gene expression data and 
the assumed objective function under specified required functionalities. Second column is non-
unique flux for each reaction; third column is the reaction state determined by genes expressions 
and rules using the same mapping rule as iMAT method. Reactions with suffix ‘__r’ are split 
reverse reactions for all reversible reactions. 
 
 
Output for gimmefva: 
 
#75: OPTIMAL (3 R6 + 3 R6__r) 
Reac(direc) Minimum Maximum Activity State Comment 
BIOMASS 50: OPTIMAL 50: OPTIMAL  1 0 #Biomass 
GROWTH  50: OPTIMAL 50: OPTIMAL  1 0 #Growth 
NR1  0: OPTIMAL 25: OPTIMAL  0 0 #Nutrient M1 
NR2  100: OPTIMAL 100: OPTIMAL  1 0 #Nutrient M2 
NR3  0: OPTIMAL 25: OPTIMAL  0 0 #Nutrient M3 
NR4  0: OPTIMAL 25: OPTIMAL  0 0 #Nutrient M4 
R1  50: OPTIMAL 50: OPTIMAL  1 100 #Reaction 1 
R2           0: OPTIMAL   100: OPTIMAL  0 100 #Reaction 2 
R2__r  0: OPTIMAL 100: OPTIMAL  0 100 #R2:Reverse 
R3  0: OPTIMAL 100: OPTIMAL  0 100 #Reaction 3 
R3__r  0: OPTIMAL 100: OPTIMAL  0 100 #R3:Reverse 
R4  0: OPTIMAL 0: OPTIMAL  -1 0 #Reaction 4 
R5  25: OPTIMAL 100: OPTIMAL  1 200 #Reaction 5 
R5__r  0: OPTIMAL 75: OPTIMAL  0 200 #R5:Reverse 
R6  25: OPTIMAL 25: OPTIMAL  1 9 #Reaction 6 
R6__r  0: OPTIMAL 0: OPTIMAL  -1 9 #R6:Reverse 
; 

 
The results format is the same as output of fimat and the judgement of reaction activities is also 
the same as fimat method. The fluxes of gimme output are contained within the flux range of 
gimmefva output.  State column denotes reaction state determined by genes expressions and 
rules, with larger number implying greater certainty that reaction is present.  
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Usage of flux activity analysis by the GIM3E method 
With the GIM3E method, we can exploit metabolomics data to further constrain the solution space 
of a flux variability analysis and thus generate more robust context-specific predictions on reaction 
activities.  
 
Synopsis 
 
./sfba  -i model_file  -X external_tag  -j msig_file  -p problem_type  -b problem_file   
[-o objective,array] [-s solver] [-c] [-f output_file] 

 
Description 
 
-j msig_file  : Input metabolic signal data file 
This is discretized data indicating whether a metabolite is detected (1) or not (0) for a set of 
metabolites of interest.  Here is an example: 
 
metabolite       arr1       arr2 
m1    1   1 
m2    1   0 
m3    0   1 
… 

 
where, first column consists of metabolite names. From second column, each column is associated 
with a metabolic signal profile. Columns are tab-delimited, with ‘NA’ denoting empty value.   
 
-o objective,array :  objective reaction and metabolic signal array 

Without the problem file you can directly specify the objective reaction (often the biomass 
reaction) to be maximized and specify which metabolic signal profile in the metabolic signal 
table you would like to analyze, delimited by a comma. 

  
-b problem_file  :  input problem file 

Problem file follows the format of FBA described in MUFINS manual, excepting follows. 
 

![objective,array]   -specify the objective reaction and metabolic array column in metabolic 
signal table you would like to analyze, delimited by a comma. 

?[reaction name]  - perform analysis only for appointed reactions. If no reaction designated, all 
reactions will be investigated. Names are single space-delimited.    

 
 
Example 
 
Run following commands: 
./sfba -i model2.sfba -X _xt -j msig -p gim3e -o BIOMASS,arr1 –s grb -c -f out_gim3e 
 

Output for gim3e: 
 
#50: OPTIMAL (BIOMASS) 
BIOMASS 49.5: OPTIMAL   50: OPTIMAL     ACTIVE  #Biomass 
GROWTH  49.5: OPTIMAL   50: OPTIMAL     ACTIVE  #Growth 
NR1     0: OPTIMAL      50: OPTIMAL     UND     #Nutrient M1 
NR2     99: OPTIMAL     100: OPTIMAL    ACTIVE  #Nutrient M2 
NR3     1.01e-006: OPTIMAL      25: OPTIMAL     ACTIVE  #Nutrient M3 
NR4     0: OPTIMAL      25: OPTIMAL     UND     #Nutrient M4 
R1      49.5: OPTIMAL   50: OPTIMAL     ACTIVE  #Reaction 1 
R2      1.01e-006: OPTIMAL      25: OPTIMAL     ACTIVE  #Reaction 2 
R2__r   0: OPTIMAL      0: OPTIMAL      INACT   #R2:Reverse 
R3      0: OPTIMAL      25: OPTIMAL     UND     #Reaction 3 
R3__r   0: OPTIMAL      0: OPTIMAL      INACT   #R3:Reverse 
R4      0: OPTIMAL      50: OPTIMAL     UND     #Reaction 4 
R5      1.01e-006: OPTIMAL      25: OPTIMAL     ACTIVE  #Reaction 5 
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R5__r   0: OPTIMAL      0: OPTIMAL      INACT   #R5:Reverse 
R6      24.75: OPTIMAL  50: OPTIMAL     ACTIVE  #Reaction 6 
R6__r   0: OPTIMAL      0: OPTIMAL      INACT   #R6:Reverse 
TS_M1   37.125: OPTIMAL 50: OPTIMAL     ACTIVE  #Turnover sink: M1 
TS_M2   74.25: OPTIMAL  75: OPTIMAL     ACTIVE  #Turnover sink: M2 
TS_M3   1.01e-006: OPTIMAL      25: OPTIMAL     ACTIVE  #Turnover sink: M3 
TS_M4   0: OPTIMAL      25: OPTIMAL     UND     #Turnover sink: M4 
TS_M5   74.25: OPTIMAL  75: OPTIMAL     ACTIVE  #Turnover sink: M5 
TS_M6   37.125: OPTIMAL 50: OPTIMAL     ACTIVE  #Turnover sink: M6 
TS_M7   24.75: OPTIMAL  50: OPTIMAL     ACTIVE  #Turnover sink: M7 
TS_M8   49.5: OPTIMAL   50: OPTIMAL     ACTIVE  #Turnover sink: M8 
; 
 

Compared to the output of FVA: 
 
#50: OPTIMAL (BIOMASS) 
BIOMASS 50: OPTIMAL     50: OPTIMAL     ACTIVE  #Biomass 
GROWTH  50: OPTIMAL     50: OPTIMAL     ACTIVE  #Growth 
NR1     0: OPTIMAL      50: OPTIMAL     UND     #Nutrient M1 
NR2     100: OPTIMAL    100: OPTIMAL    ACTIVE  #Nutrient M2 
NR3     0: OPTIMAL      25: OPTIMAL     UND     #Nutrient M3 
NR4     0: OPTIMAL      25: OPTIMAL     UND     #Nutrient M4 
R1      50: OPTIMAL     50: OPTIMAL     ACTIVE  #Reaction 1 
R2      0: OPTIMAL      25: OPTIMAL     UND     #Reaction 2 
R3      0: OPTIMAL      25: OPTIMAL     UND     #Reaction 3 
R4      0: OPTIMAL      50: OPTIMAL     UND     #Reaction 4 
R5      0: OPTIMAL      25: OPTIMAL     UND     #Reaction 5 
R6      25: OPTIMAL     50: OPTIMAL     ACTIVE  #Reaction 6 
; 
 

Explanation:  
The first row is maximized objective flux value, here is the optimal biomass growth rate. The output 
table has the same format as FVA output, where, the first column is reaction IDs where reaction 
IDs suffixed with  ‘__r’ represent reverse reactions split for reversible reactions. Reaction  IDs 
headed with ‘TS_’  represent turnover sink reactions for metabolites which have signals in 
metabolic signal file. The detected metabolites (having signal of 1) will be set positive flux for their 
turnover sink reactions. The second and third columns are minimum flux and maximum flux for the 
reactions. The fourth column shows the reaction activities where ‘ACTIVE’ indicates the reaction 
was predicted to be active; ‘INACT’  indicates the reaction was predicted to be inactive; and ‘UND’  
indicates the reaction was predicted to be undetermined. Comparing to the FVA output, we can 
see that reactions NR2, NR3, R2 and R5 became active in GIM3E output by using metabolic 
constraints. 
 
 
 
3. Usage for predicting gene-nutrient interactions (GNIs) 
 
Synopsis 
 
./sfba  -i model_file  -X external_tag  -p problem_type  -b problem_file  [-o biomass] [-
s solver] [-c] [-f output_file] 

 
Description 
 
-p problem_type :  analysis for certain problem 

The analysis includes:  
sgni : strong GNI analysis. 
wgni[,sam] : weak GNI analysis, optional parameter sam is sample size of media for wgni. The 
number of sampled growth media for wgni problem which should be proportionate to the media 
space (2", where n is number of nutrients) is not set, default value is 33000. 
 
-b problem_file :  input problem file 
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Problem file follows the format of FBA described in MUFINS manual, excepting follows. 
 ![nutrient names]   - here nutrient names are specified, which defines the space of growth media 
under which we perform prediction of GNIs. The nutrient names are single space-delimited. The 
names of nutrients are the same as the name of external metabolites of exchange reactions in 
model file.   
$[nutrient names]  - for the rest nutrients excepting defined nutrients of growth medium, here we 
can designate the nutrients to be set present and rest nutrients will be set absent. If no nutrient 
designated, all nutrients excepting nutrients of growth medium will be set absent. Names are single 
space-delimited. 
?[gene name]  - here you can designate a list of genes for GNI analysis.  The gene names are 
single space-delimited. If no gene designated, all genes will be investigated.   
 
-o biomass:  biomass reaction 
You have to specify a biomass/growth reaction for GNI analysis. 
 
 
Example 
 
Run following commands: 
./sfba -i model2.sfba -X _xt -p sgni -b problem_gni -o BIOMASS -c -f out_gni_sgni 
./sfba -i model2.sfba -X _xt -p wgni -b problem_gni -o BIOMASS -c -f out_gni_wgni 

 
Output for sgni 
 
Gene: g1 
KO Reactions: R1 
BLP Result: Drop = 50:OPTIMAL Level = 1 
Growth Medium: 
M1_xt : 1 
M2_xt : 1 
M3_xt : 0 
M4_xt : 0 
Nutrients of GNI-SP: M2_xt 
 
Gene: g2 
KO Reactions: R6 
BLP Result: Drop = 50:OPTIMAL Level = 1 
Growth Medium: 
M1_xt : 1 
M2_xt : 1 
M3_xt : 0 
M4_xt : 0 
Nutrients of GNI-SP: M2_xt 
 
Gene: g3 
KO Reactions: R5 
BLP Result: Drop = 50:OPTIMAL Level = 1 
Growth Medium: 
M1_xt : 0 
M2_xt : 1 
M3_xt : 1 
M4_xt : 0 
Nutrients of GNI-SP: M2_xt M3_xt 
Nutrients of GNI-SN: M1_xt 
 
Gene: g4 
KO Reactions: R2 R3 
BLP Result: Drop = 50:OPTIMAL Level = 1 
Growth Medium: 
M1_xt : 0 
M2_xt : 1 
M3_xt : 1 
M4_xt : 0 
Nutrients of GNI-SP: M2_xt M3_xt 
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Nutrients of GNI-SN: M1_xt 
 
Gene: g6 
KO Reactions: R4 
BLP Result: Drop = 50:OPTIMAL Level = 1 
Growth Medium: 
M1_xt : 1 
M2_xt : 1 
M3_xt : 0 
M4_xt : 0 
Nutrients of GNI-SP: M1_xt M2_xt 
Nutrients of GNI-SN: M3_xt M4_xt 
; 

 
Explanation:  
The predicted results for each gene are delimited by a space line, and only the genes having 
knockout reactions are listed. Explanation of output format is as follows. Gene: name of gene; KO 
Reactions: knockout reactions associated with this gene; BLP Result: bi-level LP optimization 
results, where Drop = growth rate of wild type – growth rate of knockout strains, followed by 
solution status, Level: the percentage of drop over growth rate of wild type, if Level > 20% then 
this gene is considered as essential under this growth medium; Growth Medium: consisting of a 
set of nutrients whose present/absent states are indicated by 1/0; Nutrients of GNI-SP: the 
predicted nutrients which have strong positive GNIs with this gene; Nutrients of GNI-SP: the 
predicted nutrients which have strong negative GNIs with this gene. For example gene g4 has 
spGNIs with M2_xt and M3_xt, and has snGNI with M1_xt.  
 
Output for wgni 
 
The analysis results of weak GNI with sample size of 16 
 
Gene: g1 
KO Reactions: R1 
Number of Essential medium = 6 
Nutrients: 
M1_xt GNI-WP: Number = 4 GNI-WN: Number = 2 
M2_xt GNI-WP: Number = 6 GNI-WN: Number = 0 
M3_xt GNI-WP: Number = 4 GNI-WN: Number = 2 
M4_xt GNI-WP: Number = 3 GNI-WN: Number = 3 
 
Gene: g2 
KO Reactions: R6 
Number of Essential medium = 6 
Nutrients: 
M1_xt GNI-WP: Number = 4 GNI-WN: Number = 2 
M2_xt GNI-WP: Number = 6 GNI-WN: Number = 0 
M3_xt GNI-WP: Number = 4 GNI-WN: Number = 2 
M4_xt GNI-WP: Number = 3 GNI-WN: Number = 3 
 
Gene: g4 
KO Reactions: R2 R3 
Number of Essential medium = 2 
Nutrients: 
M1_xt GNI-WP: Number = 0 GNI-WN: Number = 2 
M2_xt GNI-WP: Number = 2 GNI-WN: Number = 0 
M3_xt GNI-WP: Number = 2 GNI-WN: Number = 0 
M4_xt GNI-WP: Number = 1 GNI-WN: Number = 1 
 
Gene: g3 
KO Reactions: R5 
Number of Essential medium = 2 
Nutrients: 
M1_xt GNI-WP: Number = 0 GNI-WN: Number = 2 
M2_xt GNI-WP: Number = 2 GNI-WN: Number = 0 
M3_xt GNI-WP: Number = 2 GNI-WN: Number = 0 
M4_xt GNI-WP: Number = 1 GNI-WN: Number = 1 
 



 

 41 

Gene: g6 
KO Reactions: R4 
Number of Essential medium = 1 
Nutrients: 
M1_xt GNI-WP: Number = 1 GNI-WN: Number = 0 
M2_xt GNI-WP: Number = 1 GNI-WN: Number = 0 
M3_xt GNI-WP: Number = 0 GNI-WN: Number = 1 
M4_xt GNI-WP: Number = 0 GNI-WN: Number = 1 
; 
 

Explanation:  
The predicting results for each gene are separated by a space line, and only the genes having 
knockout reactions are listed. Explanation of output format is as follows. Gene: name of gene; KO 
Reactions: knockout reactions associated with this gene;  Number of Essential medium: the 
number of media under which the gene is essential; Nutrients: where a set of nutrients and their 
predicted results are listed; At each line of a nutrient,  GNI-WP: the predicted results of weak 
positive GNI where the value of Number is the number of presents among all sampled essential 
growth media. GNI-WN: the predicted results of weak negative GNI. The sum of number of wpGNI 
and wnGNI is the total number of sampled essential media. In cases where a nutrient is found to 
be present (or absent) in all sampled media, this may also hint to the existence of strong GNIs. As 
expected, the predicted wGNI results are consistent with the predicted sGNI results. For example, 
gene g4 has spGNIs with M2_xt and M3_xt which are shown present in all 2 essential media in the 
wGNI results. Also g4 has snGNI with M1_xt which is shown absent in all 2 essential media in the 
wGNI results.  
 
Statistical scripts 
 
To address the statistical significance of wgni results, we offer three scripts for this purpose. 
 
1) Perl script ‘ wgni2table.pl’ - extract wgni results into a table format which can be read for a R 
script. 
 
Usage: 
perl wgni2table.pl wgni_file [ess_gene_file] count_table_file 

wgni_file :  wgni file from predicted wgni results. 
ess_gene_file :  a optional file contains a list of essential genes, one gene each line, only these 
genes will be counted for table, otherwise without this file all genes will be considered.  
count_table_file :  output file of a count table. 
Example:  
For above wgni results, run perl command: 
perl wgni2table.pl out_gni_wgni table_wgni 

get output: 
 M1_xt.WP M1_xt.WN M2_xt.WP M2_xt.WN M3_xt.WP M3_xt.WN M4_xt.WP M4_xt.WN 
g1 4 2 6 0 4 2 3 3 
g2 4 2 6 0 4 2 3 3 
g4 0 2 2 0 2 0 1 1 
g3 0 2 2 0 2 0 1 1 
g6 1 0 1 0 0 1 0 1 

 
Note: 
Rows correspond with genes and columns correspond with nutrients. The numbers are counts 
associated with the related genes and nutrients. Column name is formatted as ‘nutrient 
name.WP(WN)’ where WP(WN) means weak positive (weak negative).  
 
2) R script ‘wgniStat’ - an R function performing statistical computing for input of above table. 
Usage: 
wgniStat(‘count_table_file’,’stat_table_file’) 

count_table_file :  count table file from output of wgni2table.pl script. 
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 stat_table_file :  output file of the statistical significance for each count in count table. 
Example:  
For above count table results, run R command: 
wgniStat(‘table_wgni’,’stat_wgni’) 

get output: 
The p-value for weak GNIs       
         
 M1_xt.WP M1_xt.WN M2_xt.WP M2_xt.WN M3_xt.WP M3_xt.WN M4_xt.WP M4_xt.WN 
g1 0.1066 0.6581 0.0000 0.9853 0.1066 0.6581 0.3419 0.3419 
g2 0.1066 0.6581 0.0000 0.9853 0.1066 0.6581 0.3419 0.3419 
g4 0.7510 0.0000 0.0000 0.7510 0.0000 0.7510 0.2490 0.2490 
g3 0.7510 0.0000 0.0000 0.7510 0.0000 0.7510 0.2490 0.2490 
g6 0.0000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.0000 

 
Explanation: 
The number is estimated p-value indicating the statistical significance of weak GNIs, the smaller 
this p-value the more significant the GNI is, normally it is considered as weak GNI if p-value < 0.05. 
It should be noted that given a media space the larger sampled essential media space the more 
statistically reliable the p-value would be, and also the larger the media space the more sampled 
essential media are needed to satisfy reliable statistics. This may be problematic for genes that are 
essential for growth in a small fraction of the media space. 
 
3) R script ‘predictMedia’ - an R function used for predicting growth medium composition. 
 
Usage: 
predictMedia(‘count_table_file’, ‘media_file’, threshold) 

count_table_file :  count table file from output of wgni2table.pl script. 
media_file :  output file contains predicted statistical results of growth medium composition. 
threshold :  a p-value threshold used for counting the number of  weak GNIs for each nutrient, the 
smaller     
this threshold the  more conservative the predicted results could be. 
 
Example:  
For above count table results, run R command: 
predictMedia(‘table_wgni’, ‘media’, 1e-7) 

get output: 
 Presence Absence Sum Pval_Pre Pval_Abs 
M1_xt 1 2 3 0.9167 0.5 
M2_xt 5 0 5 0.0040 1 
M3_xt 2 1 3 0.5 0.9167 
M4_xt 0 1 1 1 0.5 

 
Explanation: 
Presence : number of weak positive GNIs for each nutrient; Absence : number of weak negative 
GNIs for each nutrient; Sum = Presence + Absence; Pval_Pre : p-value indicating the statistical 
significance of presence; Pval_Abs : p-value indicating the statistical significance of absence. The 
smaller the p-value the more significant the presence/absence would be. We can set a cut-off of p-
value (such as 0.05) used for judging if the nutrient present or absent.  
 
 
 
4. Usage for differential producibility analysis (DPA) 
 
Synopsis 
 
./sfba  -i model_file  -X external_tag  -j gexp_file  -u dpaplot_file  -p problem_type  -
b problem_file  [-c] [-f output_file] 
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Description 
 
-j gexp_file  : Input gene expression data file (only for dpasig) 
Gene expression data should be in the form of log2 ratios of treatment and reference sample 
signals,  
no processing of data was conducted; Here is an example: 
 
Gene   Array1  Array2 
g1   2.5  -1.8 
g2   1.3  - 1.5 
g3      -1.6   1.6 
… 

Where, first column consists of gene names. From second column, each column is associated with 
a microarray name and their gene expression ratios. Columns are tab-delimited, with ‘NA’ denoting 
empty value. This file is only used for problem dpasig.  
 
-u dpaplot_file  :  the output file of problem dpaplot (only for dpasig) 
This file is only used for problem dpasig. This file provides the mapping from genes to metabolite 
to that will be used to calculate the metabolite signals.     
 
-p problem_type :  analysis for certain problem 

The analysis includes:  
dpaplot : DPA analysis of producibility plot using GLPK library 
dpaplotGrb: DPA analysis of producibility plot using Gurobi library 
dpasig : DPA analysis of metabolite signals  
 
-b problem_file :  input problem file 
Problem file follows the format of FBA described in MUFINS manual, excepting follows. 
![array name]   - for problem dpaplot, just leave it empty; for problem dpasig, we can designate 
microarray names of interest, if not set all microarrays in gexp_file will be used. The array names 
are single space-delimited. 
 
 
Example 
 
Run following commands: 
./sfba -i model2.sfba -X _xt -p dpaplot -c -f out_dpaplot 
./sfba -j gexp_ratio -u out_dpaplot -p dpasig -b problem_dpasig -c -f out_dpapsig 

 
 
Output for dpaplot 
Metabolites to genes:    
      
M3 g4     
M4 g4 g6 g3 g2  
M5 g1 g3    
M6 g6 g3 g2   
M7 g1 g4 g6 g3 g2 
M8 g6 g2    
M_BIOMASS g1 g2    
///      
      
Genes to metabolites:   
      
Gene: g1     
KO Reactions: R1     
Metabolites: M5 M7 M_BIOMASS   
      
Gene: g2     
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KO Reactions: R6     
Metabolites: M4 M6 M7 M8 M_BIOMASS 
      
Gene: g3     
KO Reactions: R5     
Metabolites: M4 M5 M6 M7  
      
Gene: g4     
KO Reactions: R2 R3    
Metabolites: M3 M4 M7   
      
Gene: g6     
KO Reactions: R4     
Metabolites: M4 M6 M7 M8  
///      
      
Matrix of producibility of wildtype and knockouts: 
      
 WildType g1 g4 g6 g3 
M1 100 100 100 100 100 
M2 100 100 100 100 100 
M3 200 200 100 200 200 
M4 200 200 100 100 150 
M5 25 0 25 25 0 
M6 100 100 100 50 50 
M7 75 50 50 25 50 
M8 25 25 25 12.5 25 
M_BIOMASS 50 0 50 50 50 
;      
 

Explanation:  
The output of dpaplot is represented as four parts of information about producibility plot. Here, the 
model used for this analysis is the same as the model in GNI analysis. The first part is for 
Metabolites to genes, which showing the mapping from metabolites to its essential gene sets. 
For each line, the first column is the name of a metabolite which having essential genes. The other 
columns are the set of gene names associated with this metabolite, where the names are tab-
delimited. By this simple format, the mapping information can be easily read by dpasig problem, 
where the output of dpaplot will be used as input file for problem dpasig.   The second part of  
Genes to metabolites  shows the mapping from gene to its affected metabolites. The predicted 
results for each gene are delimited by a space line, and only the genes having knockout reactions 
are listed. Explanation of output format is as follows. Gene: name of gene; KO Reactions: 
knockout reactions associated with this gene; Metabolites: a set of metabolites associated with 
this gene. The fourth part present an matrix of producibility plot. The matrix is represented as 
metabolites in rows by genes in columns, where first column corresponds names of metabolites 
and first row corresponds wildtype and names of genes. The Matrix of producibility shows the 
maximal fluxes towards a metabolite in wild-type mode and the maximal flux in gene-knockout 
models.  
 
 
Output for dpasig 
Metabolite signals from microarray data: Array1 Array2 
     
Signals for up-regulated genes:    
     
 Array1 Array2   
M3 1.8 2.2   
M4 1.55 2   
M5 2.5 1.6   
M6 1.3 1.8   
M7 1.8 2   
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M8 1.3 2   
M_BIOMASS 1.9 0   
///     
     
Signals for down-regulated genes:   
     
 Array1 Array2   
M3 0 0   
M4 -1.8 -1.5   
M5 -1.6 -1.8   
M6 -1.8 -1.5   
M7 -1.8 -1.65   
M8 -2 -1.5   
M_BIOMASS 0 -1.65   
;     
 

Explanation:  
Above results give the metabolite signals which are calculated as median of expression ratios of 
essential genes for each metabolite. In terms of whether expression ratios being positive or 
negative, two signals for each metabolite can be obtained which separately shown as two matrices 
in output, they are Signals for up-regulated genes and Signals for down-regulated genes. The 
matrix is represented as metabolites in rows by microarray in columns, where first column 
corresponds names of metabolites and first row corresponds names of microarrays, here zero 
means no gene can be found for this metabolite signal. 
  
 
 
5. Add signalling constrains on model 
 
Cellular signalling is important part in controlling the metabolic network. In MUFINS, you are able 
to add signalling constrains to control reaction fluxes. Signalling constrains were implemented in 
pure linear formulation based on paper ‘A Linearized Constraint-Based Approach for Modeling 
Signaling Networks’.   
 
Steps of adding signalling constrains are explained as follows:  
1) Define the signalling species (activators/inhibitors). You can let an existing metabolite becoming 
activator/inhibitor by adding a transfer reaction. You can also use external activator/inhibitor by 
adding a transport reaction. You can also add an inhibitor directly using an existing metabolite.  
In example model, transfer reaction S1 defines an activator aM1 which is provided by M1 with 
upper bound flux of 45; using M5 as inhibitor for R4  so that flux of R4 is bounded by production 
flux of M5. Note that here the production of metabolite is only for non-reversible reactions which 
can produce this metabolite. 
2) Add signalling species into target reactions. You can add activators/inhibitors on the right-hand 
of target reaction equation as following formats:  
+ & Activator 
+ ~ Intensity Inhibitor 

where symbol ‘&’ and ‘~’ indicates activator and inhibitor respectively; For inhibitor you can set 
inhibition intensity, so the sum of the flux of target reaction and the multiplication of intensity and 
inhibitor production flux should be less than the maximum flux of target reaction. One reaction can 
have multiple activators/inhibitors and one activator/inhibitor can affect multiple reactions. Note that 
here inhibited target reactions are assumed in forward direction. 
In example model, reaction R4 is regulated by activator aM1 and inhibitor iM3 with intensity of 10. 
 
 
Example model 
 
R4 M6 + & aM1 + ~ 3 M5 = M7 0 100 g6 #Reaction 4 
S1 M1 = aM1 0 20  #M1 -> activator aM1 



 

 46 

R1 M1 + 2 M2 = M5 + M6 0 100 g1 #Reaction 1 
R2 M3 = 2 M1 + M7 -100 100 g4 #Reaction 2 
R3 M4 = M1 + M7 -100 100 g4 #Reaction 3 
R5 2 M6 = M5 + M8 -100 100 g3 #Reaction 5 
R6 M7 = M5 + M8 -100 100 g2 #Reaction 6 
BIOMASS 2 M5 + M8 = M_BIOMASS 0 1000  #Biomass 
GROWTH M_BIOMASS = M_BIOMASS_xt 0 1000  #Growth 
NR1 M1_xt = M1 0 100  #Nutrient M1 
NR2 M2_xt = M2 0 100  #Nutrient M2 
NR3 M3_xt = M3 0 100  #Nutrient M3 
NR4 M4_xt = M4 0 100  #Nutrient M4 

 
 
Run FBA by maximizing the R4 flux with command: 
./sfba -i model_sig.sfba -X _xt -p fba -o R4 -c 

We will get following results: 
 
#20: OPTIMAL (R4) 
BIOMASS  20      #Biomass 
GROWTH   20      #Growth 
NR1      40      #Nutrient M1 
NR2      40      #Nutrient M2 
NR3      0       #Nutrient M3 
NR4      0       #Nutrient M4 
R1       20      #Reaction 1 
R2       -0      #Reaction 2 
R3       -0      #Reaction 3 
R4       20      #Reaction 4 
R5       0       #Reaction 5 
R6       20      #Reaction 6 
S1       20      #M1 -> activator aM1 
aM1__col     20      # 

 
Explanation:  
Without signalling constraints, reaction R4 can get maximum flux of 50. However, R4 can be 
inhibited by M5 by the amount of flux of inhibitor’s production flux multiplied by its intensity that is 
20 × 3 = 60, so R4 can only be activated by amount of flux of 100 – 60 = 40.  Reaction R4 can only 
be activated by activator aM1 by the amount of flux of 20 as upper bound flux of aM1 = 20, so 
overall R4 can get maximum flux of 20.  
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