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EXPANDED USE CASES 
	

Use case 1: Whole-cell metabolic reprogramming by signaling and gene 
regulatory networks in the mammalian macrophage 
General Introduction 
The integration of gene and signalling regulatory networks with GSMNs requires the ability to 
incorporate stimulation and inhibitory signals into the reconstruction. It has long been recognized 
that activation of a signalling network by post-translational modifications can be modelled as a flux 
distribution constrained by a stoichiometric matrix (1). In this use case, we demonstrate the 
extension of this approximation to all activation edges in the hypergraph, including gene activation 
by transcription factor binding and activation of cellular responses. Representation of inhibition in 
the CBM framework has always been a challenge, with proposed solutions generally being 
computationally expensive methods based on MILP (2). In this use case we demonstrate an 
extension of the approach of Vardi and colleagues (3), representing inhibition by linear constraints 
enforcing a reciprocal relation between inhibitor production and inhibited flux. In the MUFINS 
implementation, an inhibited reaction is limited by the sum of irreversible reaction fluxes producing 
the inhibitor, rather than by a virtual flux connecting inhibitor to external metabolite without flux 
balance constraints. 
 
Methods 
Complete preparation of the model is provided as a step-by-step description in the following 
sections. Additional tutorials for model simulation in the JyMet GUI are provided in the help 
documents associated with the software distribution (MUFINS_DocsèGETTING _STARTED). 
The final model is available within the MUFINS software distribution 
(MUFINS_ExamplesèRAW264_7_r). 
 
1.1 Logical hypergraph model of macrophage signalling 
The signalling network applied in this use was developed to study the host-pathogen interaction 
between macrophages and Mycobacterium tuberculosis during infection. It is based on two large-
scale signalling maps: the toll-like receptor (TLR) network from Oda and Kitano (4); the integrated 
map of macrophage pathogen recognition and effector systems by Raza et al. (5). Both maps were 
constructed by manual curation of the literature and hence represent robust reconstructions of the 
known biology. The signalling map reconstructed by Raza et al. (5) is cell-type specific, and hence 
more relevant to the current reconstruction. In addition, to information from both large-scale 
signalling maps, information from 243 articles was collated to extend the model with regard to 
endocytosis, phagocytosis, apoptosis, necrosis, autophagy, eicosanoid signalling, vitamin D effects 
and the interference to these processes posed by M. tuberculosis. We note that compared to the 
networks from Oda and Kitano (4) and Raza et al. (5), the current model contains less mechanistic 
detail, allowing a more compact representation.  

The reconstruction consists of 205 species connected by 286 interactions whose logic is 
captured by a hypergraph representation of the network (6). The model was reconstructed using the 
MATLAB toolbox CellNetAnalyzer (7), which is available from https://www2.mpi-
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magdeburg.mpg.de/projects/cna/cna.html. A complete list of all species and interactions, together 
with comments, are presented as Supplementary Table 1. The first tab contains information on each 
of the species within the network. In this worksheet, the first column provides the name of each 
species, which may represent proteins, other molecules, genes or processes. The second column 
includes curation data for these species: source(s) mentioning a given species are referred to by 
PubMed Identifier (PMID), “Oda” for Oda and Kitano (4) or “Raza”/“Raza 2” for the 2008 and 
2010 versions of Raza et al. (5) model, respectively; where appropriate, common synonyms for a 
species are listed are listed; where appropriate SwissProt identifiers (starting with either “P” or “Q” 
followed by five digits) are given. The second tab of Supplementary Table 1 contains information 
on the interactions between species. The first column provides information on the interaction, which 
are are denoted in one of three ways: first, direct activations are indicated as normal reactions (e.g. 
akt1=bad, meaning akt1 activates bad); second, direct inhibitions are indicated through the symbol 
“!” meaning logical NOT (e.g. !akt1=gsk3b, meaning AKT1 inhibits GSK3B); third, an AND 
combination of species (e.g. !gsk3b+msk_1_2=creb, meaning that GSK3B must be inactive and 
MSK1/2 active in order for CREB to be active). When several interactions have the same species as 
their target then an OR-combination of the interaction states is taken to set the state of the target 
species. The second column of this worksheet contains curation data for each interaction: source(s) 
mentioning a given interaction are referred to by PubMed Identifier (PMID); comments on areas for 
further model expansion are also noted, where appropriate 
 
1.2 Translation of the logical hypergraph model to a stoichiometric model with linear inhibitor 

constraints 
To integrate the signaling and metabolic networks, we have translated the logical hypergraph to a 
stoichiometric model with inhibitory constraints. In the logical hypergraph, inhibitory edges end at 
substance nodes (e.g.: akt1 inhibits tsc), meaning that an inhibition edge connecting substance A 
and B can be represented by introduction of A as inhibitor of every flux producing B.  To convert 
the logical hypergraph to MUFINS reaction formulas, the logical rules were exported from 
CellNetAnalyzer as a text format document. This file can then be opened in several programs (e.g. 
Excel) and the text replace function used to change the formula format, replacing “!” with “~”, 
which is read by MUFINS as an inhibition. Export from Excel as a tab-separated file (FileèSave 
as) will then create a MUFINS reaction table that can be opened with the JyMet GUI (FileèOpen 
Model). We note that a user can perform these steps without programming experience. An example 
of this conversion is provided in Figure S1.  
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Figure S1: Logical hypergraph conversion to MUFINS reaction formulas. 
All edges activating the node “ifn_ab” are represented as stoichiometric fluxes. This includes hyperedges representing 
the “AND” operator for joint action of “atf1 and ap2” as well as “cbp and irf3”. Subsequently, “irf2” inhibition of 
“ifn_ab” has been modeled by including “irf2” as an inhibitor of every reaction producing “ifn_ab”. 
 
1.3 Definition of external metabolites in the linear signaling model 
In linear signaling models, external metabolites can represent both input signals (i.e. sources of 
signal flow) and effectors (i.e. sinks of signal flow). Within the use case model, external metabolites 
include molecular components by which Mycobacterium tuberculosis subverts macrophage 
defenses, and inhibitors used to experimentally perturb the signaling network. When the model is 
first opened in Jymet, the user is prompted to ‘Define the external metabolites’. All external 
metabolites are given a tag: For example, M_o2_e_xt defines this species are representing external 
oxygen. The external tag can be entered through “SolveèExternality tag”. 

External metabolites are connected to the signaling model by a transport reaction, which we 
refer to as an input flux. To simulate the effect of a particular metabolic signal in the cellular 
environment, the corresponding input flux is set to (0, vmax) if the signal is present, or (0, 0) if it is 
absent. In this use case a qualitative signaling model is presented, and the fluxes do not have 
physical units. Therefore, an arbitrary value of vmax = 100 was used. If quantitative data for reaction 
fluxes are available then these can be used to further constrain the model (see use case 2 for an 
example of constraint of the uptake of glucose). An example input flux can be seen by searching 
(Edit->Search) for the reaction “irf2_input” in the reactions tab. This reaction sets the input flux for 
the irf2 species, an inhibitor within the network. The bounds of the reaction are currently set to 
(0,0), meaning that no irf2 is present within the network, as the input flux is closed. 
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NOTE #1: if a search fails to identify “irf2_input”, then (i) ensure that all reactions are shown 
(ViewèShowèall), and (ii) select all reactions (ctrl-A or cmd-A) to ensure that you are not 
searching a sub-set of the reactions.  
 

 
NOTE #2: For extracellular, but not intracellular inhibitors it is also required to introduce an efflux 
reaction, allowing mass balance to be achieved during flux balance analysis (FBA). This is   
achieved by setting input fluxes to (vmax, vmax) if the signal was present, or (0, 0) if it was absent. 
For intracellular reactions, bounds may be set as (0, vmax).  
 Once the external metabolites have been set, the model can be saved (FileèSave table). We 
recommend that when saving the tag .sfba is used rather than .txt, to denote that the file type more 
clearly. 
 
1.4 Simulation of the model 
To simulate a model within JyMet, a problem file must be constructed, which sets the parameters 
for the simulation. At the simplest level, this problem file may contain only a single line, defining 
the objective function. For example, figure S2 shows a problem file to maximize (MAX!) the 
production of “M_no_e_xt”, the species that represents external nitric oxide. To enter an objective 
into a problem file, the species or reaction name is typed into the Objective box, a direction (max or 
min) selected, and then (SolveèWrite) problem used to write the command. An additional 
command line containing “;” is automatically used to signify the end of the problem file. It is 
possible to enter multiple problems, each separated by a line containing “;”, and these will be 
solved sequentially. 
 More complex problem files can be constructed, containing, for example, commands to alter 
the bounds of reactions. To see an example of this use (FileèOpen Problem), and select 
“simulate.pfile”. This example problem file contains three problems, each of which maximizes for 
external nitric oxide, but with different levels of inhibitors and signaling molecules (Figure S2) 
 
1.5 Pre-processing of the linear signaling model 

With external metabolites set as described above, the model was simulated using Flux 
Balance Analysis (FBA) in the JyMet GUI. The results of this simulation indicated a number of 
inhibitors (e.g. irf2) were not produced by any reaction in the system. These inhibitors were also 
assigned input and efflux reactions, treating them as external perturbations. After this, all inhibitors 
could be produced within the model. 

To check for spurious activations in the model, JyMet was used to subject the final 
regulatory network model to Flux Variability Analysis (FVA) simulation with all input fluxes set to 
(0, 0). Twenty-seven reactions in the regulatory network were identified that could be active when 
there was no input. Examination of example FBA solutions demonstrated that these reactions 
participated in autocrine feedback loops involving TNF and IL1R, which can activate signaling 
pathways in the absence of other signals. As these are valid biological scenarios, there was no need 
to adjust the model to resolve these autocrine feedbacks. 

We note that the optimization steps described above were relatively simple compared to the 
MILP-based optimization of the external metabolite set and depth-first search for spurious positive 
feedbacks that Vardi and colleagues (3) had to apply to pre-process their model. This is in part due 
to the high model quality of the input logical hypergraph, which was manually reconstructed and 
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tested for consistency in CellNetAnalyzer (6). However, we also note that our modified formulation 
of inhibitory constraint does not introduce additional external metabolite for every inhibitor, thus 
simplifying model pre-processing. 

 
Figure S2: Example problem files in JyMET 
The top panel demonstrates a simple problem file, defining the objective function (M_no_e_xt) to be maximized (!max) 
during simulation. The lower panel demonstrates a more complex problem file specifying three separate problems to be 
solved sequentially. Each problem maximizes the same objective (M_no_e_xt), but with different combinations of 
inhibitors. 
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1.6 Visualization of simulation results within the JyMet GUI 
An important aspect of MUFINS is its presentation through JyMet, a graphical interface allowing 
more intuitive use for the non-specialist. One of the new features of JyMet, developed as part of 
MUFINS, is the ability to produce visualisations of regulatory networks, or parts therefore, and 
overlay these with simulation results (e.g. FBA flux values for visualised reactions). To 
demonstrate the utility of this we have used JyMet to visualise the section of the regulatory network 
that directly impinges on iNOS gene expression, and the subsequent production of external NO 
within the GSMN. An example FBA solution is overlaid, providing flux values for the individual 
reactions. 
 To undertake visualisation flux through the signalling network, first it is necessary to 
produce a simulation, the results of which can be overlain on the visualisation. Using the model and 
problem file previously described, an FBA simulation is undertaken by first setting the mode of 
analysis (AnalyseèFBA) and the running the simulation (SolveèSolve).  In this example, we will 
visualize the results from the first FBA, listed under “Record1” tab. Following simulation, those 
reactions within the signaling network need to be selected for visualization. A useful feature of 
JyMet is the comments sections, which can be used to tag reactions for later sorting. In this 
example, of reactions from the signaling network have the tag “@regnet”, and can be selected using 
the search option (EditèSearchè“@regnet”). As we are only interested in signaling reactions, 
which are active, the reactions can next be sorted by clicking on the “Transition rate” column, and 
only those with a non-zero flux selected (Figure S3).  

There are a number of visualizations available within JyMet; figure S4 (left panel) provides 
a screenshot of a hierarchical layout for the selected reactions (ViewèLayoutèHierarchical). The 
network is visualized in Petri Net (bipartite graph) notation with rectangles representing transitions 
and circles representing places (Figure S4). Flux values are overlain, with line thickness also used 
to visualize fluxes. Right clicking on the visualization opens a pop-up window for zooming. This 
automatic layout can be manually adjusted, if desired, and saved (FileèSave graph). Saved layouts 
can be reloaded through the command (ViewèLayoutèCustom). When the layout is reloaded, 
JyMet identifies reactions in reaction tables and visualizes new simulation results. Thus, saved 
layouts can be used to quickly re-examine simulation results, and are an ideal tool for iterative 
examination of the effects of perturbation, and during model refinement.   
 We note that automatic layout in JyMet, even if manually adjusted, still does not produce a 
publication quality network diagram. First, there are constraints on molecular species names 
resulting from reaction formula syntax: spaces and special characters cannot be used. Also, the user 
cannot control the number display format, such as the number of significant digits. Finally, there are 
limits in graphical notation, colours and line shapes. However, such visualizations provide a 
template for the production of publication quality images. To illustrate these points, Figure S4 
shows both a manually adjusted layout in JyMet (left panel) and a publication quality layout created 
in Snoopy Petri Net editor and further improved in MS Powerpoint (right panel). We note, that it 
would be very difficult and error-prone to create final figure based on results table alone as network 
connectivity would have to be created by examining reaction formulas rather than layout diagram, 
where it is already drawn. Improvement to visualization features towards generation of publication 
quality figures requires substantial effort and will be a subject of further development 

In summary, network visualization within JyMet serves as tool for interactive examination 
of simulation results. We believe that quick, interactive visualization is key for model exploration, 
hypothesis generation and model refinement. Once results are examined and conclusions 
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established, publication quality figures based upon these visualizations could then be created using 
dedicated desktop publishing software.  
 
1.7 Nitrate measurements in RAW264.7 cell line 
The experimental results shown on Figure 3C of main manuscript have been obtained using the 
following protocol. The murine macrophage cell line RAW 264.7 was cultured in the presence of 
the MEK1 inhibitor, PD98059, to investigate the effect it had on the production of nitrate following 
stimulation with LPS. Briefly, RAW cells were plated out in 24 well plates at 0.5x106 cells/ml and 
cultured overnight in DMEM medium (Sigma Aldrich, Poole, UK) supplemented with 10% FCS 
and 2mM glutamine. Subsequently the medium was replaced and the cells were cultured for an hour 
in the presence or absence of 4µl/ml of PD98059 (NEB, Hitchin, UK).  Following this 10ng/ml of 
LPS (Enzo, Exeter, UK) was added for a further 24 hours before the culture media was collected 
and the level of nitrate present assessed using the Griess reagent system according to the 
manufacturer’s instructions (Promega, Southampton, UK). Readings were made on Emax precision 
microplate reader at 540nm (Molecular Devices, Wokingham, UK). 
 

 
Figure S3: Selection of non-zero flux rates for visualization 
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Figure S4: Example visualization of FBA results using JyMet. 
The left panel shows a screenshot of the JyMet interface, demonstrating on screen visualization of the reconstruction, 
created by automatic hierarchical layout with manual adjustment. Rectangles represent reactions and elipsoids 
molecular entities, which are joined by solid arrows to represent the direction of signal flow. Hatched lines are used to 
indicate regulatory signals, representing inhibition (circle end) or stimulation (arrow head). The right panel 
demonstrates a publication-quality figure of the relevant regulatory pathway for presentation of final conclusions. The 
visualization depicts where signalling pathways converge on the iNOS gene, which is required for nitric oxide 
production in the whole-cell stoichiometric model. Production of NOexternal was set as the objective functions, and FBA 
undertaken. Flux rates for an example FBA solution are displayed on the network diagram; on the right panel flux rates 
in grey represent the overall transition flux rate while those in blue represent the flux rate for individual molecular 
species required to maintain stoichiometry. 
 
Results 
1.8 Iterative model refinement through comparison with experimental data 
The interactive network visualisation implemented in JyMet is an ideal tool for iterative model 
refinement. It allows comparison of model predictions with experimental data, leading to model 
adjustments that improve the congruency between predicted and observed conditions. These 
changes to the model constitute mechanistic hypotheses, which can be used to direct future work 
towards understanding of the complex biological system under investigation. To illustrate this 
process, we have conducted one iteration within Use Case 1, whereby: i) simulation was used to 
generate a testable prediction ii) the prediction was experimentally examined iii) discrepancies 
between the simulation and observation were used to generate new hypothesis, which could direct 
further experimental work. The final model generated through this process is presented in Figure 3 
of the main manuscript, with expanded details for the stages of Prediction (1. 8. 1), Experiment (1. 
8. 2) and Refinement (1. 8. 3) presented below. We stress that we present only a single iteration of 
the model-driven research process to illustrate how the software technology features of MUFINS 
can facilitate this process, and that new insights into macrophage biology would require further 
experimental and modelling work. 
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1.8.1 Prediction of NO production in human macrophages in silico 
The model developed in Use Case 1 describes the generation of a dynamic model of the mammalian 
macrophage; more specifically, the regulation of nitric oxide production (NO), a major output of the 
whole-cell metabolic network. The production of NO is regulated by a large scale network 
comprising signalling and gene regulatory interactions. To test whether the generated model was 
capable of predicting the effects of regulatory network perturbations on NO production, we 
calculated the maximal NO production in the original, “untreated”, model and in models 
constrained to represent three experimental treatments i) LPS, ii) a MEK inhibitor, and iii) LPS plus 
a MEK inhibitor. Treatment with LPS is represented by setting the bounds of the “lps_input” flux to 
(0, 100), where 100 is an arbitrary value used across the qualitative regulatory network model to 
represent maximal availability. Since LPS is an activator, we allow the upper bound to be the 
maximal value, but change to the lower bound is not required – the linear programming solver in 
MUFINS will determine the maximal value within these constraints needed to achieve maximal NO 
production rate. The MEK inhibitor treatment is modelled by setting bounds of the “mek_inhibitor” 
flux to (100, 100). Here, we force the flux rate to 100 by setting both maximum and minimum 
values to 100. This is to prevent the linear programming solver from considering a solution where 
the inhibitor flux is inactive. Moreover, by setting the value to the maximum value used within the 
qualitative regulatory network model, we exclude scenarios where NO is produced at the expense of 
the essential metabolic demands of the cell: the ability to account for global metabolic requirements 
and limitations is a major advantage of using genome scale metabolic networks, instead of smaller, 
pathway models. To achieve this, the growth rate (Reaction “R_biomass”) is constrained to 0.0281, 
a literature value reported for RAW264.7 macrophages producing NO, and used by the authors of 
the metabolic part of this model (18). The resulting model predictions are shown in Figure S5: 

Figure S5: Initial Model Predictions 
Nitric oxide production was predicted for untreated RAW264.7 macrophages (untreated), plus cell cultures treated with 
a MEK inhibitor (MEKi), LPS (LPS), or both LPS and MEK inhibitor (LPS + MEKi).  

 
As demonstrated in Figure S5, the model predicts that NO synthesis requires stimulation of 

cells with LPS treatment, and that co-treatment with a MEK inhibitor does not alter the rate of NO 
production. 
 
1.8.2 Experimental determination of NO production in RAW264.7 murine macrophages in vitro 
To test the model predictions, we measured nitrate production in RAW264.7 macrophages in vitro.  
Nitrate is formed through the non-enzymatic conversion of nitric oxide produced by RAW264.7 
cells; as there is no nitrate consumption in the medium, nitrate concentrations are proportional to 
the cellular nitric oxide production flux. As detailed in section 1.7, RAW264.7 cells were exposed 
for 24 hours to i) medium alone, ii) LPS, iii) the MEK inhibitor PD98059, or iv) LPS and PD98059 
combined (Section 1.7). Nitrate levels Experimental results are shown on Figure S6: 
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Figure S6: Nitrate production of RAW264.7 macrophages 
RAW464.7 macrophages were culture in DMEM and exposed to 10ng/ml LPS, 4µl/ml PD98059, or a combination of 
both chemicals for 24 hours. Nitrate levels in the medium were determined and compared to medium conditioned by 
untreated cells.  
 

The experimental results demonstrate that NO production in untreated RAW264.7 cells is 
below the detection limit of the assay, equivalent to 2.5 µM nitrate in the medium. Exposure to the 
MEK inhibitor PD98059 has no significant impact on nitrate levels in the medium, but exposure to 
LPS for 24 hours leads to a significant increase to approximately 30 µM. Since the non-enzymatic 
conversion of the NO produced by RAW264.7 cells is the only source of nitrate in the medium, this 
demonstrates that LPS treatment is required for NO production, consistent with the published 
literature. Co-treatment of RAW264.7 cells with both LPS and PD98059 resulted also resulted in 
detectable nitrate levels in the medium, but these were significantly lower than observed with LPS 
alone. This data is consistent with MEK inhibition resulting in a perturbation, but not ablation, of 
the LPS-induced NO production.  
 
1.8.3 Refinement of the in silico model based upon experimental observations. 
Comparison of the model predictions with the observations from the experimental data allows 
identification of areas for refinement within the model. The initial model is able to correctly predict 
that untreated macrophages do not produce significant levels of NO, and that treatment with a MEK 
inhibitor does not affect this. In addition, the model correctly predicts the increase in NO production 
associated with LPS treatment. However, the model fails to predict the observed decrease in NO 
production when cells are exposed to both LPS and The MEK inhibitor PD98059. To address this 
discrepancy, we used the interactive visualisation available in JyMet to identify additional 
constraints to the model that would explain the decrease, but not complete abolishment, of NO 
production upon co-treatment with LPS and a MEK inhibitor. 

As shown in Figure S4, NO is generated in the model through the action of NO synthase, a 
gene encoded by the iNOS gene, which is represented by the iNOS molecular entity in the model 
represents the iNOS gene. iNOS is directly regulated by three reactions in the model, all of which 
activate gene expression: ERK1/2->iNOS, HIF1->iNOS, JNK->iNOS: these reactions represent the 
action of the transcription factors ERK1/2, HIF1 and JNK. MEK1 acts as an activator of ERK1/2, 
being represented in the model as the reaction MEK1->ERK1/2. As such, MEK1 is an indirect 
positive regulator of iNOS activity, and ultimately NO production. Inhibition of MEK1 is 
represented by the molecular entity MEKi, which acts on the reaction MEK1->ERK1/2, thus 
limiting availability of active ERK1/2. MEKi does not affect in any way the availability of HIF1 
and JNK; this was confirmed by running simulations where HIF1 and JUN were set as objective 
functions. The experimental observation that MEKi has a significant impact on NO production can 
only be produced if HIF1 and JUN activate iNOS to lesser extent than ERK1/2. Only in this case 
does decreased availability of ERK1/2 impact on the level of iNOS activation and NO production 
flux. When either HIF1 or JUN can fully activate iNOS, loss of ERK1/2 has no impact on NO 
production.  
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The simplest possible explanation for the observed results is that the impact of HIF1 and 
JUN on iNOS transcriptional activity is less than the impact of ERK1/2. We refined the model 
through introduction of constraints limiting the impact of HIF and JNK: the reactions HIF1->iNOS 
and JNK->iNOS were constrained to (0,0.005) while ERK1/2->iNOS was left as (0,100). However, 
these flux limitations, or even complete inactivation of both reactions, still did not result in a lower 
NO flux in the presence of MEKi.  

Further examination of the network connectivity revealed that ERK1/2 can be 
phosphorylated not only by MEK1 but also by PKC and PKC. Therefore, any impact of MEKi on 
ERK1/2 phosphorylation will be negated if ERK1/2 is efficiently phosphorylated through these 
routes.  As the experimental data demonstrates that MEK inhibition reduces NO production, but 
does not ablate it, the most plausible explanation is that MEK1 is a more potent ERK1/2 kinase than 
PKC. To examine this, we further refined the model such that PKCA/B->ERK1/2 was constrained 
to (0,0.005). Simulation of the maximal NO production under these conditions are shown below 
(Figure S7) and in Figure 3D of the main manuscript. 

 

Figure S7: Refined model predictions 
Nitric oxide production was predicted for untreated RAW264.7 macrophages (untreated), plus cell cultures treated with 
a MEK inhibitor (MEKi), LPS (LPS), or both LPS and MEK inhibitor (LPS + MEKi). The bounds of reactions JNK-> 
iNOS, HIF1->iNOS and PKC A/B -> ERK1/2 were set to (0, 0.005) according to our mechanistic hypothesis that: i) 
ERK1/2 is a more potent transcriptional activator of the iNOS gene than JNK and HIF1, and ii) MEK1 is a more potent 
ERK1/2 kinase than PKC.  
 

As demonstrated in Figure S7, incorporation of three constraints into the regulatory network 
allows the theoretical predictions to qualitatively reproduce the experimental data: LPS activation is 
required for NO production and MEK inhibition decreases, but does not fully abolish, NO 
production. The decrease in NO production flux relative to LPS treatment alone, can be adjusted by 
altering the upper bound for the reactions: JNK-> iNOS, HIF1->iNOS and PKC A/B -> ERK1/2. 
The assigned upper bound (0.005), closely reproduces the experimental NO production rate, 
although a formal quantitative fitting was not undertaken. Thus, through an iterative cycle of 
prediction, experimentation and refinement we have developed two mechanistic hypotheses for 
future testing, namely: i) ERK1/2 is a more potent transcriptional activator of the iNOS gene 
than JNK and HIF1, and ii) MEK1 is a more potent ERK1/2 kinase than PKC.  

To summarize, we demonstrate a single iteration of simulation, experimental validation and 
subsequent model refinement based on discrepancies between the initial predictions and 
experiments. This results in both an improved concordance between the model prediction and 
observed biology, and the generation of mechanistic hypotheses for future testing. We stress that 
this single iteration of the systems biology workflow is not sufficient to fully validate the genome 
scale model of metabolic reprogramming in mammalian macrophage presented here. Many more 
iterations would be required with experiments examining a large number of outputs within both the 
signalling and metabolic networks. Rather, the purpose of this Use Case is to illustrate the software 
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features available within MUFINS, and how they may be implemented in this prediction-
experimentation-refinement cycle. We show that MUFINS is currently the only tool that can be 
used to perform the computational section of the systems biology workflow using a constraint based 
model that integrates a signalling network with inhibitory interactions and a genome scale 
metabolic model. Moreover, the JyMet GUI makes this sophisticated computational approach 
accessible to experimental scientists. We believe that enabling experimental biologists to perform 
iterations of hypothesis generation, validation and refinement is necessary not only for future 
completion of this model of metabolic reprogramming in the mammalian macrophage, but also for 
the creation of mechanistic models describing molecular biology of human tissues at the genome 
scale. Such mechanistic rather than statistical models of the genotype-phenotype relationship in 
human tissues will allow us to fully capitalize on current molecular biology knowledge and offer 
unprecedented predictive power in model-based drug development and personalised medicine. 
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Use case 2: Kinetic model of cortisol signalling integrated with dFBA 
simulation of human GSMN 
General Introduction 
An important challenge within the modelling community is the integration of existing models to 
produce larger-scale reconstructions that are able to simulate larger areas of biology. The MUFINS 
framework is ideally suited to this as it allows the integration of models from a diverse range of 
frameworks, allowing the exploitation of the legacy of models available in repositories such as 
BioModels. To demonstrate this, in this use case we merge an existing model of nuclear receptor 
signalling, with the human Recon2 GSMN, plus a dynamic FBA constraint to represent the 
requirement of liver cells to maintain glucose and lactate levels within the blood. An overview of 
the model is presented in figure S8, below, with a full description provided within the subsequent 
methods section. 

 
Figure S8: Overview of multi-formalism model of cortisol signalling in human liver. 
The model is constructed of several functional units, indicated by the grey-hatched boxes. Gene expression is 
represented as both transcription and translation reactions, with associated degradation of the mRNA and protein 
products. Read arcs (line with filled circle) are used as both transcription and translation do not consume their substrates 
(i.e. gene and mRNA). Ligand activation of receptors represents the interaction of cortisol with the glucocorticoid 
receptor (GR) and pregnane X-receptor (PXR). Here, directed arcs (line with arrow head) are used to represent 
movement of species during reactions. In addition, the presence of a second ligand for PXR (ligand2) is simulated, 
allowing the examination of drug-drug interactions. Finally, a cortisol infusion can be simulated through a timer; for 
clarity this timer is hidden within a coarse transition (double squared box), with the timer shown as an inset to the main 
diagram. Liver turnover is used to set a constraint on the biomass reaction, representing the minimum level of resources 
(e.g. amino acids, ATP, nucleotides etc.) required for the hepatocyte to be able to replenish itself. Objective functions 
set the reactions or metabolites that will be maximised during FBA. In this case, the external metabolites for glucose 
and estradiol are used. From each FBA solution we extract fluxes that can be used to monitor the behaviour of the 
system. Finally, a dFBA for glucose-lactate homeostasis is included. This adds an additional constraint whereby the 
GEM must maintain glucose and lactate levels in the blood at 4mM and 1.5mM, respectively.  Transitions denoted F1-
F4 are specifically mentioned in the methods section. 
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Methods 
Complete preparation of the model described in figure S4 is detailed below. In addition, the final 
model is available within the MUFINS software, within: MUFINS_ExamplesèNR_Recon2. 
	
2.1 Kinetic model of cortisol signaling 
The development and validation of a model of the nuclear receptor-mediated cortisol signaling 
network has been described in detail in our previous work (8, 9). Briefly, the model simulates 
concentration changes of 42 molecular species describing the interactions between cortisol and two 
of its cellular receptors, the glucocorticoid (GR) and pregnane X (PXR) receptors. Activation of GR 
by cortisol results in a negative feedback on GR gene expression, and a positive feedforward on 
both PXR  and tyrosine aminotransferease (TAT) gene expression. Activation of PXR by cortisol 
results in positive regulation of CYP3A4 gene expression, leading to enhanced degradation of 
cortisol by this enzyme. Transcription, translation, degradation, cortisol-protein and protein-DNA 
interactions are modelled with Ordinary Differential Equations (ODEs), using either mass action 
kinetics or complex reaction mechanisms (e.g. Michaelis-Menten), as appropriate. Justification for 
quantitative parameters of the equations and model validation are provided in our previous paper 
(8).  

Here, we use final version of the model deposited in the BioModels database (10) under 
accession BIOMD0000000576. The SBML file of the model as well as tables with equations and 
parameters are available from BioModels entry BIOMD0000000576.  
 
2.2 Preparation of continuous Petri Net representation of the kinetic model of cortisol signalling 
The kinetic model of cortisol signalling was downloaded as an SBML file from BioModels, and 
imported into SNOOPY as a continuous Petri net using (FileèImport). The imported model was 
then manually curated to (i) remove species that are not required for the current simulation, and (ii) 
alter visualization to match the SBGN format (Figure S8). Neither step is an absolute requirement 
for simulation, but both aid in both understanding simulation output and presentation of the model 
in a manner visually understandable to non-specialists. As the original kinetic model is composed of 
species and reactions and ODEs were defined as sums of reaction rates, import into the Petri Net 
representation did not require any changes to the model equations or parameters. Molecular species 
are represented as places and reactions as transitions, with propensity functions defined by the rate 
equations.  Once manual curation of the model is complete, it can be saved as a SNOOPY file using 
(File Save) 
NOTE: Depending on the version of SNOOPY used, files will be tagged *.spept (older versions) or 
*.xpn (v1.2 and above). MUFINS is able to work with both file formats. 
 
2.3  Preparation of Recon2 human genome scale metabolic model 
To represent human metabolism we have used Recon2 – the community-based reconstruction of 
generic human metabolism (11). The SBML file from the supplementary material of the original 
publication (recon2_model.xml) was downloaded and imported into JyMet using the ‘File-Import 
SBML’ command. We note, that Recon2 is also available from BioModels (MODEL1109130000). 
In its native state, Recon2 has all reaction bounds set to full open (1000 or -1000 for forward and 
reverse direction, respectively). To constrain the solution space for flux balance analysis, and hence 
improve the robustness of biological predictions, it is important to add additional constraints to the 
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reconstruction. This was achieved by: first, constraining exchange reactions to model the 
physiological conditions of a liver cell; second, further constraining the PIPES exchange reactions 
to mimic experimental data on metabolite exchange. 

To constrain the exchange reactions to model the physiological conditions of a liver cell, we 
used the Physiological Import, Physiological Export Set (PIPES) from the HepatoNet1 human 
hepatocyte GSMN model. As HepatoNet1 (12) is integrated into Recon2 with reaction names 
maintained, identification of relevant reactions was straightforward. All exchange reactions were 
identified using the search function in JyMet (EditèSearch) using the string ‘R_EX_’, which is the 
identifier for exchange set reactions. Any Recon2 exchange reactions not listed in the PIPES were 
set as closed (i.e. set to 0, 0). All Recon2 reactions listed in the PIPES were set as open using the 
following bounds: (-1000,0) for import reactions, (0,1000) for export reactions and (-1000, 1000) 
for reversible reactions.  

To further constrain the PIPES exchange reactions, increasing the quantitative accuracy of 
the model, we used experimental data to further constrain the exchange set bounds for reactions 
within the PIPES. Jain et al (13) measured consumption and release of 219 metabolites across the 
NCI-60 cancer cell lines, which we refer to as the CORE flux set. We assumed that none of the 
transport reactions under physiological conditions carries flux larger than the largest flux observed 
in cancer cell lines. This assumption is justified by the fact that cancer cell lines in vitro divide 
faster than healthy tissue and thus have larger nutritional requirements. Hence, the in vivo healthy 
tissue nutrient uptake/release is very unlikely to be larger than the largest (absolute value) flux 
observed across the cancer cell lines. Thus, the CORE flux set provide an excellent resource of 
experimentally determined bounds. The CORE flux values for all 219 metabolites across the 60 cell 
lines were imported into Excel, and the maximal flux value for each metabolite determined. This 
value was then used to replace the relevant exchange bound within Recon2. For example, the 
maximal consumption flux for glucose across the NCI60 cell lines is 1.723855 mmol/ gDW /h. 
Therefore, the glucose exchange reaction (R_EX_glc_LPAREN_e_RPAREN_) has bounds set to (-
1.723855, 1000), denoting a constraint on uptake, but unlimited efflux of glucose. Where a PIPES 
exchange reaction was not examined in Jain et al., flux values were left fully open (i.e. -1000,0 or 
0,1000 or -1000,1000, as required).  

The final GSMN model is available in the MUFINS1.0_Examples/NR_Recon2 directory of 
software distribution as MUFINS reaction table file recon2_xt.PIPES.CORE.v1.sfba.  

We note that while exchange reactions were constrained to reflect knowledge nutritional 
environment of liver cell, we did not use a tissue specific liver model. We chose to use Recon2 
rather than the liver-specific HepatoNet1 because we are convinced that community based 
development of further versions of Recon GSMN is the future direction in modelling human 
metabolism. In addition, Recon2 is substantially larger than HepatoNet1, incorporating 7440 
reactions compared to 2539, and thus has the potential to reveal more biological insights through 
greater interconnectivity. Generation of tissue- or context-specific GSMNs, which entails setting 
bounds for all reactions present within the GSMN using ~omics data allows further constraint of the 
solution space for FBA. This approach is fully discussed in Use Case 3: Analysis of a clinical 
transcriptome study to understand in vivo tumour metabolism.  
 
2.4 Integration of cortisol signaling model with the Recon2 human GSMN 
Once both the signalling network and GSMN have been prepared, they can be integrated in 
SNOOPY for subsequent QSSPN simulation.   



MUFINS: Supplementary Information 
	

	
	

19	

Within SNOOPY, Recon2 GSMN is represented as a transition named ‘Recon_2’. Within the 
comments section of the transition, two command lines are added: first ‘MODEL Recon2_PIPES’ 
set the transition type as a link to a model; second, ‘EXT_TAG _xt’ specifies the external tag used 
within the GSMN. 

Connection between the continuous PN representing the kinetic model of cortisol signalling 
and the GSMN occurs through the QSSPN constraint place representing the CYP3A4 protein, as 
denoted by the read arc between the CYP3A4 protein place and the Recon2 transition. To provide a 
conversion between the expression level of CYP3A4 protein in the continuous Petri net and bounds 
for all reactions catalysed by CYP3A4 within Recon2 a lookup table is added to the comment 
section of the CYP3A4 protein place (Figure S8). As shown in the figure, this lookup table is 
composed of two parts: a list of all reactions that the protein catalyses within Recon2, and a set of 
activity values. Where only a single reaction is mapped to a protein, then this can be entered 
directly next to ‘ENZYME’, but where multiple reactions are effected a list is used (as shown here). 
The number next to each reaction (e.g. 1.0) sets the relative impact of the activity list on each 
reaction, allowing differential control of reactions by a protein, if desired. The activity list sets the 
bounds for these reactions at any given token status for the protein place. In this case, the flux 
bounds of all nine reactions are closed (0, 0) for CYP3A4 concentrations smaller than 1500 nM and 
fully open (0, 1000) at higher concentration. This threshold is sufficient parameterisation for the 
conclusions presented in this use case, but we note that lookup tables with more levels could be 
constructed to interpolate rate equation of CYP3A4 enzyme and quantitative parameters.   

Figure S9: Mapping of protein levels to reaction activity status for QSSPN simulation 
To link token status within a Petri net representation of a gene or signalling regulatory network with reaction bounds 
within a GSMN, comments are added to the QSSPN constraint place (e.g. place representing a metabolic enzyme). The 
comments specify, (i) which reactions are linked to the constraint place, and (ii) the activity of these reactions for any 
given token status of the constraint place.  
 
2.5 Simulation of physiological compartment dynamics for glucose, lactose and estriadol 
Multi-formalism simulations, where GSMNs are integrated, with Physiologically Based 
Pharmacokinetic (PBPK) models is an important future direction in mechanistic modelling for 
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pharmaceutical applications (17). PBPK models use ODEs to describe changes in substance 
concentrations in physiological compartments such as blood, liver, brain etc., and take into account 
factors including drug absorption, distribution, metabolism and excretion. The integration of GSMN 
and PBPK models allows the mechanistic connection between physiological-level effects and 
genotype (14). To demonstrate how MUFINS can be used to integrate PBPK constraints with a 
metabolic reconstruction we have constructed a dynamic FBA model that quantitatively constrains 
the Recon2 GSMN through an ODE model of lactate and glucose concentration in blood. A major 
physiological function of liver is to achieve homeostasis for a range of chemicals within the body, 
including glucose and lactate. Erythrocytes (red blood cells; RBCs) produce lactate during normal 
cellular respiration, which is then excreted into the surrounding blood. As elevated lactate levels 
may be deleterious, lactate is taken up by the liver and converted where it can be converted to 
glucose. Excretion of glucose by the liver is important to maintain blood glucose concentrations for 
use throughout the body.   

We reconstructed lactate production by RBCs and subsequent regeneration of glucose by the 
liver using QSSPN. The graphical, PN representation of the model is shown in Figure S5: glucose 
and lactate in blood were modelled as PN places, with continuous marking representing 
concentration in mM. Lactate is formed from glucose in the blood via transition F2: to scale lactate 
production to a physiological level, a additional PN place was connected to F2 via a read arc, 
representing the total number of RBCs in the blood (Figure S8). The produced lactate concentration 
in the blood was modelled as QSSPN constraint place, representing the availability of lactate for the 
lactate exchange reaction in the Recon2 GSMN. As shown in figure S5, if lactate concentration was 
below 0.001 mM, the exchange reaction was constrained to (0, 1000), preventing uptake of lactate. 
Otherwise, the lactate exchange reaction flux was set to (-0.0565, 1000) representing saturating 
lactate uptake rate of 0.0565 mmol/gDW/h (see below for parameter determination).  

The metabolic utilisation of lactate to form glucose in the liver has been represented by 
setting the FBA objective function to maximisation of external glucose. This objective function has 
been represented by the QSSPN objective place glucose (Figure S8), with commands placed within 
the comments section to specify the metabolite to optimise (external glucose), plus an activity table 
to prevent the use of this objective if it is infeasible (Figure S10). To extract flux values from the 
FBA solution we use QSSPN flux transitions. These are connected to the objective function via a 
read arc, and access values of the FBA solution for the specified flux fluxes. A directed arc transfers 
this flux value to a place, where it can be read (Figure S8). The token values for these flux places 
are then used as inputs for rate equations within transitions F1 and F3, representing glucose 
production and lactate consumption by the hepatocyte, respectively. To scale the simulated flux 
values to a physiological level, F1 and F3 reaction fluxes are modified by a PN place representing 
the total number hepatocytes, connected via a read arc (Figure S8). These involved in production of 
lactate, with continuous marking representing cell density in gram dry weight per litre (gDW/L). 
Finally, to represent the net contribution of the rest of the body to glucose blood levels, a glucose 
source transition is added. This transition adds glucose to the blood at the rate required to achieve 
the known steady-state glucose blood concentration (-2.76 mmol/L/min). 
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Figure S10: Generation of physiological compartment dynamics for QSSPN simulation 
Properties are shown for: QSSPN constraint place for lactate consumption (right), QSSPN objective place to set the 
objective function for FBA as maximisation of production of external glucose (middle), and QSSPN flux transition to 
extract flux value for glucose exchange from the FBA solution in the pre-place. 
 
2.6 Simulation of physiological compartment levels for estradiol 

Flux Variability Analysis was used to examine the influence of reactions catalysed by 
CYP3A4 on the exchange reactions of Recon2. Through this method, estradiol, a physiologically 
important substance, was identified as having its exchange affected. To allow simulation of the 
impact of the signalling network on intracellular concentrations of estradiol, we added a second 
QSSPN objective function that maximises production of estrogen within the cytosol 
(M_C05301_c). The flux rate of estradiol external production is extracted from the FBA solution, 
and then scaled to whole organ level through transition F4, as described for glucose and lactate.  
 
2.7 Use of biomass constraint to represent cell turnover with an organ 

For prokaryotes and eukaryote tumour cells, a major biological objective is cell division. As 
such, increase in biomass is commonly used as the objective function for FBA. This objective is 
usually represented as a composite biomass equation, which encompasses production of all the 
components required to replicate cells (e.g. nucleotides, amino acids, ATP etc.) in their required 
ratios. The majority of mammalian organs do not actively divide, and hence an objective of biomass 
is inappropriate.  However, organs such as the liver, while not actively growing, must replace cells 
continuously to maintain their mass. We represent this requirement as a QSSPN constraint place 
(Liver turnover), which sets a minimal value of biomass flux that must be achieved.  

 
2.8 Parameter values used within the model 
Parameters for the cortisol signaling network are those used in the original paper (8), and are not 
described herein. All other quantitative parameters of the model were determined as follows: The 
RBC cell density was set to 400 gDW/L based on 2 kg of RBCs in 5 L of blood (John Baynes, 
Marek H. Dominiczak, Medical Biochemistry, Elsevier Health Sciences, 24 Jan 2014). As the 
glucose and lactate concentrations were calculated for volume of blood compartment, we used the 
blood volume to calculate the hepatocyte cell density. The density of hepatocytes metabolising 
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lactate and glucose from litre of blood was set to 19.7 gDW/L, based upon measurements of human 
hepatocellularity  (1.96546 1011 hepatocytes in 1414 g of liver; (15)) and a cell density of 500 
pg/cell, as used in Recon2 (11). The rate of glucose conversion to lactate by RBC has been 
experimentally determined as 0.1 mmol of glucose being converted to 0.2 mmol of lactate per day 
(John Baynes, Marek H. Dominiczak, Medical Biochemistry, Elsevier Health Sciences, 24 Jan 
2014). Physiological levels of lactate and glucose are 1.5 mM and 4.5 mM respectively, and were 
obtained from MOPED (16). The maximal value of glucose production, calculated using Recon2 
constrained with CORE fluxes is 8.5 mmol/gDW/h. Using these data, we were able to determine 
remaining parameters of the model (Table 1 below). Note that the rate of transition representing net 
glucose exchange with other physiological consumption is negative, consistent with glucose 
consumption rather than production by other tissues. 
 
Table S1. New parameter values used in Use case 2. 
Parameter Value Comment 
RBC cell density 400 gDW/L Dry weight per 5 L of blood 
Hepatocyte cell density 19.7 gDW/L Dry weight per 5 L of blood 
Transition F1 rate constant 0.016666667 h/min Time unit conversion  
Transition F2 rate constant 1.54 10-5 L/gDW/min Lactate production per litre of blood per 

minute. Based on textbook rate of 0.2 
mmol of lactate per day (John Baynes, 
Marek H. Dominiczak, Medical 
Biochemistry, Elsevier Health Sciences, 
24 Jan 2014). 

Maximal lactate uptake rate 
(constraint place “Lactate”). 

-0.0565 mmol/gDW/h Calculated based on physiological steady 
state of lactate and maximal glucose 
regeneration calculated by Recon2. 

Net glucose exchange -2.57 mmol/L/min The rate required to balance glucose at 
physiological steady state. 

 
2.9 Preparation of control file for QSSPN 
Before a QSSPN simulation can be undertaken, a control file must be created as a text file, setting 
the rules for the simulation. A control file contains the following components 
 
MODEL: this defines the model to be simulated. As this is placed in the same folder as the control 
file, it’s location is designated by ./name.sfba 
NUMBER_OF_SAMPLES: Sets the number of times that a simulation is run (Default=1) 
SEED: Sets the seed for the random number generator used during stochastic transitions 
TIME_MAX: simulation time 
MAXIMAL_TIMESTEP: Sets the timestep for the simulation 
MAX_CHANGE: Allows an adaptive timestep to be introduced if necessary. A value or 0.01 
indicating a 1% change in token status of a palace  
OUTPUT: Specifies the file that stimulation results are written to. Usually an Excel file within the 
current directory (e.g. ./name.xls) 
LOG: Specifies the file for any log entries to be written to. Usually a txt file within the current 
directory (e.g. ./name.txt) 
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MONITOR: Sets the number of interations between writing of data to the output file. This 
parameter can be altered to achieve sufficient granularity in the simulation output 
INITIAL STATE: Sets the token state for places within the Petri net 
PROPENSITY_FUNCTION: Allows algebraic formulae to be used to define the transition 
propensity. Must finish with END  
RESET_FUNCTION: Sets the value of the post-place based upon the pre-place (e.g. to be exactly 
the pre-place value, or 1/20 etc.). Must finish with END. 
PETRI_NET_MONITORS: sets which places have their token status written to the output file 
/* … */: Used to enclose comments 
 
NOTE: values in the control file will overwrite any values entered into places or transitions within 
the SNOOPY file. For best practice, we recommend that simple (i.e. mass action kinetics) rates are 
placed within the SNOOPY file, while complex (e.g. Michaelis-Menten kinetics) rates are placed 
within the control file. All initial values that are not default (i.e. 1 or 0) are best placed within the 
control file. 

An example control file is shown below (Figure S11). This is a shortened version of the 
control file used in Use Case 2.	
 

Figure S11: Generation of the control file for QSSPN simulation 
	
2.10 Simulation of complete model  
Once the model and control file have been created, the model can be simulated. This can be 
achieved either through the command line, or using the JyMet interface. In both cases, the 
algorithm files must be present within a sub-folder (bin) of the folder that contains the model file to 
be simulated. Hence, for a simulation, the top folder must contain the model file (*.spept or *.xpn 
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SNOOPY file), the control file (*.ctrl.txt), the GSMN (*.sfba), and the folder containing the 
simulation algorithms (bin). Examples of this layout can be seen in the MUFINS_Examples	folders.	

2.10.1 Running simulations in the command line 
Under a Mac OS, start terminal, and navigate to the folder containing the simulation files and enter 
the following commands 
./bin/spept2qsspn name.spept x > name.qsspn 
this converts the named *.spept or *.xpn file to a qsspn input format. x specifies the largest possible 
number used in the simulation. For qualitative simulation, this can usually be set as 2, but for 
quantitative simulation we recommend 1e9 (a value unlikely to be exceeded by any species within 
the network). 
./bin/qsspn name.qsspn name.ctrl.txt 
this executes the simulation. After a brief pause, simulation progress will be seen in the terminal 
window, with each number representing the simulation time for each MONITOR step. 
 For Windows OS, the above can be used in the Windows Command Line, using Windows 
syntax. A python interpreter is required to run spept2qsspn. In general, we recommend running 
simulations using JyMet under Windows OS 
 For Linux OS, user should execute two command lines using either binaries available in bin 
or go to MUFINS**_Source/QSSPN/ and run compile.sh, install.sh to create new binary in 
MUFINS**_Source/QSSPN/bin . Both qsspn and spept2qsspn do not require any libraries or 
environmental variables and can be moved to any convenient location on the system, such as 
/usr/local/bin. 

Once the simulation has been completed, the output file can be opened in Excel to view the 
simulation results. 

2.10.2 Running simulation in JyMet 
The implementation of a JyMet interface to QSSPN simulations is major new feature of MUFINS. 
Upon starting JyMet from, three files must be imported. The first is the GSMN model, designated 
as name.sfba, and can be openend via (FileèOpen Model). Second, the SNOOPY file must be 
imported (QSSPNèImport SPEPT). During this process, the program prompts for to “Set default 
maximal number of tokens”. As commented above, this is best left at 2 for qualitative simulations 
and 1e9 for quantitative simulations (a value unlikely to be exceeded by any species within the 
network). Finally, the control file must be loaded (QSSPNèLoad control). 
 Once all the necessary files have been imported, simulation can be undertaken. To start the 
simulation, select the command (QSSPNèRun). Once the simulation has finished, the “Output” tab 
will appear, containing data from all Petri net places specified in the control file. These can be 
visualized by selected them and then using (QSSPNèPlot Trajectory). A	 results	 file	 is	
automatically	written	in	the	simulation	folder,	with	the	name	specified	under	‘OUTPUT’	in	the	
control	 file.	 This	 can	 be	 opened	 in	 spreadsheet	 programs	 such	 as	 Excel	 for	 further	
examination. 
 
2.11 Treatment of primary human hepatocytes with cortisol. 
Primary human hepatocytes were a kind gift of GlaxoSmithKline. Cells were seeded at 2.4 x 105 
cells/cm2 in 25 cm2 flasks using Lebovitz L-15 medium with L-glutamine and amino acids, plus 
10% foetal bovine serum, 100x non-essential amino acids, and allowed to attach overnight. Cells 
were exposed to vehicle (0.1% DMSO) or 1µM cortisol (Sigma Aldrich, Poole, UK) for 24 hours in 
serum-free medium, and then total RNA and protein isolated from quadruplicate samples. Total 
RNA was isolated using the RNeasy Mini kit (Qiagen, Crawley, UK) and quantified using a 
Nanodrop Agilent 2100 Bioanalyser, while total protein was extracted in RIPA buffer (1xPBS, 1% 
Nonidet P40, 0.5% sodium deoxycholate, 0.1 % SDS, protease inhibitor cocktail). 
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For measurement of estradiol clearance, estradiol was prepared at 1 mg/ml with 0.1 % DMSO 
(v/v) in optima grade methanol, and then further diluted to 1 µg/ml oestradiol with 2 mM sodium 
glycocholate in optima grade methanol to enhance solubility. The sample was dried with nitrogen 
and re-suspended in HBSS buffer supplemented with 10 mM 2-(N-morpholino) ethanesulfonic 
acid. Cells were exposed to vehicle or cortisol as previously described. At the end of the 24 hour 
incubation, medium was refreshed with the addition of 1000nM estradiol.  Samples of conditioned 
medium were taken at 0, 15, 30, 45, 60, 90, 120, 150, 180, 210, 240 minutes and then hourly until 8 
hours. Conditioned medium samples were prepared for UPLC-MS analysis as follows: conditioned 
medium was vortexed for 30 seconds, left for 30 minutes at room temperature, and vortexed again. 
Acetonitrile (1:1 v/v) was added, the sample vortexed for 30 seconds and left at room temperature 
for 30 minutes. Samples were then vortexed one final time, and centrifuged at 10,000 xg for 15 
minutes.  
 
2.12 Determination of CYP3A4 expression and activity levels  
For transcript measurement, primers and TAMRA/FAM dual labelled probe specific for CYP3A4 
and 18S were designed using the Primer Express software (Applied Biosystems, Warrington, UK) 
and were purchased from Eurofins Wolverhampton, UK). Total RNA was treated with RNase-free 
DNase (Promega, Southampton, UK) to remove genomic contamination. Reverse transcription was 
primed with random hexamers and carried out by Superscript II (Invitrogen) as per the 
manufacturer’s instructions. To ensure that DNase treated samples were free from genomic 
contamination an RT- control (lacking enzyme) was carried out for every RNA sample. cDNA 
generated from 50 ng (PXR, GR, TAT and CYP3A4) or 50 pg (18S rRNA) of total RNA was 
amplified using TaqMan Universal PCR Master Mix with 400 nM primers and 200 nM fluorogenic 
probe in a total reaction volume of 25 µl. Quantitative polymerase chain reaction (Q-PCR) reactions 
were run on the ABI7000 SDS instrument and quantified out using the ABI proprietary software 
against a standard curve generated from human genomic DNA (Promega). 

For protein measurement, total protein extracts (10 µg per lane) were resolved on 12 % 
SDS-polyacrylamide gels and then transferred electrophoretically to Hybond ECL nitrocellulose 
membranes (Amersham Biosciences, Little Chalfont, Bucks, UK).  Membranes were blocked (1 
hour) in 5 % fat free dried milk and then probed with primary antibodies against human CYP3A4 
(SAB2105781, 1:250; Sigma-Aldrich) or α-actin (sc1616, 1:500; Autogen Bioclear), followed by 
anti-rabbit IgG (sc2030, 1:10000; Autogen Bioclear) or anti-goat IgG (sc 2020, 1:20000; Autogen 
Bioclear) respectively.  Bound antibodies were visualised using enhanced chemiluminescence 
reagents according to the manufactures instructions (Amersham Biosciences). 
 CYP3A4 enzyme activity was determined using the P450-Glo activity system (Promega, 
Southampton, UK), as per the manufacturer’s instructions. Briefly, Luciferin-PPXE substrate was 
mixed with S9 protein extract from primary human hepatocytes, along with an NADPH 
regeneration system and detection reagent. Following 20mins incubation, luminescence was 
quantified using a Packard Lumicount.  
 
2.13 UPLC-MS detection of estradiol in cell lysates and conditioned medium  
An Acquity UPLC system coupled to a Xevo triple quadropole mass spectrometer was used for LC-
MS analysis. An Acquity UPLC BEH C8 1.7 µm, 2.1 x 100 mm column was used for 
chromatographic separation coupled to an Acquity UPLC vanguard column of the same chemistry. 
The method was based on the methodology of Guo et al. (17) with modifications.  The separation of 
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metabolites were carried out under reverse phase conditions using Fisher optima grade water as 
mobile phase A and optima grade methanol as mobile phase B. Capillary, cone and collision 
voltages were set to 1.6 KV, 30 V and 32 V, respectively. The parent ion for oestradiol was 
detected at 269.2 m/z, while daughter ions were detected at 145.8 m/z and 161.1 m/z. 
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Use Case 3: Analysis of a clinical transcriptome study to understand in 
vivo tumour metabolism 
General Introduction 
CBM has achieved unprecedented success in mechanistically modelling the relationship between 
genotype and metabolic phenotype at whole-genome scale. The GSMN of the organism of interest 
can be used as an off-the-shelf component of a multi-scale model, describing biosynthetic precursor 
and energy conversion engine of the cell. In Use Cases 1 and 2 we have shown how this can be 
done in MUFINS, both in the case of steady state and dynamic models. An important branch of 
CBM methodology (18) is dedicated to using ~omics data on metabolic gene activity to create 
tissue and/or condition specific GSMNs. We are convinced that constraining GSMNs by condition, 
tissue or patient specific ~omics data will be an important step in many mechanistic modelling 
projects. Therefore, we have not only made sure that MUFINS is equipped with state-of-the art 
CBM methods in this area, but have also developed Fast iMAT, a new variant of the iMAT 
congruency approach that is applicable to large ~omics sample numbers, where iMAT becomes 
impractical.  

A preliminary version of the Fast iMAT approach, where gene expression data were 
discretised to two levels (absent transcript, present transcript) has been already used to analyse 2000 
individual breast tumour transcriptomes from the Metabiric dataset (19). This has led to discovery 
of poor prognosis cluster with active serotonin production – an important biological insight (20).  

Here, we present the mature version of Fast iMAT, where expression data can be discretised 
to three levels, including up-regulated expression. To illustrate this feature we have applied 
MUFINS to analyse a previously unexamined transcriptome datasets from Metabric (19). For 131 
patients, two samples were collected: one from a breast tumour, and a second from a matched-
normal region of breast tissue, leading to 262 transcriptome samples. This is ideal for analysis of 
how tumour differs from normal tissue, while our published analysis focussed on personalised 
differences between different tumours. 
 
Methods 
     Figure S12 shows our computational pipeline using the sfba engine of MUFINS to analyse 262 
personalised, clinical transcriptome samples in the context of human Recon2 GSMN.  
 
3.1. Metabric datasource 
As part of the Metabric (Molecular Taxonomy of Breast Cancer International Consortium) study, 
transcriptomic data from over 2000 breast tumours was generated, with full details of the patient 
population available in the accompanying publication (19).  The data is available through the 
European Genome-phenome archive (https://www.ebi.ac.uk/ega/home), and uses the Illumina 
HumanHT 12v3 beadchip microarray platform. In Use Case 3 we use dataset EGAD00010000212 
containing tumour and matched healthy tissue transcriptomes for 131 patients. The human genome 
scale metabolic network (GSMN) Recon2 has been downloaded from its public repository 
(http://humanmetabolism.org/) (11). 
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3.2. Transcriptomic data pre-processing 
Raw transcriptomic data was first pre-processed to remove data from bad quality probes, normalize 
expression levels across bead arrays and summarize probeset data to derive expression levels for 
each target gene. All data manipulation and analysis were performed using scripts written in the R 
statistical programming language and the Bioconductor (21) and RStudio (22) interfaces. 
The Bioconductor package beadarray was used to import raw images, generate quality assessment 
information, carry out image processing to adjust for spatial artefacts, and undertake background 
correction. Probes were then filtered by detection score, with a cut off p-value set as 0.05 (21, 23) 

 
Figure S12: Overview of fast iMAT analysis of metabolic reprogramming in cancer and healthy 
breast tissue 
The METABRIC dataset contains transcriptome data for 131 individual tumours paired with healthy tissue samples 
from the same patient. The sfba tool has been incorporated into the computational pipeline shown above. The Fast 
iMAT algorithm allowed calculation of personalised metabolic landscapes for each of 262 transcriptome samples. From 
these metabolic landscapes, differentially activated reactions can be identified, leading to mechanistic hypotheses. 
 
3.3.  Prediction of metabolic landscapes 

Once presence or absence of transcripts was established the gene-reaction association rules of 
Recon2 model were used to find classify reactions as absent or present. In the case of multiple 
genes associated with the reaction, Boolean expressions of the Recon2 rules were used to determine 
whether reaction is operational, given presence/absence of the transcripts. Reactions, which were 



MUFINS: Supplementary Information 
	

	
	

29	

declared to be absent were assigned the state -1, remaining reactions were assigned the state of 0. 
Thus for each transcriptome, we obtained a vector assigning -1 or 0 state to each of 7440 reactions 
in Recon2. These vectors constituted input of Fast iMAT algorithm. For each of the input vectors, 
Fast iMAT algorithm identified flux distributions such that i) all stoichiometric and thermodynamic 
constraints were satisfied ii) maximal number of absent reactions (state -1) carried no flux. The 
Fasti MAT algorithm is formulated in Supplementary Methods section 3. 

To directly compare Fast iMAT with original approach, we have analyzed transciptome data 
for the NCI-H23 cell line using both iMAT and Fast iMAT algorithms implemented in MUFINS. 
Both simulations were run with the sfba tool on a 2.2 GHz AMD Opteron(tm) Processor 6174 on 
Linux. The Fast iMAT algorithm completed the task in 752 seconds, while iMAT calculations took 
59725 seconds. Thus Fast iMAT is nearly 80 times faster (79.4). Supplementary Table 3 shows 
results of both simulations. Results of both methods are very similar; the prediction accuracy of 
iMAT result by Fast iMAT is 92%, which is statistically significant (p-value 4.3E-20). 

 
3.4. Identification of differentially expressed genes and functional classification 

Standard eBayes analysis with BH multiple testing correction were used as implemented in limma. 
The functional descriptors overrepresented in the list of differentially expressed genes were 
identified using DAVID. Results available in Supplementary Table 2 show that features of 
metabolic reprogramming could not be identified with standard analysis of Differentially Expressed 
Genes. 
 
Results 
Comparison of the predicted metabolic landscapes of paired normal and tumour tissue samples 
allows the identification of differentially activated reactions (DARs), which are either significantly 
more active in tumour tissue compared to normal tissue, or vice versa. A list of DARs is presented 
as supplementary table 2, as well as a comparison to standard statistical over-representation analysis 
of the transcriptome data to identify differentially expressed genes (DEGs). Figure S13 presents an 
example pathway predicted to have increased activity in tumour compared to normal tissue. Flux 
through this pathway, which produce kyneurenine, was predicted to be more active in 94/131 (72%; 
95% CI 63-79%) tumour samples compared to their matched-normal tissue samples; the converse 
was predicted in only 7/131 (5%; 95% CI 2-11%) samples.	  This predicted increase in kyneurenine 
synthesis is consistent with the published literature: kyneurenine was recently established as the 
endogenous ligand for the Aryl hydrocarbon receptor (24), and implicated in pro-survival and 
immune evasion phenotypes (24, 25). It is important to note that this pathway was not identified 
through standard DEG analysis.  
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Figure S13: Breast tumours have significantly higher flux toward kyneurenine that matched normal 
breast tissue. 
The METABRIC dataset contains transcriptome data for 131 individual tumours paired with healthy tissue samples 
from the same patient. Personalised metabolic landscapes for each of 262 transcriptome samples were generated using 
the Fast iMAT approach. The list of reactions whose states were significantly different between tumour and healthy 
tissues revealed altered tryptophan metabolism, predicting increased synthesis of L-kynurenine in tumours. This 
mechanistic hypothesis is in agreement with literature experimental data, where is is demonstrated to drive a pro-
survival phenotype. 
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TECHNICAL DESCRIPTION OF 
COMPUTATIONAL METHODS 

 

Linear Inhibitor and Activator Constraints 
Vardi and colleagues (3) have published a linearized CBM approach for studying signaling 
networks. Here, we provide a general implementation of this approach, allowing for the first time 
the study of steady state systems composed of gene regulatory, signaling and metabolic networks. 
We introduce a definition of reaction formulas where substances can enter the formula not only as 
substrates but also as activators or inhibitors. The “&” operator preceding name of the substance 
introduces activator, which is required for the reaction. The “~” operator introduces inhibitor, which 
must not be produced in the system in order for the reaction to happen. Neither activators nor 
inhibitors are consumed during the reaction. An example formula is given below: 
 
r: A + 2 B + & C + ~ 50 D = E + F 
 
where, A and B are stoichiometric substrates of this reaction with stoichiometric coefficients of 1 
and 2 respectively. C is activator and D is inhibitor. The coefficient in front of D is inhibition 
strength parameter. Extended reaction formulas are interpreted by the software in the following 
way.  

For each activator A occurring in reaction r the following additional reaction a and reaction 
bounds are added to the system: 
 

𝑎: 𝐴$ → 𝐴&, 0 ≤ 𝑣+ ≤ 𝑣,+-,., 		𝑣. ≤ 𝑣+ 
 
The activator A is represented by two “virtual” metabolites As and Ap, which are the substrate and 
product of reaction a. Ap is an external sink metabolite for which flux balance is not required. 
Constraining flux through reaction r to be smaller than the flux through reaction a introduces 
demand for As in reaction r. If v for reaction a equals vmax for reaction r, this demand does not 
influence the quantitative value vr. However, if As is not available in the network vr is constrained 
to 0. This makes A a cofactor that is required for reaction r, but is not consumed by reaction r.   

Each inhibitor I in reaction r results in the creation of the following additional constraint in 
the Linear Problem representing the GSMN: 

 
0 ≤ 𝛼1𝑣1 ≤ 𝑣,+-,., 0 ≤ 𝛼1, 0 ≤ 𝑣. + 𝛼1𝑣1 ≤ 𝑣,+-,. 

 
The coefficient α represents the inhibition strength, while vI represents the producibility of inhibitor 
metabolite I calculated as the sum of all non-reversible reactions producing I. For α vI  = vmax,r the 
above constraints can be satisfied only if flux through reaction vI is 0. For α vI in the range of (0, 
vmax,r) the vr is constrained to the range of (0,  α vI). Thus, reaction vr is not affected by I if I is not 
producible, while any increase of producibility of I results in a decreasing upper bound of vr, 
eventually limiting vr to zero.  
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Our formulation of inhibitor constraint is different from the solution proposed by Vardi and 
colleagues (3). In their formulation, vI is the flux through an additional virtual reaction consuming 
the inhibitor, while we use the sum of irreversible reaction fluxes making the inhibitor. Moreover, 
activator and inhibitor constraints were originally proposed to model a signalling network alone. In 
Use Case I we will show for the first time much wider application to model systems combining 
gene regulatory, signaling and metabolic reactions at steady state thus providing general capability 
to construct mechanistic models of metabolic reprogramming by cellular regulatory networks. Last 
but not least, MUFINS is the first software providing reaction formula interface, which does not 
require coding of the additional LP constraints by the user. The reaction formulas can be used both 
in JyMet GUI and sfba input files in command line mode. 

Extended Quasi Steady State Petri Net (QSSPN) algorithm. 
We will introduce Quasi Steady State Petri Net (QSSPN) algorithm and define new features 
published for the first time in this manuscript. While definition of basic QSSPN is available in the 
supplementary material of our previous paper (26), it will be re-iterated here to provide consistent 
definition of the algorithm. New features, introduced for the first time in this work will be indicated. 
Documentation on file formats, software operation and QSSPN tutorial are provided in 
MUFINS1.0_Docs of software distribution. 
 
2.1. DEFINITION OF QUASI-STEADY STATE PETRI NET (QSSPN). 
The QSSPN model is composed of two disjoint sets of molecular interactions: quasi-steady state 
fluxes (QSSF) and dynamic transitions (DT). We assume that following interaction activity in DT 
set the QSSF quickly reach steady state. In Constrained Based Modeling (CBM) field (18) this 
quasi-steady state assumption has been originally applied to connect stoichiometric models of 
steady state flux distribution in metabolism with dynamic models of gene regulation. This is 
justified by timescale separation between gene regulation and signaling. We note that covalent 
protein modification reactions in signaling networks are also fast compared to transcription & 
translation timescales and can be included into QSSF set. This is further facilitated by use of linear 
activator and inhibitor constraints as described in the main manuscript.  

In QSSPN the DT set is represented using Petri Net (PN) while, QSSF are modeled using 
Flux Balance Analysis (FBA). For the sake of presenting a full, self contained description of 
QSSPN, we will first re-introduce definitions of PN and FBA that can also be found elsewhere (18, 
27). In section 2.1.3 we will define QSSPN and in chapter 2.2 describe our QSSPN simulation 
algorithm and its novel extensions. 
 
2.1.1. Petri Nets. 
A standard Petri Net is a directed bipartite graph, where two types of nodes represent places and 
transitions. Directed edges connect places to transitions and transitions to places. Since PN is a 
bipartite graph, there are no edges linking places to places and transitions to transitions. A place 
linked to a transition with a directed edge originating at the place is described as a pre-place of that 
transition. A place connected to a transition by a directed edge originating at the transition is 
described as a post-place of that transition. Each place of the PN may have a non-negative integer 
number of tokens associated with it. The distribution of tokens over all places in the PN is called 
marking and represents the state of the system. Upon firing, transitions change the state of the 
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system by moving tokens from pre-places, to post-places. The number of tokens consumed from the 
given pre-place is specified by the weight of an edge linking the pre-place with the transition. The 
number of tokens added to the post-place is specified by the weight of the edge linking the 
transition and post-place. The transition may fire only when it is enabled (i.e. when all pre-places 
contain sufficient number of tokens, specified by a firing rule). The PN formalism is associated 
with graphical notation, where places and transitions are represented by circles and rectangles 
respectively, edges are drawn as arrows and tokens are represented as dots or numbers drawn within 
place symbols. The terminology above is summarised by the following commonly used definition: 
 
𝐴	𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑃𝑒𝑡𝑟𝑖	𝑁𝑒𝑡	𝑖𝑠	𝑎	𝑞𝑢𝑎𝑑𝑟𝑢𝑝𝑙𝑒	 𝑃, 𝑇, 𝐹,𝑚C 	𝑤ℎ𝑒𝑟𝑒: 
𝑃	𝑎𝑛𝑑	𝑇	𝑎𝑟𝑒	𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡	𝑓𝑖𝑛𝑖𝑡𝑒	𝑠𝑒𝑡𝑠	𝑜𝑓	𝑝𝑙𝑎𝑐𝑒𝑠	𝑎𝑛𝑑	𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠	𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. 
𝐹: 𝑃×𝑇 ∪ 𝑇×𝑃 → ℕC	𝑖𝑠	𝑎	𝑠𝑒𝑡	𝑜𝑓	𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑	𝑎𝑟𝑐𝑠	𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝑏𝑦	𝑛𝑜𝑛	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒	𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠. 
𝑚C ∶ 𝑃 → ℕC	𝑑𝑒𝑓𝑖𝑛𝑒𝑠	𝑡ℎ𝑒	𝑖𝑛𝑖𝑡𝑖𝑎𝑙	𝑚𝑎𝑟𝑘𝑖𝑛𝑔. 
 

In the PN field, numerous extensions of the standard framework described above have been 
defined to increase its expressiveness. In QSSPN we use two additional types of edges. A read 
edge connects pre-place to the transition. The transition is enabled only if the pre-place connected 
by read edge has sufficient number of tokens. However, upon firing, the transition does not 
consume tokens from the pre-place. In graphical representation read edge is indicated by an arrow 
headed with a full circle. An inhibitory edge connects a pre-place to a transition. The transition is 
enabled only if the pre-place connected by inhibitory edge is not sufficiently marked. In graphical 
notation an arrow headed with an empty circle represents an inhibitory edge.  

The dynamics of the PN is simulated by iteratively firing transitions, which change the 
marking. A set of firing rules associated with transitions and an algorithm used to generate a 
dynamic trajectory of the system defines the Petri Net semantic. In the simplest case, a transition is 
enabled when all pre-places connected by standard and read edges are sufficiently marked (i.e. have 
number of tokens larger than the weight of an edge connecting pre-place to transition) and all pre-
places connected by inhibitory edges are not sufficiently marked (i.e. have token numbers lower 
than the weight of an edge connecting pre-place to transition). The dynamic trajectory is then 
generated by iteration of the following steps: i) identification of all enabled transitions, ii) random 
selection of one of the enabled transitions, iii) changing PN marking by firing of selected transition. 
However, many different semantics are available in PN tools and separation of semantics from 
connectivity is one of the most powerful features of the PN formalism, supporting testing of 
different modelling assumptions for the same network connectivity. In continuous PNs, firing rules 
are expressed in terms of Ordinary Differential Equations (ODEs) and standard algorithms for 
numerical integration of ODEs are used to generate dynamic trajectories. In stochastic PNs firing 
rules are defined by probabilistic propensity functions and the Gillespie algorithm (28) is used to 
generate a sample of dynamic trajectories. Definition of semantics in continuous and stochastic PNs 
requires the introduction of continuous and stochastic transition types, which, when enabled, are 
fired by different procedures. Moreover, in the case of continuous PNs, the continuous place is 
defined where real rather than integer number is used as a marking. The PN composed of multiple 
transition types, including continuous and stochastic transitions is referred to as hybrid PN.  
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2.1.2. Flux Balance Analysis (FBA) 
Flux Balance Analysis (FBA), frequently referred to as constraint-based method (CBM), explores 
global flux distribution in a chemical reaction network at steady state. The system of m coupled 
chemical reactions, involving n metabolites is defined as a stoichiometric matrix S with dimensions 
of m x n. Each value in the matrix represents the stoichiometric coefficient of a particular 
metabolite in a particular metabolic reaction. The stoichiometric coefficient is negative for 
substrates and positive for products. The stoichiometric matrix is sparse, since for most 
metabolite/reaction pairs the value of the stoichiometric matrix is 0, indicating that metabolite does 
not participate in the reaction. Vector x of length m assigns concentration to every metabolite and 
vector v of length n assigns metabolic flux to every reaction in the network. Time evolution of 
molecular concentrations in the system is given by the equation: dx/dt = Sv, which at steady state 
becomes Sv = 0. This equation constrains the possible values of fluxes in vector v, for each 
metabolite the sum of fluxes producing this metabolite, must equal the sum of fluxes consuming the 
metabolite. Additional constraints are introduced by assigning bounds to every reaction: fl < v < fu, 
where fl and fu are vectors of length n containing lower and upper reaction bounds, respectively. 
The bounds are used to constrain measured fluxes to experimentally known values and specify 
reaction reversibility. Reversible reactions can assume both positive and negative flux values, 
irreversible reactions are constrained to either positive or negative fluxes. Furthermore, the bounds 
are also used to define boundary conditions (i.e. the values of exchange fluxes, which are connected 
to sources and sinks of metabolic flux). The sources and sinks are frequently referred to as external 
metabolites, which do not have to be balanced. The external metabolites specify nutrients available 
and secreted in the medium. 

In a genome scale metabolic network the flux values for most of the reactions are unknown, 
so the linear system given by equation Sv = 0 cannot be solved for a unique vector v. Instead, FBA 
explores the space of flux distribution vectors v that satisfy steady state condition (the null space of 
S) and the bounds to test feasibility of metabolic functions of interest under given extracellular 
nutrient conditions. The following linear programming optimisation is performed: 
 

max
$,VWVX

𝒄 ∙ 𝒗 , 𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡	 

𝑆 ∙ 𝒗 = 0 
𝒇_ < 𝒗 < 𝒇a 

 
The linear programming (usually Simplex algorithm) is used to maximise objective 

function, which is formulated as a linear combination of fluxes in v. Thus, c is a vector of objective 
function coefficients set by the user. The use of linear programming guarantees finding maximal, 
unique value of objective function, but there may be many solution vectors v corresponding to this 
value. In its original formulation FBA has been used to calculate maximal growth rates of microbial 
cultures under steady state conditions. However, it can be used to model feasibility of any metabolic 
function, which is especially applicable in modelling of human cells (11, 12), which may not divide 
under condition of interest. If the unique, maximal value of objective function is 0, then a particular 
objective function is not feasible given stoichiometric constraints of 0. In many QSSPN 
simulations, such as our model of bile acid homeostasis in liver cell (26), we use FBA to test 
whether metabolites in the network can be produced. Following the previous work of Imielinski 
(29) and colleagues, and ours (30) on producibility plots we set objective function coefficient vector 
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c to the row of stoichiometric matrix corresponding to a metabolite, which is tested, and remove the 
balance requirement for this metabolite. In this way we maximise sum of fluxes connected to this 
metabolite. If maximal value of objective function is greater than 0, we conclude that metabolite 
can be produced by the system. We can also use this calculation to conclude that the flux towards 
the metabolite is greater under certain conditions rather than others. In this way we can use FBA to 
test whether the change of metabolic network flux bounds leads to increased availability of the 
metabolite. 
 
2.1.3. Quasi Steady-State Petri Nets (QSSPN) 
We define QSSPN as follows: 
 
𝐴	𝑄𝑢𝑎𝑠𝑖	𝑆𝑡𝑒𝑎𝑑𝑦	𝑆𝑡𝑎𝑡𝑒	𝑃𝑒𝑡𝑟𝑖	𝑁𝑒𝑡	𝑖𝑠	𝑎	𝑝𝑎𝑖𝑟: 𝑄𝑆𝑆𝐹, 𝐷𝑇 ,𝑤ℎ𝑒𝑟𝑒: 
 

𝑄𝑆𝑆𝐹	𝑖𝑠	𝑎𝑛	𝐹𝐵𝐴	𝑚𝑜𝑑𝑒𝑙: 𝑆	 ∙ 𝒗 = 𝟎	 ∧ 𝒇𝒍 < 𝒗 < 𝒇𝒖,	 
𝑆	𝑖𝑠	𝑠𝑡𝑜𝑖𝑐ℎ𝑖𝑜𝑚𝑒𝑡𝑟𝑖𝑐	𝑚𝑎𝑡𝑟𝑖𝑥	𝑜𝑓	𝑚	𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒𝑠	 𝑟𝑜𝑤𝑠 	𝑎𝑛𝑑	𝑛	 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠 ,	 

𝒗	𝑖𝑠	𝑎	𝑣𝑒𝑐𝑡𝑜𝑟	𝑜𝑓	𝑓𝑙𝑢𝑥𝑒𝑠 
	𝒇𝒍, 𝒇𝒖𝑎𝑟𝑒	𝑓𝑙𝑢𝑥	𝑏𝑜𝑢𝑛𝑑𝑠	𝑣𝑒𝑐𝑡𝑜𝑟𝑠	 

 
𝐷𝑇	𝑖𝑠	𝑎	𝑃𝑒𝑡𝑟𝑖	𝑁𝑒𝑡	 𝑃, 𝑇, 𝐹,𝑚C, 𝐶, 𝑂 , 𝑤ℎ𝑒𝑟𝑒 

𝑃	𝑎𝑛𝑑	𝑇	𝑎𝑟𝑒	𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡	𝑓𝑖𝑛𝑖𝑡𝑒	𝑠𝑒𝑡𝑠	𝑜𝑓	𝑝𝑙𝑎𝑐𝑒𝑠	𝑎𝑛𝑑	𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠	𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. 
𝐹: 𝑃×𝑇 ∪ 𝑇×𝑃 → ℝ	𝑖𝑠	𝑎	𝑠𝑒𝑡	𝑜𝑓	𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑	𝑎𝑟𝑐𝑠	𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝑏𝑦	𝑟𝑒𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟𝑠. 

𝑚C ∶ 𝑃 → ℝ	𝑑𝑒𝑓𝑖𝑛𝑒𝑠	𝑡ℎ𝑒	𝑖𝑛𝑖𝑡𝑖𝑎𝑙	𝑚𝑎𝑟𝑘𝑖𝑛𝑔. 
𝐶 ∈ 𝑃: 𝐶 → 𝒇_,n, 𝒇a,n , 𝒇_,n ∈ 𝒇𝒍, 𝒇a,n ∈ 𝒇a	𝑖𝑠	𝑎	𝑠𝑒𝑡	𝑜𝑓	𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡	𝑝𝑙𝑎𝑐𝑒𝑠 

𝑂 ∈ 𝑃: (max
$,VWVX

𝒄𝑶 ∙ 𝒗 	𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡	𝑆 ∙ 𝒗 = 0 ∧ 𝒇_ <𝒗 < 𝒇a) → 𝑂	𝑖𝑠	𝑎	𝑠𝑒𝑡	𝑜𝑓	𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒	𝑝𝑙𝑎𝑐𝑒𝑠 

 
The QSSPN connects the FBA model of Quasi Steady State Fluxes (QSSF) with Petri Net 

(PN) model of Dynamic Transitions (DT). Connection is defined through two types of PN places. 
Constraint places define mapping between PN marking and FBA bounds making FBA model 
dependent on the state of PN. Objective places define mapping of between multiple FBA objective 
functions and PN marking making state of PN dependent on FBA model. Constraint place sets 
specific lower and upper flux bounds in FBA model according to it’s marking. A constraint place 
can set bounds of multiple fluxes in FBA model specified in vectors fl,c and fu,c. Objective place 
requests evaluation of FBA objective function and sets it’s marking according to objective function 
value. The objective function is defined as linear combination of FBA fluxes, with coefficients in cO 
vector defining objective specific to particular objective place.  

Definition above defines basic QSSPN structure. Chapter 2.2 below defines semantics by 
introducing transition rules for different transition types, specific rules for constraint and objective 
places mapping as well as hybrid simulation algorithm. We note that in QSSPN definition above we 
use PN marking by real rather than integer numbers. This is new feature, introduced here to 
facilitate hybrid simulations where marking can be updated in both discrete and continuous way. In 
original QSSPN definition (26) we used integer token numbers and approximated continuous 
changes with very large numbers of discrete levels.  
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2.2 QSSPN SIMULATION ALGORITHM 
Here we present QSSPN simulation algorithm that integrates hybrid PNs and FBA. The PNs can be 
composed using stochastic, continuous, immediate and reset transitions. Special flux transition 
type is a new feature implemented to communicate fluxes of example FBA solutions to PN part of 
the model. By graphically selecting different transition types in PN editor the user can implement 
stochastic, ODE and qualitative models and combine them with FBA. Thus, without any need of 
additional coding the user can graphically construct models in all major formalisms of 
computational systems biology and combine these models in multi-formalism simulations.  

Below, we provide complete formulation of QSSPN simulation algorithm and indicate new 
features that were introduced after our first publication (26). We first describe transition semantics 
and subsequently define a number of functions describing elementary operations within one 
algorithm iteration. These functions are then used within algorithm flowchart shown on Figure 1. 
 
2.2.1 Pre-place activity. 
During simulation we use pre-place activity, rather than pre-place marking directly. The user can 
choose between mass-action activity, where activity equals pre-place marking and a lookup table, 
which maps arbitrary activities to marking within specific thresholds. Use of thresholds is key for 
the formulation of qualitative simulations (26) and for the integration of qualitative and quantitative 
models.  

Activity µ(x) of a pre-place with marking x equals either x, if it is a mass-action activity, or 

a value from lookup table T thresholds ti and activities ai:  
 In the previous version of the software we used exclusively lookup tables to define 
activities. The choice between lookup table and mass-action activity is a new feature implemented 
here. 
 
2.2.2 Propensity function. 
By default, the propensity function of a QSSPN transition is calculated as a product of pre-place 
activities and rate constant and referred to as elementary propensity function. Alternatively, the 
user can choose complex propensity function defined by algebraic expression with pre-place 
activities as variables. While elementary propensity is a special case of complex propensity, we 
maintain distinction here as both are implemented differently in the software and input files.  
 
The elementary propensity of PN transition t, denoted by Pt, is defined as: 

µ(x) =

x ∈[t1,t2 ), µ(x) = a1
x ∈[ti ,ti+1), µ(x) = ai

...
x ∈[tT −1,tT ), µ(x) = aT

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

Pt = ct µi (xi )
i=1

N

∏
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where ct is a rate constant, N is the number of pre-places of transition t, xi is the number of tokens at 
pre-place i and µi is the pre-place activity in the transition depending on the pre-place state.  
 
The complex propensity of PN transition t, denoted by Pt is defined as: 

where f is a function of N pre-place activities µi(x) and M parameters ci. In current implementation 
any algebraic expression of activities and parameters can be used. Rising to a power is 
implemented, trigonometric functions are not yet available.  

Use of algebraic expressions to allow definition of complex propensity functions is a major 
new feature of qsspn solver presented here. The formulas are first parsed to Reverse Polish 
Notation using Dijstra’s shunting-yard algorithm and subsequently efficiently evaluated on a stack 
during simulation. This is computationally efficient implementation as formulas do not have to be 
parsed at every iteration of the algorithm. 

Use of pre-place activities instead of pre-place states in propensity function formulas is a 
powerful tool to link variables of models expressed in different formalisms. Activity lookup tables 
allow introduction of thresholds, which is necessary for integration of quantitative and qualitative 
models.  
 
2.2.3 Transition types. 
The QSSPN algorithm uses transition types with the following interpretation of propensity function 
and update rules (semantics): 
 
Immediate transition. The immediate transition is enabled if its propensity function is greater than 
0. Upon firing, it removes integer number of tokens from pre-places connected with standard edge 
and increases the marking of post-places by integer number. The numbers of tokens being changed 
upon firing of stochastic transition are specified by stoichiometric coefficients associated with 
edges. 
 
Stochastic transition. The propensity function of stochastic transition is interpreted as the 
probability density of the transition firing in the next, infinitesimally small, time step. If transition is 
selected to fire it removes integer number of tokens from pre-places connected with standard edge 
and increases the marking of post-places by integer number. The numbers of tokens being changed 
upon firing of stochastic transition are specified by stoichiometric coefficients associated with 
edges. 
 
Continuous transition. The propensity function of continuous transition is interpreted as the rate. 
The rates are used as terms of Ordinary Differential Equations, which update marking of places 
connected to continuous transitions.  
 
Reset transition. Reset transition is enabled if its propensity function is greater than 0. Upon firing 
reset transition sets, rather than updates, marking of its post-places. If reset function is defined the 
marking of post-places is set to its value. Reset function can be defined as algebraic expression of 
pre-place markings (new feature). If reset function is not defined each post-place is set to the value 

Pt = f (µ1(x1),...,µN (xN ),c1,...,cM )
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of a number defined by an edge linking the place to reset transition. A place can be a connected as a 
post-place to only one reset transition. 
 
Flux transition. This is new feature introduced to allow use of an example solution of a particular 
FBA objective function. This feature is necessary for implementation of dynamic FBA method. A 
flux transition can have only one pre-place and this pre-place must be an objective place. A flux 
transition can have only one post-place. Upon objective function evaluation, flux transition sets 
marking of its post-place to the value of a specific flux in FBA solution of the objective function. 
 
2.2.4 Setting of flux bounds (Function: setQSSFbounds()). 
This function sets the bounds of fluxes in the quasi-steady state flux (QSSF) part of the model 
according to the state of the state of constraint place. Each constraint place is associated with a list 
of fluxes in the QSSF and a lookup table setting bounds of all fluxes from this list according to the 
place’s state. The lookup table has the following form: 

where x is marking of the constraint place, lb(x), ub(x) are lower and upper flux bounds 
respectively, t1,..,tT are marking thresholds and fl,i, fu,i are lower and upper flux bound values set 
according to the objective place’s state. If application of the lookup table results in a change to the 
lower or upper bound for any of the fluxes, the global Boolean variable ‘UpdateRequired’ is set to 
TRUE to indicate that flux balance analysis (FBA) objective functions need to be evaluated. The 
UpdateRequired variable is re-set to FALSE before the loop over constraint nodes commences. 
 
2.2.5 Evaluation of an objective function (Function: evaluateObjective()) 
This function uses Flux Balance Analysis to evaluate the objective function specified by a particular 
objective node. The objective function is specified as the name of the flux or the name of the 
metabolite in the QSSF network. If the objective is specified as the flux the linear programming 
(LP) maximises value of this flux. If the objective is specified as a metabolite, the sum of fluxes 
producing this metabolite is maximized (metabolite producibility (29, 30)). If ‘UpdateRequired’ 
variable is set to TRUE the objective is evaluated by LP maximisation of entire QSSF model. 
Otherwise, the value determined for this objective in the previous iteration is used. Evaluation of an 
objective function by LP maximisation of the entire QSSF model is the most computationally 
demanding step of the QSSPN algorithm. The use of ‘UpdateRequired’ variable ensures that this 
step is not executed unnecessarily, when QSSF bounds have not changed, and the previously 
determined value of the objective function would be obtained. 
 
2.2.6 Marking of objective place (Function: updateObjectivePlace()) 
This function sets the marking of a particular objective place according to the objective function 
value, thus feeding back information about steady state metabolic capabilities to the dynamic part of 
the model. The following lookup table is used to set the marking of the objective place: 

(lb(x),ub(x)) =

x ∈[t1,t2 ), lb(x) = fl ,1, ub(x) = fu ,1
x ∈[ti ,ti+1), lb(x) = fl ,i , ub(x) = fu ,i

...
x ∈[tT −1,tT ), lb(x) = fl ,T , ub(x) = fu ,T

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪
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where x(o) is the state of the objective node, t1,..,tT are objective function thresholds (real numbers) 
and s1,..,sT are integer number of tokens assigned to the node, depending on the objective function 
value o calculated by evaluateObjective(). 
2.2.7. Firing of reset transitions (Function: fireResetTransitions() new feature). 
Propensity function of all reset transitions is evaluated as described in 2.2. Subsequently, all reset 
transitions for which propensity function is greater than 0 are fired. If two reset transitions are 
connected to the same post-place, simulation is stopped and error message is returned to the user. 
We allow reset transitions to act on only one place. 
 
2.2.8. Firing of immediate transitions (Function: fireImmediateTransitions()). 
Propensity function of all immediate transitions is evaluated as described in 2.2. Subsequently, all 
immediate transitions with propensity function greater than 0 are fired. The local conflicts between 
multiple immediate transitions connected to the same place are resolved by the following stochastic 
approach. Let TP be the set of enabled transitions connected to place P. We randomly select 
transition t from Tp in such a way that probability of transition being selected is proportional to its 
propensity function. Only transition t changes marking of P.  
 
2.2.9. Firing of continuous transitions (Function: fireContinuousTransitions(Δtmax)). 
Propensity function of all continuous transitions is evaluated as described in 2.2. Subsequently, 
marking of all places connected to continuous transitions is updated. Let Tp be the set of n 
transitions connected to place P. The mp, marking of place p is changed in the following way: 

𝑚& 𝑡 + ∆𝑡 = 𝑚s 𝑡 + 𝑎t(𝑡)∆𝑡
u

tvw

 

where ai(t) is propensity of transition i at time current simulation time t. The timestep Δt is selected 
in such a way that max(a1(t)Δt /mp(t),…, a1(t)Δt /mp(t)) < maxChange. Default value of maxChange 
is 0.01, but user can change this variable. If Δt is greater than Δtmax then Δt is set to Δtmax. We note 
that this implies that the PN composed exclusively of continuous transitions is interpreted as a 
system of coupled Ordinary Differential Equations and numerically integrated with adaptive 
timestep Euler algorithm. Our case studies show that this algorithm provides practical solution for 
stiff systems and contrary to more complex ODE integration algorithms is easy to integrate into 
hybrid simulation. In the future versions of the software we will investigate further improvements to 
computational efficiency of continuous transition firing. We also note that this function has been 
substantially improved since previous version of the software (new feature). 
 
2.2.10. Firing of delayed transitions (Function: fireDelayedTransition(t)). 
The function examines delayed transitions queue to check if there are any scheduled to be fired 
before time t. If there are no delayed transitions scheduled to fire the function returns 0. Otherwise, 

x(o) =

o∈[t1,t2 ), x(o) = s1
o∈[ti ,ti+1), x(o) = si

...
o∈[tT −1,tT ), x(o) = sT

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪
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it fires one delayed transition, removes this transition from delayed transition queue and returns ts, 
the time at which this transition has been scheduled. If multiple transitions are scheduled to be fired 
before time t, only the transition, which is scheduled at the earliest time, is fired.  
 
2.2.11. Scheduling of delayed transitions (Function: scheduleDelayedTransition(m))  
If the stochastic transition m selected to be fired has delay time td greater than 0 this function adds 
the transition to the delayed transitions queue. The transition is scheduled to fire at time ts = t + td. 
 
2.2.12. Firing of flux transitions (Function: fireFluxTransitions()). 
This function fires all flux transitions associated with an objective place o, after evaluateObjective() 
function has been fired for this place. The place o is the only pre-place of each of these transitions. 
Each flux transition has only one postplace. Upon firing flux transition sets marking of it’s 
postplace to one of the example fluxes in FBA solution obtained for objective place o. This allows 
use of example flux values in subsequent iteration of the algorithm. This new feature is required 
for implementation of the original dFBA method (31). 
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2.2.13 QSSPN hybrid simulation algorithm. 

Figure	S14:	QSSPN	simulation	algorithm.		
Functions used in this diagram are defined in 2.2.4-2.2.12 
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2.3. DISTRIBUTED QUALITATIVE SIMULATION WITH QSSPNclient. 
Distributed simulation is a major new feature of qsspn solver. We have implemented QSSPNclient, 
a client-server version of qsspn solver. The server loads QSSF from sfba file and waits for requests 
from multiple clients. Clients load DT models from qsspn files and run QSSPN algorithm. 
Whenever evaluateObjective() function (see 2.2.5) is called client sends whole set of QSSF bounds 
to the server and retrieves value of the objective function. The server tabulates objective function 
value for a complete set of QSSF bounds. If any of the clients requests evaluation of the same 
objective for the same set of bounds as tabulated before, objective function value is returned 
without executing the most computationally costly step, which is LP evaluation on QSSF network.  
 
To evaluate performance gain of the QSSPNclient, we have simulated our model of bile acid 
homeostasis in human hepatocyte, used to validate first QSSPN implementation (26). This is 
qualitative model, where we generate a Monte Carlo sample of trajectories feasible given DT 
network connectivity and QSSF constraints. The numbers of trajectories exhibiting qualitative 
behavior of interest in the original and perturbed model are compared to determine whether 
perturbation affects the behavior (see (26) for details). Here we first computed 100 trajectories 
using current qsspn implementation. The calculations run on a single core Intel I7 2.6 GHz CPU 
took 325 minutes. Subsequently, we started the instance of a server with HepatoNet1 (12) – a QSSF 
part of a model. Calculation of 100 trajectories with QSSPNclient took 217 minutes. We used the 
same random number generator seed in both simulations and confirmed that QSSPNclient 
generated the same results as stand-alone implementation. Thus, the simulation was 1.5 times faster 
if client server architecture was used and, in practical terms, we gained close to two hours by using 
QSSPNclient to run this simulation. This will translate to even more substantial gains in simulations 
of multiple perturbations, such as genotype/phenotype scan presented in our previous work (32). 
Also, multiple users running different DT models connected to the same QSSF will benefit from 
client/server implementation. 
 
The QSSFclient does not implement flux transitions. Implementation of flux transition would 
require storing of full FBA solutions obtained for particular set of bounds and objective function, 
rather than objective function value alone and decrease the number FBA bounds/solution pairs that 
can be tabulated. On the other hand, the dFBA simulations are fast, because only one objective 
place is required. Also, in quantitative simulations, where the dFBA is connected to ODE model of 
regulatory network (e.g. Use Case 2 in main manuscript), only one trajectory is generated. Thus, 
implementation of flux transitions would not increase performance gain, but would make 
QSSPNclient implementation more complex and less efficient. 
 
In conclusion, we recommend using QSSPNclient in qualitative simulations where Monte Carlo 
sampling of qualitative dynamic trajectories is used to explore behavior of DT part of the model and 
where multiple objective functions are used to explore capabilities of the QSSF. 

Fast iMAT algorithm 
The iMAT approach (33) searches for flux distributions that satisfy both stoichiometric and 
thermodynamic constraints of the Genome Scale Metabolic Network (GSMN), and maximize 
congruency with transcriptome data. Essentially, the objective function is defined as the number of 
reactions where the reaction flux is consistent with the transcriptional activity of the genes encoding 
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the enzymes required for that reaction. Gene expression data is first discretised into two 
(transcribed, not transcribed) or three (transcribed, neutral, not transcribed) categories. Next, the 
discretized gene expression levels, and Boolean rules associating genes and reactions in the GSMN 
are used to classify reaction states as active, inactive or neutral. Finally, MILP is used to find flux 
distributions where the maximal number of active reactions are assigned fluxes greater than the 
predefined positive flux threshold, while reaction fluxes associated with inactive reactions are 
minimized. While the objective function value (number of reactions which state agrees with 
transcriptome data) is unique, there will exist many possible solutions that lead to the same 
maximal objective function value. To provide a unique solution for individual reaction, the method 
calculates the objective function value when a particular reaction is constrained to both the active 
inactive states. The difference between these two values is a unique reaction activity. The final 
output of the iMAT method gives each reaction an integer number, which measures the flux activity 
of the reaction.  

The iMAT approach is computationally intensive, as two MILP solutions must be derived 
for each reaction within the GSMN. This means that for larger GSMNs, such as Recon2 (11), it is 
impractical to run this method on large number of transcriptome datasets. To address this issue, we 
have modified the iMAT method, such that only one MILP problem is solved, increasing the 
computational efficiency; we term this approach Fast iMAT. In Fast iMAT, discretised gene 
expression data and gene-protein-reaction association rules of GSMN model are used to assign a 
state 𝑠+  to every reaction as 𝑣+  in the model. The active reactions are assigned state of 1 while 
inactive reactions state of -1. Remaining reactions are assigned the state of 0. Subsequently, 
reactions with non-negative lower flux bound (𝑣,tu	 ≥ 0 ) are classified as forward reactions 
denoted as 𝑣t with state 𝑠t where 𝑖 ∈ 𝑅V (forward reaction set). Reactions with non-positive upper 
bound (𝑣,+-	 ≤ 0) are classified as reverse reactions and denoted as 𝑣z with state 𝑠z where 𝑗 ∈ 𝑅. 
(reverse reaction set). Reversible reactions (𝑣,tu	 < 0 and 𝑣,+-	 > 0) are denoted as 𝑣| with state 
𝑠|  where 𝑘 ∈ 𝑅V.  (reversible reaction set). Each reversible reaction is divided into a forward 
direction denoted 𝑣|}, and a reverse direction denoted 𝑣|~ , both using the coefficient 𝑠|. Derivation 
of the optimal flux distribution using the Fast iMAT method has the same principle as the original 
method, but only one MILP problem must be solved, as defined by the following equations: 
	
										𝑚𝑎𝑥��,��,���,���,��,��	(	 (𝑠t ∙t∈�� 	𝑣t) −	 (𝑠z ∙z∈�� 	𝑣z)	+	 𝑠| ∙ (𝑣|} +|∈���	 𝑣|~)	)	 [1]	

subject to the constraints: 
																𝑆	×𝑣 = 0,			𝑆 ∈ 𝑅u×,, 𝑣 ∈ 𝑅,	 					 															 [2]	

								𝑣,tu	 ≤ 𝑣	 ≤ 	𝑣,+-		 	 	 	 	 [3]	
		𝑣|} 	+ 	𝑏	 ∙ 	𝑣,+-	 ≤ 𝑣,+-			 	 	 	 	 [4]	

															𝑣|~ 	+ 	𝑏	 ∙ 	𝑣,tu	 ≤ 0		 	 	 	 													[5]	
																𝑏 ∈ [0, 1]		 	 	 	 																																								[6]	

	
Eqn 1 defines the objective function of the MILP problem. Eqn 2 and 3 define the stoichiometric 
constraints and flux bounds, where 𝑆 is a 𝑛×𝑚 stoichiometric matrix with 𝑛 metabolites and 𝑚 
reactions whose fluxes are presented as vector	𝑣. Eqns 4-6 add additional constraints and use one 
Boolean control variable,	𝑏, to ensure that for every forward/reverse reaction pair only one of the 
reactions is active at any point, thus preventing futile cycles. The solution of this MILP problem 
provides fluxes for all nonzero-state reactions, and then standard flux variability analysis (FVA) can 
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be applied to the remaining reactions in the GSMN, with the solution space constrained by the 
previously determined nonzero-state reaction fluxes. The flux range 	 𝐹,tu, 	𝐹,+-	 	predicted by this 
method can be used to assign integer activities of all reactions used in original iMAT. If 𝐹,tu	 > 0 
or 𝐹,+-	 < 0 then the reaction is predicted to be active; if 𝐹,tu = 	𝐹,+- = 0 then the reaction is 
predicted to be inactive; otherwise, the reaction is predicted undetermined. However, contrary to 
iMAT these fluxes values can be used directly, without discretisation, which is useful for well-
parameterised models. Comparison of Fast iMAT with iMAT is presented in Use case 3 of main 
manuscript. 
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COMPARISON OF TOOLS AVAILABLE 
WITHIN MUFINS WITH EXISTING 

SOFTWARE 
Multi-formalism simulation in MUFINS 
Use Case 2 of main manuscript shows that MUFINS can integrate quantitative dynamic Ordinary 
Differential Equation (ODE) models with Constrained Based Models of Genome Scale Metabolic 
Networks (GSMN). In our previous paper we applied first version of qsspn solver to combine 
qualitative PN model of gene regulation and signaling with the GSMN (26). The sampling of 
alternative event sequences has been performed with Gillespie algorithm, where all transition rates 
were set to 1. The introduction of mass action kinetics and complex rate laws to current version of 
QSSPN allows implementation of quantitative stochastic kinetic models. Thus, QSSPN can 
integrate exact stochastic kinetic simulations with CBM, to allow simulations of both qualitative 
and quantitative dynamic models, integrated with GSMNs in quasi-steady state approximation. In 
our previous paper (26) we have also demonstrated that PN can be used to represent Boolean 
dynamic model and implement rFBA (34) simulation. Moreover, in Use Case 1, we show that 
logical steady state models can be represented as linear constraints and included into GSMN part of 
the model. While deterministic and stochastic kinetic simulations have been already integrated in 
hybrid algorithms (35) and software (36), there is no general software allowing integration of all the 
formalisms described above. Therefore, MUFINS is the only software supporting integration of 
i) exact stochastic, ii) ODE, iii) qualitative dynamic, iv) logical steady state and v) CBM 
models in a general software platform with GUI.  The only alternative to achieve the range of 
formalisms that can be integrated with MUFINS is coding of the model in mathematical modeling 
environment. While this strategy has achieved spectacular success (37), it is not a plausible 
proposition for experimental scientists, who do not have programming skills. Moreover, 
multiformalism modeling in mathematical language involves implementation of the simulation 
algorithm dedicated to a particular model. In MUFINS, each model is run in the same QSSPN 
simulation algorithm presented as Figure S9. The multi-formalism functionality emerges from the 
interactions between the different types of Petri Net places and transitions that can be graphically 
assembled, leading to combinatorial diversity of types of models that can be simulated.  Using one 
algorithm and a few well-defined place and transition types provides clearer control and description 
of model assumptions than coding a different main simulation loop for each model. Also, the 
algorithms available in MUFINS are validated and optimized against the legacy of previous 
applications, while formulation, validation and description of a simulation algorithm dedicated to a 
particular model will take additional time. It is our experience that even scientists who can program 
will find it easier to implement complex multi formalism models by connecting QSSPN places and 
transitions to off-the-shelf GSMN models imported to JyMet, rather then by development of 
dedicated mathematical modeling code.  
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Comparison with major software  
To further substantiate our statements we used the compilation of 146 CBM methods and 27 
software packages used by Lewis, Nagarajan and Palsson to construct their “phylogeny of in silico 
methods” (38). We updated the compilation by adding 8 methods and 3 software packages as well 
as 11 software interface and dependency features. Subsequently, we have annotated all 165 
software features in 30 software packages. Results are shown in Supplementary Table 4. To the best 
of our knowledge this is the most comprehensive comparison of CBM software features to date. 
Lewis and colleagues (38) did not annotate software with methods, but rather presented two 
separate lists. We note that this review includes all tools in which CBM has been integrated with 
other formalism and would therefore highlight any existing method and/or software integrating 
CBM with multiple other formalisms. Therefore, this unique compilation can be used to both 
investigate whether MUFINS is indeed unique multi-formalism simulations tool as well as to 
compare its considerable support for CBM with other software. 

Supplementary Table 4 clearly confirms that there is no other algorithm and software 
capable of integrating GSMNs with all formalisms that can be expressed by QSSPN method. 
Our use cases and previous work demonstrate that MUFINS can be used for simulations equivalent 
to iFBA(39), idFBA(40), dFBA (31) and rFBA(34). Moreover, linear inhibitor constraints can be 
used to efficiently implement SR-FBA approach (41), i.e. integrate steady state logical models with 
GSMNs. There is no software integrating stochastic dynamic simulations with CBM. None of the 
tools can perform hybrid simulations integrating all these algorithms as it can be done with QSSPN 
in MUFINS.  

To evaluate CBM features of MUFINS, we selected all software packages that implemented 
more than 10 approaches and grouped features into 12 categories reflecting the classification in (38) 
and the major features of the software interface and dependencies (Table 1 below). MUFINS is the 
second most general CBM software after COBRA toolbox in terms of the number of methods 
implemented. However, it is the most general software with an interactive GUI, providing the 
largest set of CBM methods for users who are not familiar with a mathematical modeling 
environment. It is also the most general software providing visualization of results on interactive 
pathway maps. MUFINS still does not provide automatic strain design algorithms, although 
properties of microbial strains can be tested with comprehensive set of CBM approaches. Previous 
versions of sfba solver have been already applied for bioprocess design(42). We also note that 
QSSPN is an ideal approach to test designed strains in dFBA simulations of batch cultures or more 
sophisticated models where bioreactor flows would be modeled in the same way as physiological 
compartment flows were modeled in Use Case 2. Mechanistic interpretation of transcriptomic and 
proteomic data in the context of GSMN is a highly active field of CBM. MUFINS provides 3 
methods for such analysis that are not implemented in other software packages.  First, as 
demonstrated through Use Case 3 our Fast iMAT algorithm provides useful biological insight from 
the analysis of clinical transcriptome data in the context of the Recon2 human GSMN (11). We also 
show that this analysis is not practical by the original iMAT method. Second, we provide 
implementation of our Differential Producibility Analysis (30), which is not available in any other 
software. Third, we implement the Gene Nutrient Interaction method, which was formulated by 
Diamant and colleagues (43), but is available only as the source code and not in any regular 
software. We have already applied MUFINS implementation of this approach to analyse Next 
Generation Sequencing data from a transposon gene essentiality screen of M. tuberculosis 
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interacting with dendritic cells. Our results provided insight into the pathogen’s nutritional 
requirements during interaction with host cells (44). 

 
Table S2. Comparison of CBM features of MUFINS with other software. 
Feature COBRA 

toolbox 
MUFINS FASIMU CellNetAnalyzer OptFlux COBRApy TIGER 

No. of methods 26 24 17 16 16 12 12 

Matlab toolbox X   X   X 

Menu interface  X  X X   

Layout editor  X 
 

X  X   

Automatic layout  X X     

Pathway image X   X    

Command line  X X   X  

EFM, cut sets    X    

FBA X X X X X X X 

Omic constraints X X X    X 

Regulation X X      

Strain design     X   

Thermodynamics   X     
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