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Abstract
As a discipline, design science has traditionally focused on designing products and
associated technical processes to improve usability and performance. Although significant
progress has been made in these areas, little research has yet examined the role of human
behaviour in the design of socio-technical systems (e.g., organizations). Here, we argue
that applying organizational psychology as a design science can address this omission and
enhance the capability of both disciplines. Specifically, we propose a method to predict
malfunctions in socio-technical systems (PreMiSTS), thereby enabling them to be designed
out or mitigated. We introduce this method, describe its nine stages, and illustrate its
application with reference to two high-profile case studies of such malfunctions: (1) the
severe breakdowns in patient care at the UK’s Mid-Staffordshire NHS Foundation Trust
hospital in the period 2005–2009, and (2) the fatal Grayrigg rail accident in Cumbria, UK,
in 2007. Having first identified the socio-technical and behavioural antecedents of these
malfunctions, we then consider how the PreMiSTS method could be used to predict and
prevent future malfunctions of this nature. Finally, we evaluate the method, consider its
advantages and disadvantages, and suggest where it can be most usefully applied.
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1. Introduction
Over 40 years ago, the aerospace engineering sector made a strategic decision to
develop the capability to predict the performance of different design options for
their new jet engines using computer simulation techniques (see Blazek 2015, for
the full history summarized here). Their logic was simple – if they could simulate
alternative design options in silico, they would reduce the number of alternative
designs built and tested in expensive test-beds, making substantial savings and
reducing development times. The expectation was that such simulations would

†Very sadly, Professor Chris W. Clegg died in December 2015 before this paper was completed. Chris
was an inspirational colleague and dear friend to us all and we dedicate this paper to his memory.
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not be immediately beneficial; rather this was a long-term investment with pay-
offs promised only at some future date, well beyond the job tenure of the people
who initiated the investment. In practice, this initial investment in simulation
capability paid off. Forty years on, the sector can now simulate with high accuracy
the performance of alternative future engine designs.

Our work described here uses the samemedium- to long-term logic. Thus, we
ask whether we can develop predictive capability regarding the performance of
complex systems involving both human and technical factors (i.e., socio-technical
systems; see e.g., Davis et al. 2014). The expectation being that this may pay off in
some (as yet unspecified) medium- to long-term future. In the aerospace sector,
above, developing simulation capability for jet engines requires contributions
from several engineering disciplines – which understand the behaviours of
technical systems and sub-systems – and computer scientists – with the necessary
computational expertise. Thus, developing predictive capability for complex
socio-technical systems requires the application of organizational psychology as
a design science, to harness its understanding of human behaviour and cognition
in work environments.

Accordingly, our long-term goal is to predict performance in complex socio-
technical systems so that organizational effectiveness, efficiency, and safety can be
optimized, and the risks of severe malfunctions can be designed, led, or managed
out. Our work to date has focused on system failures, primarily because the
potential for immediate impact is high and the necessary data are readily available.
Thus, this paper introduces a new method to predict such failures and illustrates
its application to two case studies: one attempting to predict breakdowns in
patient care within the UK’s National Health Service (NHS), representing chronic
malfunctions, and one attempting to predict where accidents may occur on the
UK’s rail network, representing acute malfunctions.

There are three wider strands to our argument. First, design science has
devoted less effort to studying human behaviour in socio-technical systems
than it has to product development and associated technical processes; so,
applying organizational psychology will greatly benefit design science. Second,
like other social sciences, organizational psychology has not invested much
energy in trying to develop predictive capabilities in this area or more generally;
so, striving to design systems and processes upfront rather than responding
reactively to problems will greatly benefit organizational psychology. Third, what
little predictive work there is about human behaviour in socio-technical systems
has been dominated by human factors and ergonomics specialists, focusing
on interactions between technical and human parts of such systems (see e.g.,
Stanton et al. 2009). Unfortunately, though, there has been little input from design
scientists or organizational psychologists to date. This has limited progress as
organizational psychology could support whole system perspectives including
human, organizational, and technical elements. We are therefore advocating that
organizational psychology has much to offer as a design science, by predicting
wheremalfunctionsmay occur in socio-technical systems and how to design these
faults out.

A key benefit of applying organizational psychology as a design science is
that it would lead to increased opportunities for organizations to consider human
behaviour at an earlier stage in the development of new systems and/or the
re-design of existing systems (Simon 1996; Hevner 2007), working proactively
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rather than responding reactively to problems that have already occurred (e.g.,
Clegg&Shepherd 2007). Thiswould also add value by incorporatingwell-founded
theories of human behaviour into design processes. In the longer term, this
could create opportunities for bringing advanced engineering design methods
and tools, such as visualization and optimization, into organizational psychology
and the design of socio-technical systems. Such attempts will make new empirical
and theoretical demands, encouraging us to ask new challenging questions
and work with new clients. Consequently, we believe that attempts to develop
predictive capabilities will be good for the development of both design science
and organizational psychology.

As such, the objectives of this paper are to: (1) introduce a method for
predicting malfunctions in socio-technical systems, (2) describe examples of the
variables that form the core of the predictive models and the kinds of data
required, (3) present a multi-stage model of how the approach works in practice,
(4) discuss the major advantages and disadvantages of the method, (5) give a
preliminary assessment of future prospects for the method, and (6) argue that
organizational psychology should be applied as a design science to engage in
new predictive paradigms for socio-technical systems, developing and testing new
methods and data analytic techniques.

We start, however, by providing an overview of organizational psychology and
socio-technical systems, to illustrate their applicability to design science.

1.1. An overview of organizational psychology and socio-
technical systems

Organizational psychology examines human behaviour and cognition in work
contexts, both individually and collectively, and includes a dual focus on
performance and wellbeing (Spector 2008). While the discipline has made
great progress in examining and understanding these areas (Patterson 2001),
most organizational psychology research and practice focuses primarily on the
people themselves and often neglects the broader contextual aspects of work
such as processes and technology. Consequently, we view the predictive method
introduced in this paper as a step towards expanding this narrow focus, to enable
organizational psychology to be applied as a design science. To do so, we draw on
socio-technical systems theory as a unifying framework to enable organizational
psychology to be applied to a broader range of topics and domains.

Although the term ‘socio-technical’ was used sporadically during the early
20th century (e.g., Kayden 1920), the foundations of socio-technical systems
theory lie in the work of the UK’s Tavistock Institute of Human Relations
during the 1950s (Trist 1953; Emery 1959). Here, psychologists examined the
teamwork of miners and the complex technical processes they used to extract
coal deep underground (Trist & Bamforth 1951). This dual focus on human
and technical aspects of work continued through the 1960s in various guises,
such as Leavitt’s (1964) conceptualization of organizations as a system comprising
people interacting with tasks, technology, and structures. However, it was Cherns’
(1976; 1987) landmark papers which arguably establishedmodern socio-technical
theory, proposing a number of principles for effective system design such as
aligning a system with its objectives, ensuring it facilitates the desired behaviours,
and providing timely and targeted information.
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Figure 1. Hexagonal socio-technical systems framework (adapted from Clegg 1979;
Challenger et al. 2010; Davis et al. 2014).

These socio-technical principles were subsequently updated for the digital
age by Clegg (2000) – to address meta, content, and process design – who also
developed the hexagonal socio-technical framework we use here in our predictive
method (Clegg 1979; Challenger, Clegg & Robinson 2010; Davis et al. 2014),
as shown in Figure 1. This hexagonal socio-technical framework conceptualizes
work as a complex system, comprising both socio elements – people, culture,
and goals (the left side of Figure 1) – and technical elements – technology,
infrastructure, and processes (the right side of Figure 1). Changes in any one
element, or node, will cause and necessitate changes elsewhere in the system
due to its complex interactive nature, as illustrated by the nodes’ interconnecting
lines representing causal relationships. Such a system is complex as it comprises
multiple elements interacting in multiple ways, often concurrently, to yield
non-linear outputs (Choi, Dooley & Rungtusanatham 2001).

The framework can be used to represent any socio-technical system, at amicro
(individual), meso (team), and/or macro (organization and/or entire industry)
level of analysis (Klein & Kozlowski 2000), as the following examples show,
respectively. For instance, socio-technical theory has been applied to understand
the interactions between individuals and computer interfaces (González-Torres,
García-Peñalvo & Therón 2013), engineering team work (Crowder et al. 2012),
pro-environmental initiatives in a manufacturing organization (Davis et al.
2014), and regulatory change in energy industries (Verbong & Geels 2007). The
capability of socio-technical systems theory to integrate these various socio and
technical elements, both within and across these different levels of analysis (e.g.,
individuals nested within teams, which in turn are nested within organizations)
(Klein & Kozlowski 2000; Verbong & Geels 2007), makes it ideally suited to
examining complex systems where multiple components interact across different
hierarchical levels in often seemingly unpredictable ways (Johnson 2009).
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Within socio-technical research, there are two broad perspectives. The first
perspective (‘Big-S Socio-technical’), as described above, largely extends its social
science foundations by focusing mainly on the human or socio elements of
complex systems and is largely undertaken by psychologists, human factors
specialists, and other social scientists. The second perspective (‘Big-T socio-
Technical’) focuses mainly on the technical elements of complex systems and
is largely undertaken by engineers, computer scientists, and other technical
specialists. For instance, de Weck, Roos & Magee (2011) view socio-technical
systems as engineering systems – exhibiting both technical and social complexity
– focused on meeting societal needs such as energy, transport, communication,
health, and education. They argue that the performance and impact of such
systems can be evaluated with reference to various ‘-ilities’, such as quality,
safety, reliability, flexibility, and maintainability. Similarly, others have focused
on designing engineering systems to be both resilient and robust to withstand
changes in their operating environment (Pavard et al. 2006).

There is some debate about whether these two different perspectives on
socio-technical systems theory can be reconciled. For instance, Kroes et al. (2006)
debate whether humans can be considered integral parts of an engineering system
itself or merely actors in the environment in which the system operates. They
further note the conceptual difficulties of integrating humans into such systems
due in part to the complexities of technical engineering systems.However,many of
these debates are likely to reflect disciplinary biases. For instance, research shows
that specialists often perceive more complexity in their own disciplinary topics
than those of other disciplines (Sagie & Magnezy 1997). Furthermore, for every
psychologist arguing for a greater focus on human elements in socio-technical
systems (Challenger et al. 2010), there is an engineer arguing for more focus
on the technical elements (Coiera 2007). Ultimately, a pragmatic approach
is best so researchers should select levels of theoretical abstraction that are
both equivalent and understandable to specialists from either perspective (e.g.,
component function rather than fluid dynamics for technical aspects of the
system, and human behaviour rather than cerebral synapses for the socio aspects).
Indeed, many see no such conceptual problems with socio-technical systems and
praise the advantages of such an integrated approach (Mumford 2000).

Finally, not only does socio-technical systems theory provide a bridge between
organizational psychology and the analysis of malfunctions in complex systems,
but it also aligns closely with the discipline of design science. Indeed, the
pioneering book The Sciences of the Artificial by Simon (1969), the eminent
psychologist and computer scientist, is widely acknowledged as the foundation of
design science (Huppatz 2015; see also the debate between editors in the inaugural
issue of the journal Design Science – Papalambros et al. 2015). Furthermore, in
his acceptance speech for the 1978 Nobel Prize in Economics, Simon argued for
inter-disciplinary research involving behavioural and technical sciences, of the
type we advocate here, stating ‘. . . all the great problems that face our world today
have both technical and human content – the one intermingled inseparably with
the other’ (Simon 1978).

Indeed, the optimal design of jobs and tasks, for performance and wellbeing,
has been a fundamental topic of interest to organizational psychologists for the
last half century (Hackman &Oldham 1976; Parker 2014). Therefore, broadening
this focus to examine the role of human behaviour in the design of whole
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socio-technical systemswould be a natural progression. Furthermore, considering
the structure, function, and behaviour of such systems – and its human actors
– upfront in this way, proactively, would enable performance and safety to be
predicted and therefore optimized, thereby designing out or mitigating the risk of
malfunctions. In so doing, this approach would enable organizational psychology
to be applied as a true design science (see e.g., Papalambros et al. 2015).

1.2. Previous research examining malfunctions in socio-
technical systems

To understand how we might develop the capability to predict malfunctions
within complex systems, and therefore identify actions to prevent their
occurrence, we first consider where such approaches have been employed most
effectively to date. There is a strong history within human factors and ergonomics
of articulating post-event analyses and explanations of disasters (seeHall &O’Day
1971; Turner & Pidgeon 1978; Johnson 1980; Gherardi et al. 1999). This tradition
has evolved to emphasize more systemic and combinatorial explanations whereby
accidents are seen to arise as the result of unusual combinations of circumstances
(see e.g., Perrow1984; Taylor 1989, 1990; Reason 1990; Stanton et al. 2009; Salmon,
Cornelissen & Trotter 2012; Underwood &Waterson 2014).

Supporting this perspective, several useful methods have been developed
for post-event analysis, including for example: AcciMap (Rasmussen 1997;
Grant, Goode & Salmon 2015), Functional Resonance Analysis Method (FRAM)
(Hollnagel & Goteman 2004), Systems Theoretic Accident Modelling and
Processes Model (STAMP) (Leveson 2004), systems dynamics simulation (e.g.
Cooke 2003), and causal loop diagrams (e.g., Goh, Brown & Spickett 2010). A
comparison and more detailed consideration of such methods can be found in
Underwood &Waterson (2014).

Similarly, organizational psychologists adopting a socio-technical framework
have analysed a number of accidents and disasters involving human behaviour,
including the Hillsborough football stadium disaster, King’s Cross underground
station fire, and Bradford City Football Club fire (see Challenger & Clegg 2011;
Davis et al. 2014). Despite these contributions by organizational psychologists to
post-event analyses, however, it must be acknowledged that this field has been
dominated to date by human factors and ergonomics specialists.

Yet, as we shall see later, issues and variables that are core aspects of
socio-technical systems design and organizational psychology are central to an
understanding of such malfunctions. For example, the job designs and working
practices of frontline staff in the Mid-Staffordshire NHS Foundation Trust
hospital and of the maintenance workers in Network Rail are key elements in
understanding the failures examined in the two case studies presented in this
paper. Similarly, there is evidence that inappropriate or poor leadership are factors
in many disasters and malfunctions (see e.g., Challenger & Clegg 2011). We
therefore argue that, as a design science, organizational psychology has a direct
and important contribution to make to our understanding of these systemic
malfunctions, not only retrospectively but proactively, in a predictive fashion, to
design them out. Indeed, it would be surprising if the discipline did not have
something to offer these problem domains.
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We turn now to work focused on predicting where malfunctions may occur
in complex systems. There has been relatively little energy invested in this
domain and we can speculate on the underlying reasons (see Gherardi et al.
1999, for a fuller discussion of potential contributing factors). First, the low
frequency of such events can mean that they appear to occur almost randomly
in large distributed and complex systems. Second, the dominant theoretical
ideas and underlying mindsets stress their combinatorial origins, whereby a set
of unique factors come together in statistically unlikely ways (see e.g., Perrow
1984; Reason 1990). It could be argued, therefore, that this has dissuaded
most experts from pursuing predictive capability, instead encouraging the
development of wider organizational strategies focusing on general-purpose
prevention, such as developing high reliability organizations (see Rochlin 1986;
Weick 1987). However, with a predictive capability and the underlying science,
practitioners could identify when a complex socio-technical system’s operation
was approaching a malfunction, akin to condition-based real-time jet engine
monitoring systems which inform maintenance decisions (see e.g., Kobayashi &
Simon 2007).

Nevertheless, there have been recent attempts to develop some predictive
capabilities in this area, largely building on the post-event methods discussed
earlier, such as STAMP (Rong & Tian 2015), and AcciMap (Salmon et al. 2013).
While these approaches show promise, they focus insufficiently on the ways in
which people’s behaviour is influenced and shaped by the organizational contexts
in which they work. For instance, of the six system levels typically considered by
AcciMap analyses, only one explicitly focuses on micro human behaviour and
even then only partially and at a relatively high level of abstraction (e.g., ‘actor
activities’ such as communication failures) (Debrincat, Bil & Clark 2013). Our
aspiration, therefore, is for the widespread adoption of socio-technical system
design methods and tools that enable the design of systems with more predictable
performance characteristics, arising from both inherent characteristics of the
systems themselves and the ways in which they are operated.

Unsurprisingly perhaps, given the above, work by social scientists in this
predictive area has again been dominated by the same specialists in human
factors and ergonomics, with design scientists and organizational psychologists
not participating. For rare exceptions see Challenger & Clegg (2011), who
used a socio-technical model to predict what might go wrong ahead of the
London 2012 Olympic Games, and Ridgway et al. (2013) who applied a similar
socio-technical approach to forecasting requirements for future factories. It
should also be acknowledged briefly that psychologists have undertaken some
predictive research in other specialist domains, such as predicting future job
performance through various personnel selection tests (Schmidt & Hunter 1998)
and identifying future competency requirements in response to business changes
(Robinson et al. 2005). However, this other predictive research examines much
simpler and more specific scenarios than the behaviour of the complex socio-
technical systems examined here.

Essentially, we are adopting a prototyping-based research method, typically
used in design research, to explore what might be possible. Thus in part, this
becomes an experiential and empirical issue and we will learn best the limits
to predictive work by attempting it. We see this as equivalent to debates on the
extent to which we are able to computer-model and simulate human behaviour
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in complex systems (Pan et al. 2007; Crowder et al. 2012; Hughes et al. 2012).
Experience indicates it is possible to develop adequate computer simulation
models of the behaviour of travellers in rail terminals, of customers in supermarket
queues, of emergency evacuation, and of team working (see e.g., Johnson &
Feinberg 1997; Zarboutis &Marmaras 2004; Challenger et al. 2010; Crowder et al.
2012; Hughes et al. 2012), for instance. These may well be circumstances where
human behaviour is relatively simple and not heavily influenced by organizational
structures and cultures, but it does raise a logical issue of how far we can go in
developing such models and what the circumstantial limits are.

1.3. Case study problem domains
To explore these predictive possibilities we examine two problem domains, each
with a different focus, timescale, and system level (Klein & Kozlowski 2000;
see Section 1.1). We introduce these examples both to highlight the range of
potential applications when considering malfunctions in complex systems and
to illustrate our method with worked examples. The first concerns the severe
breakdowns in patient care at the UK’s Mid-Staffordshire NHS Foundation Trust
hospital between 2005 and 2009, part of the UK’s National Health Service (NHS),
representing a chronic malfunction in a macro-level socio-technical system
(i.e., whole organization). The second concerns the fatal Grayrigg rail accident
in Cumbria, UK, in 2007, representing an acute malfunction in a meso-level
socio-technical system (i.e., large team). Our analyses of the case studies are
described in detail in Section 2 and summarized in Figures 2 and 3, respectively,
where the directional arrows indicate the nature of the causal relationships we
describe.

2. Method for Predicting Malfunctions in
Socio-Technical Systems (PreMiSTS)

Malfunctions in socio-technical systems can be regarded as a failure mode and
are therefore of particular interest in the design of such systems. In this section,
we present our 9-stage method, PreMiSTS, to advance our work on developing
systematic capabilities to predict system malfunctions and performance. The
method’s stages are summarized in Table 1 and detailed below, illustrated by the
two example problem domains. The method is cyclic and iterative, rather than
linear, to be repeated over time to facilitate learning and continuous improvement.
Finally, although the stages and structure of the PreMiSTS method are novel,
many of the data collection and data analysis methods used within the stages –
such as interviews and the analysis of archival company data – are standard social
science research methods, except where indicated otherwise by the references to
the supporting literature.

2.1. Stage 0: Check that the selected problem domain has
precedents and appears consistent with a socio-technical
approach

As a pre-method activity, there needs to be an initial check that the problem
domain selected (e.g., healthcare quality in NHS hospitals) has well and
independently analysed precedents. Without a high quality evidence base, the
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Figure 2. Socio-technical systems analysis of the organizational problems in Mid-Staffordshire NHS
Foundation Trust hospital 2005–2009.

levels of speculation will almost certainly be too high to make the exercise worth
the risk. With system malfunctions, such evidence may arise from independent
enquiries and/or independent research.

A second pre-condition is that the method has a strong socio-technical
orientation and the existing evidence base must indicate that such an approach
is appropriate. Socio-technical systems theory underpins the method, whereby
the systems in question are seen as comprising inter-related socio and technical
elements (Cherns 1976; Clegg 2000). Such socio-technical frameworks have been
used to analyse a number of acute disasters including the Hillsborough football
stadium disaster, the King’s Cross underground station fire, and the Bradford City
Football Club fire (see Challenger et al. 2010; Challenger &Clegg 2011; Davis et al.
2014).

Our accident analyses are combinatorial in nature, whereby accidents are
believed to result from unique combinations of circumstances interacting in
statistically unlikely ways (see Perrow 1984; Reason 1990; Rasmussen 1997;
Salmon et al. 2012). However, as discussed below, we also acknowledge there
are common factors across different disasters and that some of their uniqueness
originates from how these manifest and interact, alongside some factors entirely
unique to particular disasters (Challenger & Clegg 2011; Davis et al. 2014).
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Figure 3. Socio-technical systems analysis of the organizational problems underlying the Grayrigg rail
accident 2007.

2.2. Stage 1: Identify generic common factors (from previous
literatures and enquiries)

Previous analysis of several major accidents has identified some common
underlying factors (Challenger & Clegg 2011), as listed in Table 2. One common
factor concerns the dominant goals and metrics driving local behaviour in the
system where the malfunction occurs. For example, in Mid-Staffordshire NHS
Foundation Trust hospital, management were focused on financial requirements
to achieve ‘Trust’ status to the relative exclusion of patient care and these priorities
were passed onto the staff on the ground (see Figure 2). Similarly at Grayrigg,
the local system prioritized the rail track modernization programme to the
relative exclusion of ongoing maintenance and indeed reduced the amount of
maintenance time available (see Figure 3). In each case, these goals strongly
influenced the behaviour of local staff, promoting and supporting inappropriate
working practices and job designs. These priorities also reflected poor and
ineffective leadership. Thus, as discussed earlier, such issues are central to applying
organizational psychology as a design science, representing areas where both
disciplines can and should make a joint contribution.
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Table 1. Predicting Malfunctions in Socio-Technical Systems (PreMiSTS)

Stage:
0. Check that the selected problem domain has precedents and appears

consistent with a socio-technical approach
1. Identify generic common factors (from previous literatures and enquiries)
2. Identify domain-specific factors (e.g., from the Mid-Staffs Hospital and

Grayrigg rail accident case studies)
3. Select potential critical predictor variables and identify potential indicators

(including both socio and technical) – these may include a mix of common
and unique factors

4. Discuss with domain experts
5. Build a combinatorial model (or models) that are as specific as possible
6. Collect data to test the models (both existing data and new data if possible)
7. Analyse data and run models to identify highest risk hotspots and include

sensitivity analyses (i.e., is X more critical than Y?)
8. Visit, audit, improve, and validate – through normal inspection regimes, but

including the identified hotspots and some randomly identified others to
validate the models

Table 2. Common factors across a range of disasters

1. Singular dominant mindsets held by key staff
2. The pursuit of partial goals (management focused on inappropriate goals)
3. Poor anticipation of what may go wrong and poor planning of what to do

if it does
4. Failure to learn lessons (from experts or previous problems)
5. Ineffective and/or fragmented leadership
6. Ineffective coordination between staff and low role clarity
7. Inadequate communications between staff and with end-users
8. Lack of training preventing staff from coping with a range of emerging

situations
9. Lack of empowerment for frontline staff to respond to emerging problems
10. Inappropriate job designs and working practices
11. Lack of engagement by key staff in designing and planning work
12. Inadequate design of technical infrastructure
13. Failure of technology, including communication equipment
From Challenger & Clegg (2011), partially adapted

2.3. Stage 2: Identify domain-specific factors
We now consider each problem domain, in turn, through the two selected
case studies. We analyse each using an established hexagonal socio-technical
framework comprising socio factors (people, culture, goals) and technical factors
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Table 3. Local factors at Mid-Staffordshire NHS Foundation Trust hospital
2005–2009
1. Management focused on financial indicators
2. Nursing metrics for financial reporting but none for care or standards
3. No tools monitoring feedback on quality of care
4. Many complaints from patients and carers
5. Nurses preoccupied with completing paperwork
6. Lack of role clarity for ward staff
7. Low morale among nurses
8. High turnover among nurses

(technology, infrastructure, processes) linked as a complex inter-related system
(see e.g., Challenger & Clegg 2011; Davis et al. 2014).

2.3.1. Case study 1: Mid-Staffordshire NHS Foundation Trust hospital
Several reports (e.g., Berwick 2013; Francis 2013; The King’s Fund 2013) detail the
appalling suffering of many patients between January 2005 andMarch 2009 at the
Mid-StaffordshireNHS Foundation Trust hospital (abbreviated here toMid-Staffs
Hospital). There were serious and repeated failures of care and a much higher
than expected mortality rate. Another analysis has examined how to design NHS
healthcare using a socio-technical approach for a greater focus on patient care and
safety (Clegg et al. 2014).

Drawing on these sources, we conducted a post-event analysis of the reported
failings using a socio-technical framework as shown in Figure 2 and detailed
below. The socio-technical local factors at Mid-Staffs Hospital (see Francis 2013)
are also summarized in Table 3.

Essentially, the failings at Mid-Staffs Hospital resulted from a sub-optimal
or inappropriate organizational culture which exacerbated inadequacies with the
people’s skills and abilities to design, acquire and use technology and physical
infrastructure sufficiently well to conduct their work processes, in order to achieve
their organizational goals of delivering quality care to patients. We conclude that
interacting and interdependent system-wide factors led to the chronic breakdown
of patient care over a number of years.

Within Mid-Staffs Hospital, conflicting system goals were a fundamental
reason for the breakdown of patient care. The nurses’ job designs and working
practices were focused on financial and operational performance outcomes rather
than on the quality of daily patient care. Although these measures gave a healthier
financial picture, this led to a shortage of skilled nurses as patient care was
not prioritized. This shortage was explicitly recognized as a problem by the
hospital at the time. Such people factors evidently contributed to the care failure
as the hospital staff’s performance metrics were focused on financial targets and
bureaucratic self-assessment and self-declaration rather than on quality of patient
care. This led to disengagement by nursing staff from managerial and leadership
responsibilities, resulting in inadequate nursing standards with caring neglected
and undervalued.

Furthermore, staff were not effectively guided or aided by organizational
processes. There were no feedback tools or systems regarding quality of care,
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while strong processes existed regarding financial performance andwaiting times,
for instance. These factors are inter-related with the goals of the hospital, again
being focused primarily on targets. Regulatory gaps were evident, such as safety
monitoring with little, if any, measurement of care quality, and checks also missed
these problems. Risk-based regulation was still being developed and individuals
were not engaged with the national government standards. No tools were in place
to enforce these standards into the work design, and developments of further
feedback or technologicalmonitoring systemswere slow and lacked sophistication.
The hospital had no insight and awareness of the reality of patient care, leading
to isolation from better practice elsewhere. This created a lack of openness
and transparency to the public and external agencies (i.e., looking inwards not
outwards). The hospital therefore failed to separate what was essential from
what was merely desirable. There was a failure in communication between many
agencies to share their knowledge or concerns.

Additionally, infrastructure was a significant factor in the breakdown of care.
Due to the complexity and size of the NHS, organizations operated in silos
leading to a lack of connection between the strategic overview and performance
management. The constant reorganization of NHS structures contributed to this
disconnection, and such restructuring also resulted in loss of corporate memory
and misunderstandings about responsibilities and functions, such as the lack of
regulatory or supervisory systems. This affected people’s roles resulting in the
diffusion of responsibility, particularly among less senior staff. Neither the impact
nor risk to quality of patient care was considered during restructuring. There were
many stakeholders linked to Mid-Staffs Hospital (e.g., Trust Board, CCGs, The
Healthcare Commission), yet the top-down system failed to engage with patients
and the public (e.g., Patient and Public Involvement Forums).

All the above were exacerbated by a negative culture, which tolerated poor
standards, ignored staff concerns, and prioritized financial goals and managerial
top-down priorities over patient care. The punitive treatment of whistleblowers
discouraged employees from showing concern and created passivity (a ‘heads
down’ ethos), and the working practices discouraged interventions against
wrongdoing. Patients were not at the centre of the system as the hospital was
defensive to criticisms and frequently overlooked complaints.

2.3.2. Case study 2: Grayrigg rail accident
At 20:12 hours on 23 February 2007, an intercity passenger train carrying 109
passengers and crew, travelling at 95 mph, derailed near the village of Grayrigg,
Cumbria, in the UK (RAIB 2011). All nine of the train’s carriages left the track
as the train passed over Lambrigg 2B points, resulting in one fatality, 30 serious
injuries, and 58minor injuries (RAIB 2011). The UK’s Rail Accident Investigation
Board’s (RAIB) official report identified the unsafe condition of the Lambrigg 2B
points as the cause of the accident, specifically the failure of stretcher bars and their
joint to the points’ switch rails (see RAIB 2011, pp. 32–57, for technical details).
However, several system-wide factors contributed to creating the conditions for
the acute technical failure (RAIB 2011; Kim&Yoon 2013;Underwood&Waterson
2014). Themain findings from our socio-technical analysis of events leading up to
the Grayrigg rail accident are discussed below and summarized in Figure 3. The
socio-technical local factors are also summarized in Table 4.
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Table 4. Local factors at location of Grayrigg rail accident 2007

1. High maintenance staff turnover
2. High absence rates
3. Supervisors and managers covering vacancies and working long hours
4. Frequent delegations of supervisory inspections
5. Low frequency of site visits by senior managers
6. Inappropriate job designs andwork allocations (lack of track continuity and

ownership)
7. Split track responsibilities (reporting to different people and functions)
8. Distant from the centre (feelings of isolation)
9. Evidence of non-compliance with processes (e.g., inspections done without

‘lookouts’)
10. Lapsed competency certificates
11. Restricted access to the track
12. ‘Missed’ inspections
13. Heavily used, high speed lines
14. Previous evidence of risky infrastructure (e.g., points on curves)
15. Lack of available guidance on reuse of threaded fasteners

A series of latent and acute factors contributed to the technical failure of
the Lambrigg 2B points. Our analysis of the RAIB (2011) report highlights a
focus on the goals of track modernization, line performance, and the clearance
of a backlog of routine maintenance, which may have influenced many other
behaviours and decisions. These performance-driven goals fed into a culture
which prioritized operational targets at the expense of safety, did not value
strong reporting standards, and relied upon routine and historical inspection and
maintenance practices. This culture was reflected in the processes, many inherited
from maintenance predecessors, and the lack of independent audits or checks of
infrastructure assets.

Track access arrangements were difficult following the focus on the
track modernization programme, limiting time for routine track inspections.
Deficiencies in job designs and specified working practices were evident. Notably,
working practices were not fit for purpose, with key checks and procedures
relating to the failed points underspecified at an organizational level. There were
inadequate checks to ensure that patrol staff had the relevant competencies, and
evidence of missed training for the joint points team. Furthermore, the design of
work and team structures divided reporting responsibilities for the track and there
was an absence of local ownership of this track section. The poor work design was
reflected in the lack of continuity of maintenance staff in this track section, due
to shift patterns and work allocation, and there were insufficient checks between
reporting levels to identify missed inspections. The people involved were stretched
by staff shortages and inadequate supervision.

These people factors interacted with the poor track access arrangements and
goals which contributed to high workload, fatigue, excessive delegation, staff
shortages, and a lack of continuity to inspections. All of these factors directly
contributed to the track section manager forgetting to perform a basic track
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inspection, including the Lambrigg 2B points, which he had agreed to undertake
in addition to his usual workload in order to free up staff for other tasks. The
management information technology systems did not support the organization
in identifying common faults across the rail network and may have contributed
to discrepancies in the communication and reporting processes. All of these
system-level factors contributed to conditions which allowed the infrastructural
failures in the Lambrigg 2B points’ components. This technical failure may have
been prevented if sufficient earlier routine checks had been performed.

Our interpretation of the evidence supports Reason’s (1990) assertion that
accidents result from combinations of human, technical, and organizational
issues. Our analysis of the system-wide factors contributing to the Grayrigg rail
accident is also consistent with other analyses that have emphasized the broader
context, human factors, procedures, and relational aspects (e.g., Kim&Yoon 2013;
Underwood &Waterson 2014).

Having analysed both case studies, we return now to our key aim of presenting
a method for predicting malfunctions. Both analyses highlighted warning signs
– or variables within behaviour and the system set-up which could have been
used to anticipate the potential for such major failings before they occurred. We
now consider how organizational psychologists might use suchmaterial to predict
malfunctions so that they can be designed out of the system.

2.4. Stage 3: Select potential critical predictor variables and
identify potential indicators

This stage involves the identification of important predictor variables along with
data that can be used as indicators, which we now illustrate with examples. The
predictor variables in each case are likely to include a mix of both socio and
technical factors and may include both common and unique elements.

From Mid-Staffs Hospital, key predictors include the dominant goals and
metrics held and promulgated by senior managers, coupled with the impact these
have on local priorities and working practices. Indicators here would include
interview and questionnaire data on the priorities and metrics perceived by staff
on the ground, as opposed tomanagerial statements of intent or policy, along with
any data on how staff spend their work time (see e.g., Robinson 2012).

From Grayrigg, key technical predictors include the nature of this track
section, the accompanying high train speeds, and the type of points used. Key
predictors in the social system include the organization of work and working
practices among the local maintenance staff. Technical indicators here would
include data on the nature of the track, maximum train speeds on particular
track sections, and the presence of certain types of points. Socio indicators would
include data on the inspection frequency at each track section, whether particular
sections have continuity of inspectors (i.e., ‘track ownership’), and the skills and
capabilities held by maintenance staff.

When identifying predictor variables it is important to distinguish whether
they are acute and immediate precursors to malfunctions or chronic and
longstanding causes. This distinction resonates with previous work by Wagenaar
& Reason (1990) distinguishing between ‘token’ causes and ‘type’ causes of
accidents, respectively. They argue that tokens are those causes immediately
preceding an accident which often occur suddenly, while types are background
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causes which have been present for a long time during routine operations. While
there are only a few types, there are many different tokens, so they advocate
addressing types as a more efficient and effective preventative approach. Some
examples of types they identified include deficiencies in hardware, procedures,
maintenance, and training, together with competing goals, non-compliance, and
minimal organization; all factors which resonate strongly with the socio-technical
approach we are advocating here (see Figure 1). Further research of this nature by
Reason (2000) suggests that accidents are caused by dangers in latent conditions
aligning with active failures, in the same way the holes in adjacent slices of Swiss
cheesemight align to create a deep gap through all slices. Finally, a similar strategy
was advocated by Leplat & Rasmussen (1984) who recommended identifying
points earlier in the accident chain that could be readily improved, thereby
‘breaking the sequence’, rather than focusing mainly on immediate causes of past
accidents.

2.5. Stage 4: Discuss with domain experts
Ideally, domain experts will be involved at each stage of this process, but this is
critical at this stage. Genuine multi-disciplinary collaboration is needed, with the
particular combination of disciplines being determined by the problem domain.

For example, predicting breakdowns in patient care so that the system can be
redesigned requires inputs from doctors, nurses, carers, health service managers,
organizational psychologists, and simulation experts. Similarly, predicting
accidents on the rail system requires inputs from human factors experts,
infrastructure engineers, safety engineers, maintenance engineers, organizational
psychologists, operational rail staff, and simulation experts. The organizational
psychologists would guide the PreMiSTS method in each case, at least until the
method is more developed, operating as researchers and consulting with these
experts inside the organization when required. In the future, once the method
matures and its procedures become routine, it would be possible for organizations
to apply the method themselves in-house.

Given the nature of the data and information these experts provide, about past
and potential malfunctions or even disasters, it is possible that this method could
become a highly political process in organizations. Stakeholders may be keen to
avoid blame or suspicion and therefore withhold information or divert attention
elsewhere (Hood 2002), for instance. However, a key strength of adopting a
socio-technical systems approach to accident analysis is that the blame is shifted
away from the acts of individuals towards examining multiple causes within the
wider system (Junior et al. 2012), thereby making the admission of error easier for
individual stakeholders. Nevertheless, it would still be important to develop trust
in the process and steps could be taken to facilitate this. For instance, introducing
a voluntary amnesty process for highly sensitive information – where errors
could be reported free from blame – would encourage honestly (Cohen 2000).
Furthermore, fostering a collective identity for all stakeholders would enhance
trust, thereby reducing potential rivalry and the resultant ‘blame game’ (Kramer
& Lewicki 2010).

The purposes of such discussions include confirming and elaborating results
from Stages 1–3, collecting inputs for Stages 5–6, checking for important
omissions, and identifying potential data sources.
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2.6. Stage 5: Build a combinatorial model (or models) that are as
specific as possible

At this stage, these models take the form of propositions (about which data are
later collected and analysed during Stages 6–8). For example, problems of patient
care are more likely when there is a dominant emphasis by local senior managers
on performancemetrics, combined with staff spending substantial time collecting
and reportingmanagerial and financial data, combined with low staffmorale, and
where senior managers are complacent regarding patient care.

Similarly, rail accidents are more likely when the track section has a
combination of high operating speed, a certain type of ‘high risk’ points, and
is located far from the maintenance depot, combined with maintenance staff with
a lack of ownership of the track, short-staffing, low morale, and where senior
managers are complacent about safety.

There is an inherent risk that such propositions seem intuitive or even obvious.
However, the fact that such accidents were not foreseen and continue to occur
without warning is a compelling indication that they are not. Indeed, such
hindsight bias is well documented following accidents and errors (Roese & Vohs
2012). To address this, our PreMiSTS method offers a means to build on this
understanding of previous malfunctions systematically – to shift from accurate
hindsight to accurate predictions – and therefore preventmalfunctions before they
occur, or at least minimize their frequency and impact.

We note here that there is a natural tension between developing simple,
parsimonious models that incorporate relatively few variables and developing
more completemodels (Bonabeau 2002;Vandekerckhove,Matzke&Wagenmakers
2014). Importantly, though, models with few variables and simple rules can also
produce complex emergent effects if run dynamically over time (seeNowak 2004).
This is reminiscent of Thorngate’s (1976) notion of trade-offs between simplicity,
generalizability, and accuracy in behavioural models (see also Waterson, Clegg &
Robinson 2014), and Szabo’s (1993) discussion of trade-offs related to reliability
and generalizability in computational models.

In practice, evaluation of simulation results against empirical results and
experience will be used to determine a model’s optimal size. It is entirely possible
that this varies across problem domains and across different areas in a given
problem domain – akin to meshes used for physics-based analyses where a finer
mesh is used in regions of highest interest.

This approach also raises the prospect, in time, of developing more complex
typologies and profiles. Thus, for example, it is possible that there is a profile, X,
where poor care is the result of a particular combination of factors (e.g.,Mid-Staffs
Hospital). However, theremay well be another profile, Y, for other locations where
poor care is the result of a different combination of factors. As this approach
becomes elaborated over time, increasingly sophisticated profiles and typologies
of poor care could be developed. This is probably more realistic than seeking a
single combination for events such as poor healthcare or rail accidents.

Furthermore, as the underlying predictive science is developed, it could
become possible to compute visualizations of system performance characteristics
for a given systemdesign, potentially highlighting new areas ofmalfunction before
they occur in the real world.

Finally, we note that there is a risk here and in previous stages that the focus
will be on predictors and malfunctions with which people are familiar, thereby
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failing to address other potential malfunctions. This common risk is often driven
by ‘confirmation bias’ – the tendency to seek information to confirm rather than
refute expectations (e.g., Jonas et al. 2001) – and ‘groupthink’ – misperceptions
of unanimity in groups leading to risky decisions (e.g., Bénabou 2013). A useful
strategy to counter these biases is to mandate the consideration of alternative
options (Kassin, Dror & Kukucka 2013) and this procedure could be incorporated
into our method.

2.7. Stage 6: Collect data to test the models
Once the models have been elaborated and discussed, data need to be collected
on each of the component variables. We note that some of these data will already
exist in the host organizations andmay be readily available.However, such data are
likely to be dispersed and distributed around different parts of the organization,
for example in separate departments with responsibilities for human resources,
operations, engineering, maintenance, and safety. Thus, collecting such data is
no trivial task and will need to be supported by senior managers. Furthermore,
our experience of organizational information systems suggests there will likely be
substantial gaps and inconsistencies in the data to reconcile.

There are also likely to be data that are needed but not currently collected.
For example, if low staff morale is a potential indicator of problems in the system
and these data are not currently collected, then it may be worth including this
variable in staff surveys. We also anticipate there will be trade-offs between the
use of existing data that is an approximation of the requirement – what ‘big data’
researchers call proxy variables (e.g., Giannotti et al. 2012) – versus the cost of
collecting new data that may constitute more precise indicators. For example,
absence and/or staff turnover data may be a ‘good enough’ proxy for staff morale,
at least initially. We anticipate this may be a difficult judgment call, particularly
in the early stages of using this approach, and one challenge will be assessing if
existing data are adequate.

This challenge is not new, however. Collecting appropriate proxies for
human behaviour and organizational performance is a perennial challenge for
organizational psychologists, for instance. What is a new challenge, however,
is attempting to amass such a diverse range of indicators and to use them to
predict events. While one could argue that stress surveys and related measures
are already used by psychologists to target potential flashpoints, the difference
with our approach would be the range of indicators used and the nature of the
occurrences we intend to predict – moving beyond individual behaviours and
outcomes to large systems or organizational-level events.

2.8. Stage 7: Analyse data and run models to identify highest
risk hotspots and include sensitivity analyses

The requirement here is to run the predictive models using data ideally from the
full population of sites. Thus, when predicting breakdowns in healthcare, this
would require data from all relevant hospitals; and for rail accidents, data from
all parts of the rail network. This will require clarity over the unit of analysis –
for instance, deciding how many parts of the healthcare system and rail network
should be treated as separate units for comparative purposes. As discussed above,

18/31

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/dsj.2017.4
Downloaded from https:/www.cambridge.org/core. University of Leeds, on 09 May 2017 at 10:42:08, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/dsj.2017.4
https:/www.cambridge.org/core


much of these data will already exist distributed throughout organizations, but
the collection and collation are not trivial tasks. Even if available, the data may be
organized in units of analysis that do not cleanly match the sites selected in this
stage so compromises may be needed.

Sensitivity analyses should also be conducted where the key factors in the
models are varied, at least initially, to identify particularly critical factors. In the
early days of using this process, we are relaxed that this will generate different
answers. The overall goal of this stage is to identify areas which are most at risk of
malfunctions, seeking the top 5% or 10% of risk hotspots as defined by the clients.

There are two choices for the underlying nature of the model, each with
different benefits and costs. One version could be a straightforward, multivariate
statistical regression typemodel. Alternatively, computer simulationmodels could
be developed using techniques such as agent-based or discrete event modelling
(see e.g., Bonabeau 2002; Hughes et al. 2012). In either case, it would be possible
to calculate the numerical probability ofmalfunctions occurring given a particular
set of input levels for the predictor variables.

2.9. Stage 8: Visit, audit, improve, and validate
The identified hotspots or high risk sites from Stage 7 will be used to trigger
normal inspection regimes (e.g., top 5% of risk hotspots) but also an equivalent
number of other sites for comparison. Findings will be fed back into the
organizations concerned, systematically initiating inspection visits and audits, the
results of which will then be used to improve local practice and thereby reduce
ongoing risk. The inspection data will also be fed back into the models to improve
their accuracy. Thus, the process is an iterative circular one with feedback loops
to enable refinement and continuous improvement.

The identification of hotspots and their inspection, along with inspections
of an equivalent number of other non-identified sites allows some validation
(Robinson 2016). Specifically, this process allows us to compute hits (how many
of the identified hotspots from this process are actually problematic during
inspection?), false alarms (how many of the identified hotspots are operating
adequately during inspection?), andmisses (howmany of the other sites that were
not identified as hotspots are actually problematic during inspection?) (see Dixon,
Wickens & Mccarley 2007). The goal is to have high hits, low false alarms, and
lowmisses. This yields quantifiable metrics to evaluate the PreMiSTSmethod and
improve it over time.

This systematic quantification promotes further learning. Thus, for example, a
high score for misses may subsequently reveal that there are other combinatorial
explanations (or profiles) for poor care and could help identify what these may
be (see our earlier discussion under Stage 6). In this view, it is unlikely that there
is a single predictive model for poor care and there may be several, of which the
Mid-Staffs Hospital example is just one.

The ‘other sites’ – that were not identified as hotspots – can either be selected
randomly from the population of sites or selected to match key characteristics of
the identified hotspots, depending on which selection strategy is more likely to
help identify misses. The former strategy is likely to be best for initial exploratory
research, while the latter strategy would be useful for more focused research
examining particular variables.
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3. Evaluation of the PreMiSTS method
We now evaluate the PreMiSTS method and identify its advantages and
disadvantages. To do so, we use the fourteen criteria identified by Read et al.
(2015) for evaluating socio-technical human factors methods, to which we add
the criterion practical impact. For simplicity, we have merged these criteria into
the following six broader categories based on conceptual similarity: (1) theoretical
foundation and creativity; (2) involvement of stakeholders, workers, and users;
(3) holism, integration, and tailorability; (4) structure, iteration, and traceability;
(5) reliability and validity; and (6) efficiency, usability, and practical impact. The
evaluation of the PreMiSTSmethod against these categories of criteria is presented
further below.

As discussed throughout this paper, the PreMiSTS method we present here
is intended as a framework for ultimately developing the capability to predict
malfunctions in complex socio-technical systems. However, currently, we view
this as a capability building exercise rather than the finished product, as we
have explained throughout. Consequently, we have not yet tested our method
with real people in real organizations and we acknowledge that this is a major
limitation of our work to date. In the short-term, it requires testing in real word
organizations and scenarios to establish initial predictive capability, which can
then be refined and improved in the long-term with future research to deliver
the accurate predictions required. Thus, to some extent, the method is untested.
However, though the stages and structure of the PreMiSTS method are novel,
the methods within these stages are generally based on established social science
approaches and previous research literature. Consequently, we are still able to
evaluate the method from these existing perspectives and we do this below now.

3.1. Theoretical foundation and creativity
The method builds on prior knowledge and expertise in this area, particularly
socio-technical systems theory (Davis et al. 2014), especially in Stages 0–4. Thus,
for example, it can cope both with the underlying combinatorial logic that is
prevalent in the literature (e.g., Rasmussen 1997; Svedung & Rasmussen 2002;
Salmon et al. 2012), and with the idea that there may also be some common
underlying problems from which we can learn (e.g., Challenger et al. 2010).

The method also helps open up the topic to discussion in new and creative
ways. It provides one way of getting started and is specific enough to allow
empirical testing. It allows us to ‘learn by doing’ which is an effective way of
making progress in these areas (Cassell & Johnson 2006; Davis et al. 2014). Thus,
we believe we will learn more about the difficulties and prospects of work in this
area by trying it out.

Finally, we believe the approach opens up new opportunities and challenges
for both design science and organizational psychology, leading to methodological
developments and theoretical advances. Thinking predictively will make new
demands of both disciplines and, if successful, will open upmassive opportunities
to develop our capabilities.

3.2. Involvement of stakeholders, workers, and users
In principle, the method can be highly participative and inclusive. It encourages
the inclusion of different people, from different disciplines and backgrounds (see
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Mumford 1983; Clegg 2000; Eason 2008, for discussion of the benefits of such
an approach), thereby fostering shared mental models (Mathieu et al. 2000) and
facilitating innovation (Alves et al. 2007).

3.3. Holism, integration, and tailorability
The method incorporates multivariate explanations of malfunctions and, over
time, we anticipate that such explanations will become more nuanced and
sophisticated. Drawing on its foundations in socio-technical systems theory
(e.g., Davis et al. 2014), it can examine a full range of variables covering
both socio elements (people, culture, goals) and technical elements (technology,
infrastructure, processes) as shown in Figure 1. It is also able to examine
socio-technical systems at a micro (individual), meso (team), and/or macro
(organization and/or entire industry) level of analysis (Klein & Kozlowski 2000).
Thus, PreMiSTS can examine socio-technical systems in a holistic and integrated
way, and is also sufficiently flexible to be tailored to a full range of work scenarios.

3.4. Structure, iteration, and traceability
The method provides a highly structured 9-stage process for predicting
malfunctions in socio-technical systems, providing a clear audit trail and
traceability for decisions that have been made at each stage. Furthermore,
PreMiSTS can be used on an ongoing basis, repeating the nine stages periodically
to refine the performance and safety of socio-technical systems in an iterative way.

3.5. Reliability and validity
Reliability refers to the consistency of measurement while validity refers to
whether the method measures what it claims to (Robinson 2016), with the
former a prerequisite of the latter (Cook 2009). Both constructs would have
to be assessed statistically using data collected while running the PreMiSTS
method. In this context, reliability would concern the agreement between experts
concerning the likely predictors of malfunctions and the consistency with which
the organizational data were measured, while validity would concern whether
the likely predictors identified do indeed predict malfunctions in reality. We now
discuss some issues of relevance to these constructs.

First, there is a concern that the method is too reliant on expert judgement
on what variables to include in the predictive models. Consequently, it could be
biased by the mental models of those heavily involved in the process, making it
idiosyncratic and potentially unreliable. To counter this, the inclusion of further
domain experts could balance out such biases and enable reliability to be assessed.
Although the same criticism can be aimed at existing post-event analyses, at
least in those circumstances there are more data available. Our view is that the
application of organizational psychology as a design science, alongside expertise
from other disciplines, will be highly beneficial in this regard. Indeed, this risk is
arguably considerably greater without this involvement.

Second, the method allows for computation of hits, false alarms, and
misses (Dixon et al. 2007), thereby enabling potential validation and providing
opportunities for learning and development. If it helps direct inspection efforts
and demonstrates good hit rates, it consequently becomes useful in reducing
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the likelihood of future malfunctions. We believe this is a major strength.
However, even if initial prediction accuracy is poor, we will still learn a great
deal. For instance, in the case of health care breakdowns, the approach has already
helped us understand that there may well be more than one profile of predictive
circumstances. The failures at Mid-Staffs Hospital may represent just one such
profile and it may therefore make sense to develop a typology of breakdowns in
care using this method.

Finally, the method is currently unproven in various ways. For example, it
is unclear to what extent the method can adequately address: (1) low frequency
and high impact mishaps, or ‘black swan’ events (Taleb 2007); (2) distributed,
messy, and/or incomplete data; and (3) contested domains with little consensus
about underlying causes. Furthermore, the behaviour of some systemsmay simply
be too complex to predict accurately, demonstrating emergent malfunctions that
are challenging or impossible to anticipate (Pavard et al. 2006). However, such
extreme scenarios are thankfully rare and, in today’s digital age, the increasing
availability and accuracy of ‘big data’, and the technology to mine it (Wu et al.
2014), makes even these scenarios potentially predictable in future. Furthermore,
even with seemingly ‘weak signals’, the establishment of systematic procedures
to raise awareness, identify risks, and share lessons may help identify problems
sufficiently early to prevent them from incubating (Macrae 2014). Even if highly
accurate predictions remain elusive, though, such efforts will still identify areas of
higher risk to enable resources to be targeted and precautions to be taken.

3.6. Efficiency, usability, and practical impact
The method is not hugely expensive, not requiring large investments in
technological support for instance. The main costs arise in Stage 6 – collecting
dispersed data in large organizations – and in Stage 8 – where the outputs are
used to trigger site inspections. Yet our assumptions here are that much of these
data already exist, so the costs are therefore primarily in collation, and that site
inspections already occur in organizations such as the NHS and Network Rail
(RAIB 2011; Berwick 2013). Thus, in Stage 8, this method need not add new
costs, but rather helps direct and prioritize existing effort. Indeed, the method
would help trigger the inspection regime by identifying potential hotspots – areas
of high risk – and gives a strong rationale for both breadth of coverage – using
this method – and subsequent depth of coverage – by follow-up inspection. This
combined approach to managing risk and predicting failure is useful in its own
right.

On the negative side, modern organizations are under extreme pressure to
deliver results to short-term deadlines and may not be able to accept open-ended
commitments of this kind. Furthermore, the method may be seen as disruptive
by client organizations. For example, it is not clear how this method will fit with
existing practices in organizations such as the NHS and Network Rail, each of
which already has heavy, historical investments in their own ways of collecting
and collating data (see Stage 6 above), and in selecting sites for inspections (see
Stage 8 above). A lack of alignment here would reduce the chances of successful
adoption and use.

Finally, there is a danger that the method may generate misplaced confidence
that such work can predict failings so accurately that disasters can be prevented
entirely. Thus, efforts in this area may do more harm than good by leading to
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reduced vigilance. Indeed, there may be an ironic danger that this approach may
even propagate the types of organizational complacency and inertia that have been
highlighted as contributing to high-profile disasters (Challenger & Clegg 2011;
Davis et al. 2014).

4. Future prospects and implications
The application of organizational psychology as a design science can greatly
enhance the prediction of system malfunctions and the discipline has much to
gain by becoming actively involved in such research. We describe and use our
PreMiSTS method focused on malfunctions as illustrative examples, not as the
sole best way forward. Development of the method has followed the rationale
adopted by the aerospace engineering sector in their long-term investment in
modelling system performance in silico. As such, we are attempting to develop
cumulative predictive capability using organizational psychology as a design
science to predict human behaviours, as opposed to the physics that are used to
predict performance of physical systems.

The PreMiSTS method is best suited to situations with the following
characteristics: (1) systemic problems with a strong socio-technical basis,
including behavioural and organizational issues; and (2) problems that appear
to have combinatorial roots and that display a mix of underlying common and
unique factors. To enable the further development of the method, we also need to
work with problems that have independently analysed precedents, with analyses
strong enough to enable validation of predictive models. Our sense is that this
profile fits with many malfunctions and problems in the real world, such as
IT failures, problems with infrastructure and the provision of services, social
care, child protection, and environmental disasters (cf., Clegg & Shepherd 2007;
Broadhurst et al. 2009; Davis et al. 2014).

Although the shift towards a predictive design science will make new demands
of organizational psychology, we believe such challenges will be healthy, requiring
new methods of the kind we have elaborated in this paper, and new techniques
such as the use of ‘big data’ and computer simulation. Recent research using
big data to design supply chains (Waller & Fawcett 2013), and the computer
simulation of team behaviour (Crowder et al. 2012) are two examples of such
paradigms. Indeed, we would argue that it is not only desirable but essential that
organizational psychology engages in predictive work of this nature to establish
itself firmly as a design science. Now, at the beginning of the digital age, there have
never beenmore opportunities to study human behaviour across the full spectrum
of complex socio-technical systems due to the huge volumeof big data that are now
available about such activities (IBM 2016). As the volume, range, accuracy, and
availability of such data continues to grow at an exponential rate thanks to digital
advances (Wu et al. 2014), so too do the capabilities to analyse and understand
these data with the development of new methods such as advanced computer
simulation and networked artificial intelligence (Giannotti et al. 2012). Indeed,
as experts at understanding human behaviour and cognition (both individually
and collectively) in such complex systems, no other discipline is better placed to
exploit these opportunities; however, it is essential that organizational psychology
does so, as other disciplines surely will.

We do acknowledge that work in this area will be high risk, but we are
confident it will be worthwhile even if it fails to make satisfactory predictions in
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the short-term. Examples of potential pay-offs include the development of new
partnerships and new relationships with potential clients in the problem domains.
Working with such clients will make heavy demands on our capabilities and
encourage us to develop in creative ways. In so doing, it will help us attract the
most talented people to work with us on these problems.

In addition to such indirect potential benefits, there are likely to be pay-offs in
content. For example, in recent years, there has been an increasing recognition
of the importance of complex systems as a research area for organizational
psychology. Emerging research into highly complexmulti-team systems, or ‘teams
of teams’, is just one example of this expanding focus (see e.g., Davison et al.
2012; Luciano, Dechurch & Mathieu in press). Such work will be promoted by
an emphasis on developing a predictive design science capability.

Such an emphasis will also make new demands on us for collating and
analysing big and dispersed data of the kind we will need to populate our
combinatorial models. For instance, the technology and methods required to
store, process, and analyse such data will necessitate the acquisition of more
advanced statistical and computational skills (see e.g., Cohen et al. 2009). This
will also require multi-disciplinary collaborations.

A predictive emphasis will also encourage us to try to contribute to some of
the most challenging problems of the day. To use a topical example, theMid-Staffs
Hospital failing has been and continues to be a national topic of interest and
it is, we believe, important that organizational psychologists develop and use
a predictive capability to make an impact. This has been demonstrated in the
analyses of what went wrong at Mid-Staffs Hospital but holds evenmore potential
value as we move into predictive mode.

Such an emphasis on prediction will also encourage the development of
organizational psychology as a design science, one in which it offers more than
wisdom after the event and helps design new complex systems that are more
effective and less prone to failure (see Wastell 2011).

At the same time, we readily acknowledge this is not the only approach to
predicting such events (see e.g., Stanton et al. 2009). Only time will tell how each
of these investments fares and it is clearly important that people working in this
area find ways of both collaborating and competing to address common problems
and opportunities.

Debate is needed on how such efforts are taken forward. Our current view
is that this is high risk work and highly speculative. It is at levels 1–3 of
the Technology Readiness Level (TRL) schema, where we are identifying key
principles and establishing feasibility (seeMankins 2009, for an overviewofTRLs).
Currently, the work is therefore best suited to being undertaken by research and
development organizations, such as universities, working closely with clients but
funded initially by public schemes sought competitively. The next step would then
be to develop and demonstrate the ‘technology’, during TRL levels 4 and 5, to
show the value and applicability of this approach. If and when this bears fruit,
the nature of the work then becomes more focused on refinement and application
during TRL levels 6, 7, and 8, and may then be more appropriately taken forward
by private sector funding.

Finally, in predictive engineering simulation, consolidating results from
multiple simulations based on different branches of physics has required several
issues to be resolved (Trippner, Rude&Schreiber 2015). For example, a key enabler
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was the establishment of computer-based shape models that allowed designs to be
specified in a form suitable for simulation (Requicha & Voelcker 1983). Thus, as
we develop PreMiSTS simulation models, equivalent questions surrounding the
computer representation of socio-technical systems will emerge. These issues will
influence the types of simulation models developed and the underlying predictive
design science they represent, challenging organizational psychology to evolve
and improve.

5. Conclusion
We should be clear on the claims we are making of this work. In principle,
the proposed method can involve users and domain experts and can cope
with multi-disciplinary concerns, as it uses a socio-technical and combinatorial
framework.We also believe it can build on previous work in this domain, drawing
on the evidence of previous malfunctions and disasters and on what appear to
be common underlying problems. The method builds in opportunities for the
computation of hits, false alarms, and misses, and thereby offers opportunities
for validation, learning, and development. Such metrics have the potential to be
a great asset. Reactions on the part of clients and domain experts will also be
important in helping to take the work forward.

We are, of course, not claiming this method and its underlying rationale is the
answer to the problem of prediction. Rather, we are claiming it is one promising
way forward, worthy of further development, and offering opportunities to ‘learn
by doing’. We are also claiming we will learn a great deal even if it does not
deliver what we hope. Our aspiration is that the presentation of this PreMiSTS
method here will help stimulate further research and development in this area.
One obvious way inwhich such predictive work could be developed is to attempt it
in themore general andmulti-dimensional domain of system performance, which
we believe includes but is not limited to system malfunctions.

If successful, however, such predictive capability would be a major step
forward for people working with and in complex organizational systems, helping
to make them more effective, reliable, and safe. In short, these are exciting and
challenging times to develop organizational psychology as a design science. A
predictive paradigm, and the methods and techniques associated with it, offer
opportunities to make a real impact.
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