
This is a repository copy of Metric-space approach to potentials and its relevance to 
density-functional theory.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/116004/

Version: Accepted Version

Article:

Sharp, P. M. and D'Amico, I. orcid.org/0000-0002-4794-1348 (2016) Metric-space 
approach to potentials and its relevance to density-functional theory. Physical Review A. 
062509. ISSN 1094-1622 

https://doi.org/10.1103/PhysRevA.94.062509

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Metric space approach to potentials and its relevance to density functional theory

P. M. Sharp∗

Department of Physics and York Centre for Quantum Technologies,

University of York, York, YO10 5DD, United Kingdom†

I. D’Amico‡

Department of Physics and York Centre for Quantum Technologies,

University of York, York, YO10 5DD, United Kingdom

and Instituto de Fsica de Sao Carlos, Universidade de Sao Paulo,

Caixa Postal 369, 13560-970 Sao Carlos, SP, Brazil

(Dated: December 7, 2016)

External potentials play a crucial role in modelling quantum systems, since, for a given inter-
particle interaction, they define the system Hamiltonian. We use the metric space approach to
quantum mechanics to derive, from the energy conservation law, two natural metrics for potentials.
We show that these metrics are well defined for physical potentials, regardless of whether the system
is in an eigenstate or if the potential is bounded. In addition, we discuss the gauge freedom of
potentials and how to ensure that the metrics preserve physical relevance. Our metrics for potentials,
together with the metrics for wavefunctions and densities from [I. D’Amico, J. P. Coe, V. V. França,
and K. Capelle, Phys. Rev. Lett. 106, 050401 (2011)] paves the way for a comprehensive study of the
two fundamental theorems of Density Functional Theory. We explore these by analysing two many-
body systems for which the related exact Kohn-Sham systems can be derived. First we consider
the information provided by each of the metrics, and we find that the density metric performs best
in distinguishing two many-body systems. Next we study for the systems at hand the one-to-one
relationships among potentials, ground state wavefunctions, and ground state densities defined by
the Hohenberg-Kohn theorem as relationships in metric spaces. We find that, in metric space, these
relationships are monotonic and incorporate regions of linearity, at least for the systems considered.
Finally, we use the metrics for wavefunctions and potentials in order to assess quantitatively how
close the many-body and Kohn-Sham systems are: We show that, at least for the systems analysed,
both metrics provide a consistent picture, and for large regions of the parameter space the error
in approximating the many-body wavefunction with the Kohn-Sham wavefunction lies under a
threshold of 10%.

PACS numbers: 03.65.-w, 31.15.ec, 71.15.Mb, 31.15.eg

I. INTRODUCTION

Density functional theory (DFT) is one of the most
widely used methods for performing quantum mechanical
analysis of many-body systems. DFT is founded upon
two core theorems. The first of these is the Hohenberg-
Kohn theorem [1], which demonstrates, for ground states,
that the many-body wavefunction, the external potential,
and the density are uniquely determined by each other:

V (r, r2, . . . , rN ) ⇋ ψ (r, r2, . . . , rN ) ⇋ ρ (r) . (1)

Therefore, wavefunctions, potentials, and expectation
values of any operator can, in principle, be written as
functionals of the ground-state density. The Hohenberg-
Kohn theorem applies for any given strength of the
interaction between the particles. Thus, in the sec-
ond core theorem of DFT, Kohn and Sham recognised
that the many-body system of interacting particles can
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be described by an auxiliary system of non-interacting
particles, in a different external potential (the Kohn-
Sham potential), that produces the same ground-state
density [2]. Since the Kohn-Sham particles are non-
interacting, the wavefunction for this system is com-
posed of single-particle orbitals, found by solving a sys-
tem of single-particle equations, the Kohn-Sham equa-
tions. The solution of these equations thus provides a
method to obtain the many-body ground state density
that bypasses the many-body wavefunction (the Kohn-
Sham scheme) [2].

These two theorems are sufficient to construct DFT in
a formal way; however, there are open questions with re-
gards to both of them. Although the Hohenberg-Kohn
theorem guarantees a one-to-one relationship between
potentials and ground-state wavefunctions, as well as
ground-state wavefunctions and ground-state densities,
it offers no prescription on how these wavefunctions or
potentials are produced given a particular density. For
the Kohn-Sham scheme, although it is known that the
Kohn-Sham potential is constructed from the sum of ex-
ternal, Hartree, and exchange-correlation potentials, the
exchange-correlation component is generally unknown
and hence must be approximated when DFT calculations
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are implemented practically. There are numerous ap-
proximations to the exchange-correlation potential that
cover a wide range of sophistication and complexity [3],
and the suitability of an approximation usually depends
on the problem studied.
In this work, we apply the metric space approach to

quantum mechanics [4–6] to potentials in order to gain
insight into the two fundamental theorems of DFT. First,
we use the general procedure from Ref. [5] to derive two
metrics for external potentials. These metrics will com-
plement the metrics for wavefunctions and densities de-
rived in Ref. [4] and ensure that we have metrics for
each of the fundamental physical quantities associated to
DFT. We will then revisit the Hohenberg-Kohn theorem.
This was first studied with the metric space approach to
quantum mechanics in Ref. [4], where only the second
part of Eq. (1), concerning ground-state wavefunctions
and densities, was studied. Now, with the external poten-
tial metrics, we will extend the study to incorporate the
first part of Eq. (1), which establishes a unique map be-
tween the external potential and the ground-state wave-
function. We will then turn our attention to the Kohn-
Sham scheme. By studying model systems for which the
Kohn-Sham quantities can be determined exactly, we will
use our metrics to quantify the differences between many-
body and Kohn-Sham quantities. We will use atomic
units (~ = me = e = 1/4πǫ0 = 1) throughout this paper.

II. DERIVING METRICS FOR POTENTIALS

In order to derive a metric for external potentials, we
use the metric space approach to quantum mechanics [4–
6], which allows us to derive metrics from conservation
laws of the form

∫

|f (x)|p dx = c, (2)

where c is a finite, positive constant. Equation (2) has
the form of an Lp norm, from which a metric can be
derived in a standard way. As these metrics then nat-
urally descend from the physical conservation laws, we
refer to them as “natural” metrics for the related physi-
cal functions. A metric is a function that assigns a dis-
tance between two elements of a set and is subject to the
axioms [7, 8]

D (x, y) > 0 and D (x, y) = 0 ⇐⇒ x = y, (3)

D (x, y) = D (y, x) , (4)

D (x, y) 6 D (x, z) +D (z, y) , (5)

for all elements x, y, z in the set. A set with an appro-
priate metric defined on it is called a metric space.
In time-independent quantum mechanics, the system

energy is conserved and it is given by the expectation
value
∫

. . .

∫

ψ∗ (r1, . . . , rN ) Ĥψ (r1, . . . , rN ) dr1 . . . drN = EN,

(6)

where

Ĥ = −
N
∑

i=1

1

2
∇2
i +

N
∑

j<i

U (ri, rj) +
N
∑

i=1

v (ri) , (7)

is the system Hamiltonian, where V =
∑N
i=1 v (ri) is

the external potential and ψ (r1, . . . , rN ) is the system
state. We have followed Ref. [4] and normalised the
many-body wavefunction ψ (r1, . . . , rN ) to the particle
number N . In the following we will concentrate on the
Coulomb particle-particle interaction U (ri, rj) = 1/|ri−
rj |, though the results are valid for a general form of
U (ri, rj). In Eq. (7) and the following analysis we focus
on electronic systems, as is often done in studies involving
DFT when invoking the Born-Oppenheimer approxima-
tion. However, our results can be extended to include
nuclear terms in the Hamiltonian, which we demonstrate
in the Appendix. The derivations in the Appendix can
be straightforwardly extended to more complex systems
comprising various particles and/or species, such as sys-
tems including electrons and different ionic species.
We will now derive metrics for the external potential

from Eq. (6) by applying the metric space approach to
quantum mechanics. We start by performing some simple
algebra and rewrite Eq. (6) in the following two forms:

∫

. . .

∫ N
∑

i=1



−1

2
ψ∗∇2

iψ +

N
∑

j<i

|ψ|2
|ri − rj |

+ |ψ|2 v (ri)





× dr1 . . . drN = EN (8)

and

∫

N

[

τ (r) +
1

2

∫

dr1
g (r, r1)

|r− r1|
+ v (r) ρ (r)

]

dr = EN.

(9)
Here, we have used the definitions

τ (r) ≡ 1

2

∫

. . .

∫

|∇rψ (r, r2, . . . , rN )|2 dr2 . . . drN > 0

(10)
for the kinetic energy density,

g (r1, r2) ≡ (N − 1)

∫

. . .

∫

|ψ (r1, r2, . . . , rN )|2 dr3 . . . drN > 0

(11)
for the two-particle correlation function, and

ρ (r) ≡
∫

. . .

∫

|ψ (r, r2, . . . , rN )|2 dr2 . . . drN > 0,

(12)
for the single-particle density. To derive Eq. (10), we
have used that for any i = 1 . . . N

−1

2

∫

ψ∗∇2
iψdri = −

1

2
[ψ∗∇iψ]ri→∞ +

1

2

∫

[(∇iψ∗) · (∇iψ)] dri

=
1

2

∫

|∇iψ|2 dri, (13)
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as ψ → 0 when ri →∞. This also shows that the kinetic
term in Eq. (8) is positive.
To derive “natural” metrics, we must ensure that the

conservation laws Eqs. (8) and (9) can be written in the
form of Eq. (2), so, after taking the absolute value of their
left and right sides, we need to demonstrate that the inte-
grands in their left-hand sides always have the same sign
throughout the corresponding domains. From previous
considerations, the parts of these integrands correspond-
ing to the kinetic and particle-particle interaction terms,
for both Eqs. (8) and (9), are positive semi-definite every-
where, so we need only to consider the external potential
term.
Although we cannot guarantee the sign of v (r), we can

make use of a gauge transformation. If the potential is
modified by a constant, v (r) → v (r) + c, then the solu-
tion to the Schrödinger equation is unaffected. Thus, for
potentials with a lower bound, we can choose a constant
c such that the potential term (and hence the overall
integrand) in Eqs. (8) and (9) is positive semi-definite
everywhere [9].
With this in mind we can rewrite Eqs. (8) and (9) as

∫

. . .

∫

∣

∣

∣

∣

∣

∣

N
∑

i=1





1

2
|∇iψ|2 +

N
∑

j<i

|ψ|2
|ri − rj |

+ |ψ|2 [v (ri) + c]





∣

∣

∣

∣

∣

∣

× dr1 . . . drN = |(E + c)N | , (14)

and
∫

∣

∣

∣

∣

N

[

τ (r) +
1

2

∫

dr1
g (r, r1)

|r− r1|
+ [v (r) + c] ρ (r)

]
∣

∣

∣

∣

dr

= |(E + c)N | . (15)

Given that both Eq. (14) and Eq. (15) are of the sought
form (2), we can apply the metric space approach to
quantum mechanics [5] and derive the corresponding
metrics, which read

Dv1 =

∫

. . .

∫

|f1 − f2| dr1 . . . drN , (16)

Dv2 =

∫

|h1 − h2| dr, (17)

where

f (r1, . . . , rN )

≡
N
∑

i=1







1

2
|∇iψ|2 +

N
∑

j<i

|ψ|2
|ri − rj |

+ |ψ|2 [v (ri) + c]







,

(18)

and

h (r) ≡ N
[

τ (r) +
1

2

∫

dr1
g (r, r1)

|r− r1|
+ [v (r) + c] ρ (r)

]

.

(19)
Dv1 and Dv2 apply to both the case in which the system
is in an eigenstate and when a more general system state
is considered, as demonstrated below.

We note that both τ (r) and g (r, r1) are uniquely de-
fined by the many-body wavefunction, ψ (r1, . . . , rN ).
When the system is in an eigenstate, and for a given
particle number and many-body interaction, the time-
independent Schrödinger equation shows that the many-
body wavefunction is uniquely determined by the exter-
nal potential v (r). Hence, every term in the integrands of
both Eq. (14) and Eq. (15) (and hence in the related met-
rics) can be uniquely written as a functional of the exter-
nal potential so that f = f [v] and h = h [v]. This demon-
strates that Eqs. (14) and (15) indeed define two norms
(and hence metrics) for the external potential v (r). It
is simple to show that, when comparing the same two
systems, Dv2 < Dv1 .
We note that the metric Dv2 is well defined for com-

paring systems with different numbers of particles be-
cause it relies on a single-particle quantity, the function
h (r) defined in Eq. (19). The metric Dv1 instead is well
defined here only for systems with the same number of
particles, N1 = N2. The issue of defining Dv1 for systems
with different numbers of particles is an open problem re-
lated to the fact that the wavefunction is a many-particle
quantity. This issue has been discussed previously with
reference to Dψ [10, 11].
When considering a system with a time-independent

Hamiltonian but not in an eigenstate, conservation of
energy applies to the time evolution of this state. In this
case we can still consider the norms (14) and (15) as de-
rived from the conservation of energy. However, now the
system state at any time t, ψ (t), will still be determined
by the external potential v (r), but together with the ini-
tial condition ψ (t = 0). The norms (14) and (15) will
then still represent norms for the external potential v (r),
and at any time t, but given the initial state ψ (t = 0).
This condition mirrors the condition for uniqueness of
the relationship between the potential and the wave-
function v (t) ←→ ψ (t) as set in the core theorems of
Time-Dependent DFT [12], where indeed this unique-
ness is subject to the specific initial condition. Given this
caveat, we can also in this case use Eqs. (14) and (15) to
derive appropriate metrics for the external potential in
the way presented above.

A. Potential metric for eigenstates

For system eigenstates, Eq. (6) becomes

∫

. . .

∫

Ei |ψi (r1, . . . , rN )|2 dr1 . . . drN = EiN. (20)

The norms for the external potential can then be rewrit-
ten as
∫

. . .

∫

∣

∣

∣
(Ei + c) |ψi|2

∣

∣

∣
dr1 . . . drN = |(Ei + c)N | , (21)

∫

|(Ei + c) ρi (r)| dr = |(Ei + c)N | . (22)
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From here the metrics for the external potential become

Dv1 =

∫

. . .

∫

∣

∣

∣
(E1i + c1) |ψ1i |

2 −
(

E2j + c2
)
∣

∣ψ2j

∣

∣

2
∣

∣

∣

× dr1 . . . drN , (23)

Dv2 =

∫

∣

∣(E1i + c1) ρ1i (r)−
(

E2j + c2
)

ρ2j (r)
∣

∣ dr.

(24)

B. Coulomb External Potentials

Often bare Coulomb potentials are replaced by soft-
ened potentials that are finite at r = 0. One exam-
ple is the modelling of one-dimensional quantum sys-
tems [13, 14]. When considering softened Coulomb po-
tentials the external potential metrics defined above in
Eqs. (16) and (17) are well defined. However, when the
external potential has the bare Coulomb form v = −1/r,
it diverges to −∞ as r → 0. This implies that, if
ψ (r1, . . . , ri = 0, . . . , rN ) 6= 0 for at least one value of
i and ρ (0) 6= 0, it does not seem possible for a gauge
transformation to enable the integrand of the potential
norms (14) and (15), respectively, to be positive semi-
definite everywhere. We show below that, even in this
case, the potential norms (14) and (15) instead remain
well defined.
Let us consider the gauge transformation v (r) →

v (r) + c and rewrite Eq. (8) using that ψ =
∑

i diψi,
where {ψi} are the eigenstates of H, and that Hψi =
Eiψi. Equation (8) then becomes
∫

. . .

∫

∑

i

(Ei + c) |di|2 |ψi (r1, . . . , rN )|2 dr1 . . . drN

= (E + c)N. (25)

Equation (25) shows that, as long as |Ei| <∞ for any i,
we can choose a finite c > 0 such that the integrand in
Eq. (25) is positive semi-definite everywhere, even when
v (r), as for the bare Coulomb potential, is not bounded
from below.

III. GAUGE FREEDOM AND PHYSICAL

CONSIDERATIONS

In Sec. II, we demonstrated that a gauge transforma-
tion is necessary in order to ensure that the metrics (16)
and (17) are well defined. The gauge must ensure that the
integrands in Eqs. (8) and (9), respectively, are positive
semi-definite everywhere, but one could make different
choices of gauge once this condition is fulfilled.
The gauge freedom we are considering reflects the fact

that energies are defined up to a constant; however, en-
ergy differences have physical significance: When consid-
ering problems where it is necessary that the (physical)
difference in energy between the systems we are compar-
ing is preserved, we must ensure that we always work in

the same gauge for all systems of interest. Hence, the
constant c should be the same for all of the external po-
tentials that we consider. In fact, from Eqs. (14) and (15)
we see that in this way the energy of each system is mod-
ified by the same amount, and hence the energy differ-
ence between any two systems remains unaffected. For
c to satisfy this condition, it must be sufficiently large
so that the integrand of Eq. (8) or Eq. (9) is positive
semi-definite everywhere for all of the potentials char-
acterising the set of systems {Sn} under consideration.
This condition is satisfied for any c > c̄1(2), with c̄1 and
c̄2 defined as

c̄1 ≡ min{c ∈ R s.t. f (r1, . . . , rN ) > 0,

∀ {r1, . . . , rN} and ∀ S ∈ {Sn}}, (26)

c̄2 ≡ min{c ∈ R s.t. h (r) > 0, ∀ r and ∀ S ∈ {Sn}},
(27)

for the metrics Dv1 and Dv2 respectively.

IV. MODEL SYSTEMS

In order to assess the performance of the potential met-
rics Dv1 and Dv2 and examine the two core theorems of
DFT, we will study model systems for which we can ob-
tain both the many-body and exact Kohn-Sham quan-
tities with high accuracy. Since it is possible to reverse
engineer the Kohn-Sham equations exactly for systems of
two electrons [15–17], we will study two-electron model
systems, namely, Hooke’s atom and the Helium atom.
Their Hamiltonians are

ĤHA =
1

2

(

p
2
1 + ω2r21 + p

2
2 + ω2r22

)

+
1

|r1 − r2|
, (28)

ĤHe =
1

2
p
2
1 −

Z

r1
+

1

2
p
2
2 −

Z

r2
+

1

|r1 − r2|
. (29)

Hooke’s atom can be solved exactly for particular fre-
quencies via the method of Ref. [18], and numerical so-
lutions for all frequencies can be found by the methods
of Ref. [19].
We solve the Helium atom with the variational

method [20, 21]. For our purposes, we need a basis set
that will allow us to obtain the ground state for any entry
in the Helium isoelectronic series, i.e., two-electron ions
with any nuclear charge Z. The basis set chosen is

χijk (r1, r2) = cijkNijkL
(2)
i (2Zr1)L

(2)
j (2Zr2)Pk (cos θ) ,

(30)
with

Nijk =

√

1

(i+ 1) (i+ 2)

√

1

(j + 1) (j + 2)

√

2k + 1

2
,

(31)

where L
(2)
n are the generalised Laguerre polynomials, Pn

are Legendre polynomials, and θ is the angle between r1
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and r2. The wavefunction for the Helium atom is then

ψ (r1, r2) =
1√
8π
e−Z(r1+r2)

i+j+k6Ω
∑

i,j,k

χijk (r1, r2) , (32)

where the parameter Ω controls the number of basis func-
tions [20].
This choice of basis combines the approaches taken by

Accad et al. [20] and Coe et al. [21]. It has the im-
portant advantages that, with the constants Nijk, basis
functions are orthonormal and separable in the three co-
ordinates (2Zr1, 2Zr2, cos θ). These coordinates are cho-
sen so that the basis function with i, j, k = 0 corresponds
to the ground state of a hydrogen-like atom of charge Z.
This basis function always makes the largest contribu-
tion to the ground state (i.e., c000 >> cijk), particularly
for large Z, and hence enables the ground state to con-
verge more rapidly with respect to the number of basis
functions.
For both model systems, we will generate families of

states for the metric analysis by varying a parameter in
the external potentials of our systems. For Hooke’s atom,
we will vary the strength of the harmonic confinement via
the frequency ω, and for the Helium-like atoms we will
vary the nuclear charge Z.

A. Solving the Kohn-Sham Equations for the

Model Systems

In order to be able to apply our metrics to quanti-
ties in the exact Kohn-Sham picture, we must be able to
solve the Kohn-Sham equations exactly. Since the exact
Kohn-Sham equations must reproduce the density from
the many-body picture, we can use the exact density to
reverse engineer the Kohn-Sham equations.
For our model systems, the ground state is a spin sin-

glet. Therefore, in the Kohn-Sham picture, both elec-
trons are described by the same Kohn-Sham orbital and,
thus, are expressed in terms of the exact density as [17]

φKS =

√

ρ (r)

2
. (33)

The Kohn-Sham potential follows as [17]

vKS (r) = ǫKS +
1

2

∇2φKS
φKS

. (34)

In order to obtain vKS (r) from Eq. (34), we require the
value of the Kohn-Sham eigenvalue, ǫKS . Reference [15]
demonstrated that, provided vxc (r) → 0 as r → ∞, the
eigenvalue of the highest occupied Kohn-Sham state is
equal to the ionisation energy of the system.
For our model systems, only one Kohn-Sham state is

occupied, and thus the eigenvalues for both electrons are
equal to the ionisation energy. For Hooke’s atom, when
decomposed into centre-of-mass and relative motion com-
ponents [18], the centre-of-mass energy is identical to

that of a one-electron harmonic oscillator of frequency
2ω, so the ionisation energy is clearly equal to the rela-
tive motion energy [16, 17]. Ionising an electron from any
entry in the Helium isoelectronic series results in a Hy-
drogenic atom with energy −Z2/2 Hartrees. Therefore,
the ionisation energy is found from the difference between
the Helium and the Hydrogen ground-state energies.
In order to apply our metrics to Kohn-Sham quan-

tities, we need to consider the Hamiltonian of the
whole N -particle Kohn-Sham system. The correspond-
ing Schrödinger equation is simply the sum of the Kohn-
Sham equations for each electron, so the wavefunction is
formed by taking the Slater determinant of the Kohn-
Sham orbitals:

ψKS (r1, r2) =

∣

∣

∣

∣

φKS (r1) ↑1 φKS (r2) ↑2
φKS (r1) ↓1 φKS (r2) ↓2

∣

∣

∣

∣

,

= φKS (r1)φKS (r2) (↑1↓2 − ↓1↑2) . (35)

We consider only the orbital part of the wavefunction in
this paper, so the two-electron Kohn-Sham wavefunction
simplifies to

ψKS (r1, r2) = φKS (r1)φKS (r2)

=
1

2

√

ρ (r1) ρ (r2). (36)

The potential for the two Kohn-Sham electrons’ Hamilto-
nian is given by the sum of the single-particle Kohn-Sham
potentials,

VKS (r1, r2) = vKS (r1) + vKS (r2) . (37)

We will apply our metrics to these two-electron Kohn-
Sham quantities. Equation (36) shows that for a Kohn-
Sham system the metrics Dv1 and Dv2 will, in general,
take on different values.

V. COMPARISON OF METRICS FOR

CHARACTERISING QUANTUM SYSTEMS

Within the metric space approach to quantum mechan-
ics, we now have metrics for wavefunctions, densities, and
potentials. For systems subject only to scalar potentials
and with a given many-body interaction, these quantities,
taken together, fully characterise a many-body system.
We are then, in principle, in the position of quantitatively
answering the following questions. Are two many-body
systems close to each other in the Hilbert space? Could
two many-body systems be close to each other with re-
spect to some of these quantities but far away for others?
We will address these questions, at least for the systems
at hand and with a focus on DFT, in the rest of the
paper: Apart from the general interest, these questions
have practical implications, for example when consider-
ing how closely quantum information processes reproduce
the desired result [22] or assessing the effectiveness of con-
vergence loops in codes aiming to determine numerically
accurate properties of systems, such as DFT codes.
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FIG. 1. (Color online) The wavefunction, density, and potential distances for many-body systems [(a) and (b)] and Kohn-Sham
systems [(c) and (d)] are plotted against the nuclear charge for Helium-like atoms (left), and against the confinement frequency
for Hooke’s atom (right). For Helium-like atoms the reference state is Z = 50.0, and for Hooke’s atom the reference state is
ω = 0.5. All of the metrics are scaled such that their maximum value is 2.

When considering ground states, thanks to the
Hohenberg-Kohn theorem, any among the density, wave-
function, and external potential are equally appropriate
for characterising quantum systems subject to external
scalar potentials. Therefore, it is worthwhile to make a
comparison between the information given by each of the
corresponding metrics.

Figure 1 shows the values of the wavefunction, density,
and both potential metrics plotted against the parame-
ter values for both of our model systems and considering
both many-body (top panels) and Kohn-Sham (bottom
panels) quantities. The distances are calculated with re-
spect to a reference state, Z = 50.0 for the Helium-like
atoms and ω = 0.5 for Hooke’s atom, and are all scaled to
have a maximum value of 2 for ease of comparison. We
can immediately observe that all of the metrics follow
broadly the same trend, increasing monotonically from
the reference to their maximum value. The curves for
both increasing and decreasing values of the parameters
incorporate a region of rapidly increasing distance for pa-
rameter values close to the reference, a region where the

distance asymptotically approaches its maximum for pa-
rameter values far from the reference, along with a tran-
sition region in between, where the largest differences
between metrics are observed. The crucial difference be-
tween the four metrics, however, is how the metrics con-
verge to the maximum value. Figure 1 shows that, as we
depart from the reference, the potential metric Dv1 is the
fastest to converge to its maximum, followed by the wave-
function metric, with the density metric being the slowest
to converge. The behaviour of the metric Dv2 is different
for the two systems that we study. We firstly note the
metric Dv2 takes on different values for many-body and
Kohn-Sham systems because, although they share the
same density, many-body and related Kohn-Sham sys-
tems have different energies in general. For Helium-like
atoms, this metric strongly follows the trend of the den-
sity metric for both many-body and Kohn-Sham quanti-
ties. However, when considering Hooke’s atom, the po-
tential metric Dv2 is similar in value to the wavefunction
metric, albeit slightly greater for frequencies greater than
the reference. These results suggest that, when com-
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FIG. 2. (Color online) Plots of rescaled potential distance 2Dv1/[N(E1 +E2)] (top) and 2Dv2/[N(E1 +E2)] (bottom) against

rescaled wavefunction distance Dψ/
√
N [(a) and (c)] and against rescaled density distance Dρ/N [(b) and (d)]. We have

plotted both the many-body and related Kohn-Sham systems for Helium-like atoms and Hooke’s atom. In each panel we
consider families of systems characterised by increasing and decreasing parameters starting from the reference state (Z = 50.0
for Helium-like atoms, ω = 0.5 for Hooke’s atom). The parameter ranges are 1.0 < Z < 2000.0 for Helium-like atoms, and
2.6× 10−8 < ω < 1000.0 for Hooke’s atom.

paring systems that are significantly different from one
another, the density metric is the most useful tool for
analysis, as it is capable of providing non-trivial infor-
mation over a wider range of parameter space than the
metrics for wavefunctions and potentials. When compar-
ing systems that are relatively close to one another, all
four metrics provide useful information to quantitatively
characterise the differences between the systems.

With regard to practical calculations, the density met-
ric Dρ, along with the potential metric Dv2 , has another
significant advantage in that, in general, it is consider-
ably easier to calculate than the metrics Dψ and Dv1 .
The metrics Dρ and Dv2 , in fact, need only be integrated
over three degrees of freedom, compared to 3N degrees
of freedom for the other two metrics. Also we can cal-
culate the density metric from both the many-body and
Kohn-Sham systems, since, unlike for wavefunctions and
potentials, the Kohn-Sham system will, in principle, pro-
vide the exact many-body density.

VI. MAPPINGS RELEVANT TO THE

HOHENBERG-KOHN THEOREM

In Ref. [4] it was shown that the mapping between
wavefunctions and densities in the Hohenberg-Kohn the-
orem [Eq. (1)] is a mapping between metric spaces; by
examining it in this light several features were found. In
this paper, we have shown that all of the relationships
in Eq. (1) are mappings between metric spaces: Using
various families of states for each of our model systems,
we will now look at the other relationships within the
Hohenberg-Kohn theorem. We choose a reference state
for each family of systems. We then calculate the dis-
tance between each member of the family and the refer-
ence state, for densities, wavefunctions, and potentials.

In Fig. 2 we plot the potential metrics Dv1 and Dv2 ,
respectively, against the wavefunction (left-hand panels)
and density (right-hand panels) metrics for both inter-
acting systems and their related Kohn-Sham systems and
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FIG. 3. (Color online) For (a) Helium-like atoms and (b)
Hooke’s atom, the distances between many-body and Kohn-
Sham wavefunctions, and between many-body and Kohn-
Sham potentials, are plotted against the parameter values. In
addition, the ratio of the expectation of the electron-electron
interaction to the many-body external potential energy is
plotted and shown to follow a similar trend to the metrics.
In the inset, we focus on Hooke’s atom in the regime of dis-
tances covered by the Helium-like atoms.

for increasing and decreasing parameters. In this way we
compare for each plot eight different families of states
as well as the behaviour of the many-body systems with
respect to the non-interacting Kohn-Sham systems. The
rescaling of the metrics has been chosen such that the
dependence on the particle number is removed and that
these figures are directly comparable to Fig. 2 of Ref. [4],
where corresponding plots for Dψ versus Dρ for Helium-
like and Hooke’s atoms were considered.

Considering our plots, we observe many features in
common with the relationship between wavefunction and
density metrics of Ref. [4]: The relationships between the
potential distances and the other distances are mono-
tonic, with nearby wavefunctions and nearby densities
mapped onto nearby potentials and distant wavefunc-
tions and distant densities mapped onto distant poten-
tials. The curves for increasing parameters and de-

creasing parameters within each of the four systems
(Hooke’s many-body, Hooke’s Kohn-Sham, Helium-like
many-body, Helium-like Kohn-Sham) are also seen to
overlap, or almost overlap, with one another. Finally,
all curves have an extended region (up to and includ-
ing intermediate potential distances) where the relation-
ship between potential and the other distances is linear
or almost linear. Interestingly, depending on the poten-
tial distance and the system considered, we observe that
this linear region can cover the entire parameter range;
see Figs. 2(a), 2(c), and 2(d). With the exception of
Fig. 2(c), we notice that the curves have opposite con-
vexity at large distances with respect to Fig. 2 of Ref. [4],
which suggests that, in general, the potential distance is
more likely to converge to its maximum faster than wave-
function or density distances; hence, in general, it is less
effective in distinguishing far-away systems (compare also
with Fig. 1).
In Ref. [4] a hint to universality was observed for the

mapping between wavefunction and density distances;
when looking at the potential versus wavefunction or
density distances we note that the mapping from each
many-body system is very close to the one from the cor-
responding exact Kohn-Sham system. This mapping is
closer for Helium-like atoms compared to Hooke’s Atom;
this is because we are always in a weak-correlation regime
for Helium-like atoms, while we consider both strong and
weak correlation regimes for Hooke’s Atom (see Fig. 3).
However, the mapping is less close when comparing the
behaviour of Hooke’s with respect to Helium-like atoms,
and particularly so for the Dv2 distance, for which the
convexity of the corresponding curves at large distances
may be opposite [compare curves for the two Kohn-Sham
systems in Fig. 2(c)].

VII. QUANTITATIVE ANALYSIS OF THE

KOHN-SHAM SCHEME

We will now consider the distance between wavefunc-
tions and potentials of many-body systems, and the
ones used to describe the corresponding Kohn-Sham sys-
tems [23], and study how these distances change through-
out the parameter range. This allows us to provide a
quantitative description of the differences between the
many-body and exact Kohn-Sham descriptions of quan-
tum systems. Although there is no promise from DFT
for the many-body wavefunction to be reproduced by the
Kohn-Sham ground-state wavefunction, the latter is com-
monly used as an approximation to the former in various
contexts, such as linear response calculations in time-
dependent DFT and some magnetic-system calculations,
even if the regime of validity of this approximation has
not been properly established. It is therefore of interest
to quantitatively determine how good this approximation
is.
In Fig. 3, the distances between many-body and Kohn-

Sham wavefunctions and potentials are plotted for a
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range of parameter values. For potentials, we use here the
metric Dv1 , since Eq. (24) shows that, in this case, the
metric Dv2 will yield only the difference in the energy of
the two systems. We first observe that the wavefunction
and potential distances, when rescaled to the same max-
imum value, always take approximately the same value
throughout the parameter range explored for both sys-
tems. This demonstrates that the two metrics provide
a consistent measure of how the many-body description
differs from the Kohn-Sham description of our systems.

For both systems we have also plotted the ratio of the
Coulomb energy to the external potential energy for the
many-body systems. This ratio can be seen to follow
broadly the the same trend as the metrics. This is an
important observation as it provides further confirmation
that the metrics derived from the metric space approach
to quantum mechanics provide a physically relevant com-
parison of quantum mechanical functions. It also shows
that, alongside the two metrics and at least for the sys-
tems considered, this ratio is a useful indicator of how
much the many-body and Kohn-Sham descriptions of the
system differ from one another.

If we consider as a good performance indicator that the
distance between the many-body and Kohn-Sham wave-
functions is up to 10% of the maximum distance [i.e.,
Dψ (ψMB , ψKS) < 0.2], then we see that for all fami-
lies of systems the Kohn-Sham wavefunction is indeed a
good approximation for a relatively large range of param-
eters, for Z > 1.5 for the Helium isoelectronic series and
ω > 1.25 for Hooke’s atom.

For Helium-like atoms, even at Z = 1, the maximum
difference between the many-body and Kohn-Sham sys-
tems is just 17.5%. For these systems, the external po-
tential always dominates over the Coulomb interaction
between the electrons, and we observe that the distance
between the potentials is always larger than the distance
between the wavefunctions. For Hooke’s atom, for small
and large values of ω, we observe that the value of the
potential metric is greater than that of the wavefunc-
tion metric, while, in the region where the ratio 〈U〉 / 〈V 〉
is approximately unity, the wavefunction metric takes a
larger value than the potential metric.

In the inset of Fig. 3, we show the large ω behaviour
of our metrics for Hooke’s atom, which can be seen for
Helium-like atoms in Fig. 3(a). In this regime, both met-
rics and the ratio 〈U〉 / 〈V 〉 all tend to zero. This be-
haviour can be understood by considering the limit of
the quantities of interest in the regime where the ex-
ternal potential strongly dominates over the Coulomb
interaction. The Kohn-Sham external potential is the
sum of the external potential used to describe the many-
body system, the Hartree potential, and the exchange-
correlation potential; in this regime, VKS ≈ Vext, and
hence Dv1 (VKS , Vext) ≈ 0. Likewise, the many-body
wavefunction approaches a non-interacting wavefunc-
tion which coincides with the Kohn-Sham wavefunction;
hence, Dψ (ψMB , ψKS) ≈ 0.

Physically, the wavefunction and potential distances

between many-body and Kohn-Sham systems can be in-
terpreted as a measure of specific electron-electron in-
teraction effects. The Kohn-Sham wavefunction is the
product of single-particle states; hence, the wavefunction
distance can be interpreted as a measure of the features
of the many-body wavefunction that go beyond single-
particle approximations. In this respect this distance is a
measure of correlation effects, which cannot be captured
by mean-field-type approximations. For potentials, the
value of the metric Dv1 (Vext, VKS) can be interpreted as
measuring the contribution of the Hartree and exchange-
correlation potentials to the Kohn-Sham potential.

VIII. CONCLUSION

The aim of this paper was to derive a metric for ex-
ternal potentials, which is motivated by their role in the
Hohenberg-Kohn theorem, and more generally the cru-
cial role external potentials play in modelling quantum
systems. This metric complements the density and wave-
function metrics, providing us with metrics for each of the
fundamental quantities of DFT. The tools we now have
at our disposal have enabled us to take our metric anal-
ysis in other directions, such as the quantitative analysis
of the Kohn-Sham scheme. In particular, since the den-
sity of Kohn-Sham and many-body interacting systems
are the same, the potential metric is able to provide a
meaningful insight into the Kohn-Sham scheme that the
density metric cannot.
By considering the conservation of energy and apply-

ing the metric space approach to quantum mechanics to
it, we have derived two “natural” metrics for external
potentials. These metrics can be applied to electronic
systems subject to any physical scalar potential (includ-
ing unbounded potentials such as Coulomb interactions),
in eigenstates or out of equilibrium. We also showed how
to extend our analysis to derive the potential metrics for
systems incorporating both electronic and nuclear effects.
This analysis can be straightforwardly extended to even
more complex systems. We have also considered the ef-
fects of the gauge freedom of potentials and shown which
conditions the metrics should satisfy to remain well de-
fined when the preservation of relative energy differences
are important to the problem considered. As for all met-
rics derived within the metric space approach to quan-
tum mechanics, our potential metrics are characterised
by well-defined maximum values, which makes it pos-
sible to compare quantitatively the behaviours of very
different systems.
Physical systems subject to scalar potentials are de-

fined through their external potentials, densities and
wavefunctions: Here we have analysed in detail eight
families of systems, all in their ground states, so that
these quantities are subject to a one-to-one mapping
through the Hohenberg-Kohn theorem, the pillar of Den-
sity Functional Theory. These families are defined by in-
creasing and decreasing parameters with respect to ref-
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erence systems for the interacting Helium isoelectronic
series, the interacting Hooke’s atom with varying con-
finement strength, and the two corresponding families of
non-interacting exact Kohn-Sham systems. When com-
paring the performances of the metrics, we found that
they converged onto their maximum values at different
rates, with the potential metric Dv1 converging first, fol-
lowed by the wavefunction metric, and finally by the den-
sity metric, with the behaviour of the potential metric
Dv2 depending on the system studied. This strength-
ens the findings in Ref. [4] that the density is the best
quantity to differentiate between distant systems. Im-
portantly, however, we find that, in general, two systems
close to (or distant from) each other with respect to the
metric for one physical quantity remain so with respect
to the metrics for all physical quantities.
In the context of the Hohenberg-Kohn theorem, in

Ref. [4] it was found that in metric spaces the map-
ping between wavefunctions and densities was mono-
tonic, and incorporated a (quasi) linear mapping be-
tween small and between intermediate distances. When
examining in metric space the relationships of the ex-
ternal potential with wavefunctions and densities in the
Hohenberg-Kohn theorem, we find once more surpris-
ingly simple mappings and with a similar behaviour, with
some curves showing an even greater range of linearity
than the wavefunction-density mapping. These results
are evidence of the deep connection between the quan-
tities involved in the Hohenberg-Kohn theorem. How-
ever, while the interacting and related exact Kohn-Sham
systems have almost identical behaviour, there are differ-
ences, especially at intermediate to large distance regions
between Hooke’s and Helium-like families, as opposed to
Ref. [4].
We looked at the distance between many-body and

Kohn-Sham quantities for both wavefunctions and ex-
ternal potentials, gaining quantitative insight into when,
and by how much, the many-body and Kohn-Sham sys-
tems differ from one another. We showed that, when
rescaled to the same maximum distance, wavefunctions
and potentials provide a consistent picture, since they
yield approximately the same distance values throughout
all the parameter ranges considered. We also found that
the two metrics followed the same qualitative trend as
the ratio of Coulomb to external potential energies. The
Kohn-Sham wavefunction has been used as an approxi-
mation to the many-body wavefunction, even if there is
no promise of good behaviour, in this respect, from den-
sity functional theory. Our metrics allowed us to explore
this approximation quantitatively, at least for the systems

at hand. For these systems we prove that the Kohn-Sham
wavefunction indeed represents a well-behaved approxi-
mation which provides good quantitative results (10%
maximum error) for a relatively large range of the pa-
rameters explored.
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Appendix: External potential metrics for systems

comprising electrons and nuclei

In this appendix we will generalise the external poten-
tial metricsDv1 andDv2 to systems comprising both elec-
trons and nuclei. We define the sum of the electrons and
nuclei numbers Ne + Nn ≡ N , and consider the Hamil-
tonian

Ĥ = −
N
∑

i=1

1

2
∇2
i +

N
∑

j<i

U (ri, rj)+

Ne
∑

i=1

ve (ri)+

Nn
∑

i=1

vn (ri) ,

(A.1)

where V =
∑Ne

i=1 ve (ri) +
∑Nn

i=1 vn (ri) is the external
potential acting on the electrons and nuclei (e.g., from an

applied electric field) and
∑N
j<i U (ri, rj) is a shorthand

for

Ne+Nn
∑

j<i

U (ri, rj) ≡
Ne
∑

j<i

Ue (ri, rj) +

Ne+Nn
∑

i=Ne+1,
j<i

Un (ri, rj)

+

Ne
∑

i=1

Ne+Nn
∑

j=Ne+1

Ue−n (ri, rj) (A.2)

and contains the electron-electron, nuclear-nuclear, and
electron-nuclear interactions, respectively. The sys-
tem state is ψ (r1, . . . , rNe

, rNe+1, . . . , rNe+Nn
), where we

have followed Ref. [4], and normalised the many-body
wavefunction to the total particle number N ≡ Ne+Nn.
Without loss of generality, we have positioned the elec-
tron coordinates before the nuclear coordinates.
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1. Generalisation of Dv1 to an electron-nuclear system

The Hamiltonian expectation value is
∫

. . .

∫

ψ∗ (r1, . . . , rNe
, rNe+1, . . . , rNe+Nn

) Ĥψ (r1, . . . , rNe
, rNe+1, . . . , rNe+Nn

) dr1 . . . drNe+Nn

=

∫

. . .

∫







−
N
∑

i=1

1

2
ψ∗∇2

iψ +





Ne
∑

j<i

Ue (ri, rj) +

Ne+Nn
∑

i=Ne+1,j<i

Un (ri, rj)



 |ψ|2

+

Ne
∑

i=1

Ne+Nn
∑

j=Ne+1

Ue−n (ri, rj) |ψ|2 +
[

Ne
∑

i=1

ve (ri) +

Nn
∑

i=1

vn (ri)

]

|ψ|2






dr1 . . . drNe+Nn
= E(Ne +Nn) = EN. (A.3)

Following a procedure similar to the one used to derive Eq. (14) we can write

∫

. . .

∫

[

F (r1, . . . , rN ) +

N
∑

i=1

c |ψ|2
]

dr1 . . . drN = (E + c)N, (A.4)

where F (r1, . . . , rN ) is the integrand of (A.3) and c is the positive constant from the gauge transformation ve(n) (r)→
ve(n) (r) + c. While the kinetic term [after applying Eq. (13)] and the terms containing the electron-electron and the
nuclear-nuclear interactions are positive definite, this gauge transformation is necessary to ensure the the sum of the
electron-nuclear and external potential terms in (A.3) is also positive definite. By using that ψ =

∑

i diψi with {ψi}
the set of orthogonal eigenstates such that Hψi = Eiψi, Eq. (A.4) can be rewritten as

∫

. . .

∫

∑

i

(Ei + c) |di|2 |ψi|2 dr1 . . . drN = (E + c)N. (A.5)

As was the case with Eq. (25), this equation proves that, provided that |Ei| <∞ for all i, it is possible to find a value
of c such that the integrand of (A.6) becomes positive definite. With this choice of c we can write

∫

. . .

∫

∣

∣

∣

∣

∣

F (r1, . . . , rN ) +

N
∑

i=1

c |ψ|2
∣

∣

∣

∣

∣

dr1 . . . drN = |(E + c)N | , (A.6)

which is the analogue of Eq. (14) for the Hamiltonian (A.1) and represents a well-defined L1 norm when extended
to the appropriate set [5]. From this, following the metric space approach to quantum mechanics [5], we derive the

generalisation of Dv1 to the external potential
∑Ne

i=1 v (ri) +
∑Nn

i=1 v (ri), which reads

Dv1,e−n =

∫

. . .

∫

∣

∣

∣

∣

∣

F1 (r1, . . . , rN ) +

N
∑

i=1

c |ψ1|2 − F2 (r1, . . . , rN )−
N
∑

i=1

c |ψ2|2
∣

∣

∣

∣

∣

dr1 . . . drN , (A.7)

=

∫

. . .

∫

|f1,e−n − f2,e−n| dr1 . . . drN , (A.8)

where

fi,e−n (r1, . . . , rN ) = Fi (r1, . . . , rN ) +

N
∑

j=1

c |ψi|2 . (A.9)

In a similar way the metric Dv1 can be generalised to measure the distance between systems containing an arbitrary
number of sets of different particles pa, pb . . . , pm (e.g. systems which include electrons and various ionic species), as
long as the number of corresponding particles is identical for both systems, i.e., Na1 ≡ Na2 , Nb1 ≡ Nb2 , etc.

2. Generalisation of Dv2 to an electron-nuclear system

The system wavefunction ψ (r1, . . . , rNe
, rNe+1, . . . , rNe+Nn

) is antisymmetric with respect to electron-electron ex-
change, and either symmetric or antisymmetric with respect to nuclear-nuclear exchange depending on whether the
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nuclei are bosons or fermions, respectively. By using these properties we can rewrite Eq. (A.3) as

N

{
∫

V

dre 〈τe (re; rNe+1, . . . , rNe+Nn
)〉n +

∫

V

drn 〈τn (rn; r1, . . . , rNe
)〉e +

∫

V

dre1
1

2

∫

V

dre2Ue (re1 , re2)

× 〈ge (re1 , re2 ; rNe+1, . . . , rNe+Nn
)〉n +

∫

V

drn1

1

2

∫

V

drn2
Un (rn1

, rn2
) 〈gn (rn1

, rn2
; r1, . . . , rNe

)〉e

+

∫

V

dre

∫

V

drnUe−n (re, rn) ge−n (re, rn) +

∫

V

dreve (re) 〈ρe (re; rNe+1, . . . , rNe+Nn
)〉n

+

∫

V

drnvn (rn) 〈ρn (rn; r1, . . . , rNe
)〉e

}

= EN, (A.10)

where

〈τe (re; rNe+1, . . . , rNe+Nn
)〉n ≡

∫

drNe+1, . . . , drNe+Nn

[

Ne
2N

∫

|∇iψ|2 dr2, . . . , drNe

]

, (A.11)

〈ge (re1 , re2 ; rNe+1, . . . , rNe+Nn
)〉n ≡

∫

drNe+1, . . . , drNe+Nn

[

Ne (Ne − 1)

N

∫

|ψ|2 dr3, . . . , drNe

]

, (A.12)

〈ρe (re; rNe+1, . . . , rNe+Nn
)〉n ≡

∫

drNe+1, . . . , drNe+Nn

[

Ne
N

∫

|ψ|2 dr2, . . . , drNe

]

. (A.13)

It can be seen that the terms in square brackets in Eqs. (A9)-(A11) correspond to the definitions of the analogous
quantities for electron-only systems in Eqs. (10)-(12). The corresponding nuclear functions are obtained by inter-
changing in the three equations above the sets of electron and nuclear coordinates and the “e” and “n” indices,
and

ge−n (re, rn) ≡
NeNn
N

∫

dr2, . . . , drNe

∫

|ψ|2 drNe+2, . . . , drNe+Nn
. (A.14)

We then note that (i) all integrations in (A.10) are over the same volume, (ii) the integrands of the first four terms
are positive definite, (iii) the integrand of the fifth term is negative, and (iv) the integrands of the sixth and seventh
terms have no defined sign. By using (i) and a gauge transformation for ve (r) and vn (r), we can write (A.10) as

∫

V

N {〈τe (r; rNe+1, . . . , rNe+Nn
)〉n + 〈τn (r; r1, . . . , rNe

)〉e

+
1

2

∫

V

dr′ [Ue (r, r
′) 〈ge (r, r′; rNe+1, . . . , rNe+Nn

)〉n + Un (r, r
′) 〈gn (r, r′; r1, . . . , rNe

)〉e]

+

∫

V

dr′Ue−n (r, r
′) ge−n (r, r

′) + (ve (r) + c) 〈ρe (r; rNe+1, . . . , rNe+Nn
)〉n

+ (vn (r) + c) 〈ρn (r; r1, . . . , rNe
)〉e} dr = (E + c)N, (A.15)

where c > 0 is chosen such that the sum of the last three terms of the overall integrand is always positive. In this way
the overall integrand in (A.15) is positive definite and, following the metric space approach to quantum mechanics [5],
we can write the L1 norm

∫

V

N |〈τe (r; rNe+1, . . . , rNe+Nn
)〉n + 〈τn (r; r1, . . . , rNe

)〉e

+
1

2

∫

V

dr′ [Ue (r, r
′) 〈ge (r, r′; rNe+1, . . . , rNe+Nn

)〉n

+ Un (r, r
′) 〈gn (r, r′; r1, . . . , rNe

)〉e] +
∫

V

dr′Ue−n (r, r
′) ge−n (r, r

′)

+ (ve (r) + c) 〈ρe (r; rNe+1, . . . , rNe+Nn
)〉n + (vn (r) + c) 〈ρn (r; r1, . . . , rNe

)〉e| dr = |(E + c)N | , (A.16)

which is the analogue of Eq. (15) for the Hamiltonian (A.1) and the generalisation of Dv2 to the external potential
∑Ne

i=1 v (ri) +
∑Nn

i=1 v (ri) is

Dv2,e−n =

∫

|h1,e−n (r)− h2,e−n (r)| dr, (A.17)
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where hi,e−n (r) corresponds to the integrand of Eq. (A.15) for system i. As was the case for Dv1 , the metric Dv2 can
be generalised to measure the distance between systems containing an arbitrary number of sets of different particles
pa, pb, . . . , pm (e.g., systems which include electrons and various ionic species). In this case, however, it is not required
that corresponding ensembles of particles in different systems have the same size.
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